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In this manuscript, three new classes of log-type imputation techniques have been proposed to handle missing data when
conducting surveys. +e corresponding classes of point estimators have been derived for estimating the population mean. +eir
properties (Mean Square Errors and bias) have been studied. An extensive simulation study using data generated from normal,
Poisson, and Gamma distributions, as well as real dataset, has been conducted to evaluate how the proposed estimator performs in
comparison to several contemporary estimators. +e results have been summarized, and discussion regarding real-life appli-
cations of the estimator follows.

1. Introduction

Any project has several constraints involved, such as
budget restrictions, time limitations, and deadlines. As a
result, it is not feasible to study the entire population, and
sampling is indispensable for any field of study [1–4].
Sampling has immense applications in various industries
such as manufacturing and quality control. It can be uti-
lized to gather information on the notable characteristics of
items, such as electrical appliances and household appli-
ances, machine parts like screws and bolts, automobiles,
and computer parts like chips. Sampling also has appli-
cations in environmental problems that require the esti-
mation of physical, geographical, economical, and other
characteristics, before data analysis can begin [5, 6]. Mean,
median, variance, and other statistics are essential for
studies involving various environmental parameters, such
as estimation of the amount of rainfall received in an area
prone to droughts and the air quality of a city with high

traffic density. Sample surveys may be designed to collect
such information.

Missing data is a frequent element in sample surveys and
is a primary contributor towards decline of data quality and
incorrect inferences. Hence, it is crucial that survey statis-
ticians deal with the stochastic nature of such incomplete
data. It is essential to understand the assumptions which
have to be made and the methods that can be utilized to deal
with the problem of ignorability of completeness mecha-
nism.+e authors of [7, 8] and many others have studied the
mechanisms of missing data. Of these, the ones that are most
relevant to the survey literature are missing completely at
random (MCAR), missing at random (MAR), and missing
not at random (MNAR). When data is missing randomly or
by chance, MCAR is said to occur. MAR occurs when the
missingness does not depend on the variable under study
(which may be unobserved), but on some other variable
(which is fully observed). MNAR occurs when missingness
depends on the variable under study.
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A number of statistical techniques have been developed
over the past decades to handle the situation of missing data.
+e study in [9] was the first to suggest that a subsample of
nonrespondents be contacted again by mail surveys. An-
other widely employed technique is imputation, in which a
suitable function of the variables is used to fill in the missing
values. +is ensures the completeness of the sample in terms
of structure prior to the commencement of statistical
analysis. Some popular imputation methods include mean,
regression, hot deck, cold deck, and nearest neighbor
methods of imputation, among others. Imputation tech-
niques in the survey literature are due to [10–27], among
others.

Information from an auxiliary variable can be utilized to
provide an improved estimate for population characteristics.
Such information may be readily available as secondary data
from previous surveys or census or may be collected during
the survey procedure at little to no additional cost. Some
examples of such auxiliary information include the lifetime
of a previous batch of bulbs when studying the life of a
current lot of bulbs and the speed of cars when studying the
mileage of cars.

+is manuscript proposed three novel logarithmic-type
imputation methods to neutralize the nuisance effects of
nonresponse in survey sampling. +e corresponding classes
of point estimators that may be used for estimating pop-
ulation mean have been studied in detail. +e subsequent
sections of the manuscript are devoted to the theoretical
analysis of the properties of the proposed estimators, in
terms of bias and Mean Square Error (MSE), and empirical
study to examine the performance of the proposed esti-
mators in comparison with some contemporary estimators,
based on both simulated data and real data, and the con-
clusions have been presented. +ese are structured as fol-
lows: Sections 2 and 3 introduce the sample structure and
notations and some conventional estimators of population
mean, respectively, which have been used subsequently in
the manuscript. Section 4 introduces the proposed classes of
estimators, and comments on its existence, consistency,
properties, and implementation in R. +e empirical study
involving simulated data and real data have been presented
in Sections 5 and 6, respectively. Section 7 summarizes the
main findings and conclusions.

2. Sampling Scheme and Notations Used

Let the characteristic of interest be denoted by Y. A cor-
related auxiliary variable X with the availability of complete
information on it and known population mean is
considered.

+e sample structure as well as the notations used in the
subsequent sections of the manuscript have been introduced
in Table 1.

3. Some Conventional Estimators

It is crucial to conduct thorough literature review and ex-
amine the properties of some existing estimators of pop-
ulation mean, before new estimators can be proposed. A few
such estimators have been discussed in this section.

+e mean estimator is a simple and widely used esti-
mator, which provides an estimate of the population mean
using the average of the responses. Ratio estimator improves
over the mean estimator by utilizing auxiliary information
on a correlated variable. Numerous other estimators which
make effective use of auxiliary information have been de-
veloped, for instance, the estimator proposed in [28] and
regression-type estimators proposed in [29], among others.

+e structures of some of these estimators have been
given in Table 2, while the expressions for their respective
variances (V) or Mean Square Errors (MSEs) have been
given in Table 3.

It is to be noted that most conventional estimators make
use of simple functional forms, such as linear combinations,
exponential functions, and chains. Logarithmic functions
are rarely seen. +is can be partially attributed to compu-
tational limitations associated with such functions. How-
ever, the advent of supercomputers and improvement in
computational powers have eliminated such obstacles.
Logarithms are useful because they express numbers in a
reasonable scale that is easy to understand by people.
Logarithms count multiplication as steps and hence can
express events whose magnitudes can vary in a drastic
manner, such as earthquakes, on a singular scale that has a
compact range. Logarithmic-scale graphs are efficient in
graphically depicting such widely varying magnitudes in a
single scale. In log-scale graphs, straight lines often represent
exponential changes, thus making them easier to interpret.
Some real-life examples of use of logarithms are decibels for
measuring sound, Richter scale for measuring earthquakes,
pH scale for measuring acidity, etc. Logarithms can also be
used to study exponential growth and decay, such as bac-
terial growth in a Petri dish, interest rates (the implicit
growth rate), and radioactive decay in radiocarbon dating.
Hence, it is reasonable to explore the use of log-type esti-
mators for estimation of various population parameters.
+is has been the motivation behind the construction of the
proposed classes of logarithmic-type estimators.

4. Formulation of the Proposed Classes of
Logarithmic-Type Estimators

Let Bi where B � Y or B � X denote, respectively, the values
for the ith population unit of characteristics Y and X. Let A

and Ac denote the sets of respondents and nonrespondents,
respectively. +e following imputation methods may be
suggested to deal with the problem of missing data:
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where α, β, and c are constants, to be determined in such a
way that they minimize the MSE.

+e point estimator under an imputation method is
given in

T �
1
n


i∈S

y·i �
1
n


i∈R

y·i + 
i∈Rc

y·i
⎡⎣ ⎤⎦. (4)

Using Equation (4), under the imputation outlined in
Equations (1)–(3), respectively, the expressions for the
corresponding classes of logarithmic-type point estimators
of Y are obtained as

T1 � yr + α log
xn

X
 , (5)

T2 � yr + β log
xr

X
 , (6)

T3 � yr + c log
xn

xr

 . (7)

Table 2: Structures of some well-known estimators.

Estimator Notation used Structure
Mean estimator ym yr

Ratio estimator yRAT yr
xn

xr

Kadilar and Cingi [29] estimator A TKCA
((yr + b(X − xn))/xn)X

Kadilar and Cingi [29] estimator B TKCB
((yr + b(X − xr))/xr)X

Kadilar and Cingi [29] estimator C TKCC
((yr + b(xn − xn))/xr)X

Toutenberg and Srivastava [28] estimator TTSS yr + (r/n)(yr/xn)(xn − xr)

Table 3: MSEs of some well-known estimators.

Estimator Variance (V) or Mean Square Error (MSE)
ym V(ym) � θ1S2Y
yRAT MSE(yRAT) � θ2S2Y + θ3(S2Y + R2

1S
2
X − 2R1ρSYSX)

TKCA
MSE(TKCA

) � ((1/r) − (1/N))S2Y + ((1/n) − (1/N))S2X(R2
1 − B2)

TKCB
MSE(TKCB

) � ((1/r) − (1/N))(S2Y − BSYX + R2S2X)

TKCC
MSE(TKCC

) � ((1/r) − (1/N))S2Y + ((1/r) − (1/N))((R + B)2S2X − 2(R + B)SXY)

TTSS MSE(TTSS) � ((1/r) − (1/N))S2Y + Y
2
((1/r) − (1/n))(r/n)((r/n)C2

X − 2ρCYCX)

Where R1 � (Y/X), B � (SXY/S2X)

Table 1: Sample structure and notations.

Structure Size
Population N
Sample n
Respondents r
Nonrespondents n-r
Characteristic Notation
+e population mean of Y Y

+e population mean of X X

+e sample mean of Y based on the responding part of the sample yr

+e sample mean of X based on the responding part of the sample xr

+e sample means of X, respectively, based on the entire sample xn

+e correlation coefficient between X and Y ρ
+e population mean square of X S2X
+e population mean square of Y S2Y
+e coefficient of variation of X CX

+e coefficient of variation Y CY
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4.1. Existence and Consistency of the Estimator. +e domain
of values for which an estimator exists should be specified, so
that survey statisticians or those working in the field are able
to determine whether it is reasonable to use an estimator in a
practical scenario.

+e proposed classes of estimators consist of the log(x)

function, which exists for all positive values of x. Hence,
Ti, i � 1, 2, 3, exist for all positive values of x.

Hence, the proposed estimators can be used for all real,
positive values of the characters under study. For real-world
scenarios, many characters of interest take only positive
values. For example, measurements such as length, breadth,
height, weight, diameter, currencies, and number of an item
do not take negative values. Hence, the proposed estimator
can be used in such practical scenarios.

It is to be noted that the structure of the estimator is
consistent for large-sample approximations. As n⟶∞,
yr⟶ Y, xr⟶ X, and xn⟶ X, log(1) � 0. Hence,
Ti⟶ Y, for i � 1, 2, 3.

4.2. Properties of the Proposed Estimator. Various properties
can be used to measure the “goodness” of an estimator. Two
such properties, namely, bias and Mean Squared Error
(MSE), have been discussed in this manuscript. Bias paints a
picture of the expected deviation from the true value of a
parameter, while MSE gives an idea about the degree of
spread. Large-sample assumptions have been considered for
the purpose. +e expressions have been derived up to the
first order of approximations. Some transformations in-
volving error terms have been employed for the purpose,
given as follows:

η0 �
yr − Y

Y
,

η1 �
xr − X

X
,

η2 �
xn − X

X
,

(8)

θ1 �
1
r

−
1
N

 ,

θ2 �
1
n

−
1
N

 ,

θ3 �
1
r

−
1
n

 .

(9)

+e error terms have the following expectations:

E η0(  � E η1(  � E η2(  � 0,

E η20  � θ1C
2
Y, E η21  � θ1C

2
X, E η22  � θ2C

2
X,

E η0η1(  � θ1ρCYCX, E η1η2(  � θ2C
2
X, E η0η2(  � θ2ρCYCX.

(10)

To obtain the expressions for Bias and MSE, in the first
step, the transformations in Equation (8) are applied to
Equations (5)–(7). In the second step, algebraic expansion of
the resultant expressions are done, using the following
Taylor’s series: log(1 + x) � x − (x2/2) + ((x2/2)/3) − · · ·.

+e estimators take the following forms after algebraic
manipulation:

T1 � Y 1 + η0(  + α η2 −
η22
2

+
η32
3

− · · · ,

T2 � Y 1 + η0(  + β η1 −
η21
2

+
η31
3

− · · · ,

T3 � Y 1 + η0(  + c η2 − η1 + η21 − η1η2  −
η2 − η1 + η21 − η1η2 

2

2
+ · · ·⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(11)

Hence,

T1 − Y � Yη0 + α η2 −
η22
2

+
η32
3

− · · · ,

T2 − Y � Yη0 + β η1 −
η21
2

+
η31
3

− · · · ,

T3 − Y � Yη0 + c η2 − η1 + η21 − η1η2  −
η2 − η1 + η21 − η1η2 

2

2
+ · · ·⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(12)
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Expectations taken on the square of both sides yield the
expressions for MSEs (M(.)). +ey are obtained up to the
first order of approximations of the estimators Ti, i � 1, 2, 3,
as follows:

M T1(  � θ1S
2
Y + 2αθ2ρSYCX + α2θ2C

2
X,

M T2(  � θ1S
2
Y + 2βθ1ρSYCX + β2θ1C

2
X,

M T3(  � θ1S
2
Y − 2cθ3ρSYCX + c

2θ3C
2
X.

(13)

As stated when introducing the imputation methods, the
constants α, β, and c are to be determined so that they
minimize the respective MSEs of the estimators. Setting

zM T1( 

zα
� 0,

zM T2( 

zβ
� 0,

zM T3( 

zc
� 0, (14)

the respective optimal values of α, β, and c are obtained as
follows:

αopt � − ρ
SY

CX

, βopt � − ρ
SY

CX

, copt � ρ
SY

CX

. (15)

+us, the expressions for the minimumMSE (Min M(.))
of the proposed classes of logarithmic-type estimators under
optimal conditions are as follows:

MinM T1(  � S
2
Y θ1 − θ2ρ

2
 , (16)

MinM T2(  � θ1S
2
Y 1 − ρ2 , (17)

MinM T3(  � S
2
Y θ1 − θ3ρ

2
 . (18)

+e expressions for bias B(.), using the optimal values of
α, β, and c, are found to be as follows:

B T1(  �
θ2
2
ρSYCX,

B T2(  �
θ1
2
ρSYCX,

B T1(  �
θ3
2
ρSYCX.

(19)

Remark on practicability: a primary problem in the use
of the proposed classes of logarithmic-type estimators
Ti, i � 1, 2, 3, is the choice of the constants α, β, and c. +e
optimum value of α, β, and c depends on the population
parameter ρ(SY/CX). +ese values are seen to be overall
stable when surveys are conducted repeatedly (see [30]);
however, sometimes, the values remain unknown. In situ-
ations like that, the following estimators of α, β, and c are
suggested:

α � − r
syr

cxr

, β � − r
syr

cxr

, c � r
syr

cxr

, (20)

where r is the correlation coefficient between X and Y, syr is
the sample mean square of Y, and cxr is the sample coef-
ficient of variation of X, based on the responding part of the
sample of size r.

4.3. Implementation in R. In today’s technologically ad-
vanced world, most computations are done in some suitable
software environment. +e R [31] code snippet given in the
following can be used to carry out the proposed imputations
on a dataset of interest and calculate the values of the
corresponding point estimators:

#Import data of respondents from file
dfresp< - read.table(file.choose())
#Import data of non-respondents from file
dfnonresp< - read.table(file.choose())
xrbar�mean(dfresp[,1])
yrbar< -mean(dfresp[,2])
xbar< - XXX #Specify known value of Xbar here
rhosamp� corr(dfresp[,1],dfresp[,2])
sxr� var(dfresp[,1])
syr� var(dfresp[,2])
cyr� syr/yrbar
cxr� sxr/xrbar
xbarnonresp�mean(dfnonresp[,1])
r� nrow(dfresp) #no. of respondents
nonresp� nrow(dfnonresp) #no. of non-respondents
n� r+nonresp #sample size
xnbar�(r∗xrbar + nonresp∗xbarnonresp)/n
const� rhosamp∗syr/cxr
alpha� -const
beta� -const
gamma� const
#imputation
t1<− c()
t2<− c()
t3<− c()
for(i in 1:(n − r))
{
t1[i]� yrbar + alpha∗n∗x[i]∗log(xnbar/Xbar)/((n − r)∗
xbarnonresp)
t2[i]� yrbar + beta∗n∗x[i]∗log(xrbar/Xbar)/((n − r)∗
xbarnonresp)
t3[i]� yrbar + gamma∗n∗x[i]∗log(xnbar/xrbar)/
((n − r)∗xbarnonresp)
}
#point estimation
est1� yrbar + alpha∗log(xnbar/Xbar)
est2� yrbar + beta∗log(xrbar/Xbar)
est3� yrbar + gamma∗log(xnbar/xrbar)

5. Empirical Study

Before an estimator can be used in practical scenarios, its
performance must be examined, in terms of its properties.
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To this end, the biases of the estimators are calculated and
the MSEs under optimal conditions are compared with
those of the contemporary estimators given in Table 2
within the framework of percentage relative efficiencies
(PREs).

+e PREs of the classes of logarithmic-type estimators
w.r.t. the contemporary estimators, under optimal condi-
tions, are defined as follows:

PREi1 �
V ym( 

MinM Ti( 
× 100, i � 1, 2, 3,

PREi2 �
M yRAT( 

MinM Ti( 
× 100, i � 1, 2, 3,

PREi3 �
M TTSS( 

MinM Ti( 
× 100, i � 1, 2, 3,

PREi4 �
M TKC1

 

MinM Ti( 
× 100, i � 1, 2, 3,

PREi5 �
M TKC2

 

MinM Ti( 
× 100, i � 1, 2, 3,

PREi6 �
M TKC3

 

MinM Ti( 
× 100, i � 1, 2, 3.

(21)

Here, the expressions for the Min. MSEs of the proposed
classes of logarithmic-type estimators Ti, i � 1, 2, 3, are
given in Equations (16)–(18), while those of the contem-
porary estimators are given in Table 3.

Using R [31], an extensive simulation study has been
carried out on sufficiently large fictitious populations to
compute the biases and the PREs defined above. Data is
generated from three different probability distributions,
namely, normal (a continuous distribution), Poisson (a
discrete distribution), and Gamma (a continuous distribu-
tion) distributions. A few important properties of the dis-
tributions have been tabulated in Table 4. Such distributions
have been selected because they are frequently seen to occur
in real-life situations.

Normal distribution has uses in modeling of heights of
individuals, test scores of students, blood pressure, daily
returns of any particular stock, weights of items produced by a
manufacturing process, etc. Poisson distribution can be used
to model the probability that a given number of events occur
in a specific time interval, for example, the number of in-
surance claims filed per month, the number of network
failures occurring per week, and the number of bulbs man-
ufactured per minute. It also finds use in medical statistics,
such as for estimating the number of births that may be
expected on a particular night, the number of patients with an
infectious disease arriving at a clinic within a given hour, and
the number of mutations on a given strand of DNA per time
unit. Gamma distribution can be used for modeling wait time,
reliability, service time in queuing theory, etc. For example, it
can be used to model the amount of rainfall that accumulates
in a given reservoir, the flow of items through manufacturing
as well as distribution processes, the size of loan defaults, etc.
+us, these three distributions are chosen based on their
importance in practical scenarios.

+e steps of the simulation are as follows:

(1) +e sizes of the population, the sample, and the
responding part of the sample are defined. For the
purpose of the study, sufficiently large values of
N � 100000, n � 40000, and r � 35000 have been
chosen.

(2) +e parameters of the population are defined. Data is
generated from normal distribution with parameters
N(10, 1) for X and N(12, 1) for X, from Gamma
distribution with parameters with means 3, 5 and
variances 1, 1 for X and Y, respectively, and from
Poisson distribution with means 10, 12 for X and Y,
respectively.

(3) Simulation is conducted for various values of ρ. For
the purpose of the study, ρ in the range (0.1, 0.9), i.e.,
positively correlated variable X, is considered.

+e results of the simulation study related to the PREs
have been presented in Tables 5–13, while the biases have
been presented in Tables 14–16.

Table 4: Some properties of normal, Poisson, and Gamma distributions.

Distribution Normal
Parameters μ, σ2
Pdf f(x) � (1/σ

���
2π

√
)exp[− (((x − μ)2)/2σ2)], − ∞<x<∞

Mean E(X) μ
Variance V(X) σ2

Distribution Poisson
Parameter λ> 0
Pmf f(x) � (λxe− λ/x!)

Mean E(X) λ
Variance V(X) λ
Distribution Gamma
Parameters α, λ

Pdf f(x) �
(λαx

α− 1
e

− λx/Γ(x)), if x> 0
0, otherwise



Mean E(X) (α/λ)

Variance V(X) (α/λ2)
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6. Application to Real Data

Secondary data has been used for the purpose of demon-
strating the utilization of the proposed estimator under the
SRSWOR sampling scheme. +e dataset “Chemical

Composition of Ceramic Samples Data Set” has been ob-
tained from UCI Machine Learning Repository [32] and
used to illustrate the use of the proposed estimator in real-
world scenarios for estimating population mean.+e dataset
consists of 88 instances of 19 attributes and is concerned

Table 8: Values of PRE1i, i � 1, 2, 3, 4, 5, 6, when data is generated from Gamma distribution.

ρ PRE11 PRE12 PRE13 PRE14 PRE15 PRE16

0.1 100.5437 116.8810 112.7042 181.9684 201.3552 201.3552
0.2 102.4607 115.6733 111.8264 184.2976 203.7826 203.7826
0.3 106.1375 115.6772 112.2446 186.0215 205.0414 205.0414
0.4 111.7249 117.9257 114.7657 191.5801 210.5932 210.5932
0.5 119.8807 121.9171 119.1661 195.8653 213.9569 213.9569
0.6 133.5989 130.6786 128.2187 208.4785 226.3069 226.3069
0.7 154.4129 144.9483 142.8615 225.5645 242.5054 242.5054
0.8 193.7043 173.3931 171.8121 258.2036 273.5605 273.5605
0.9 271.5579 231.4410 230.7134 320.5030 332.1566 332.1566

Table 5: Values of PRE1i, i � 1, 2, 3, 4, 5, 6, when data is generated from normal distribution.

ρ PRE11 PRE12 PRE13 PRE14 PRE15 PRE16

0.1 100.8207 124.1350 118.1591 217.5655 245.3619 245.3619
0.2 103.4355 122.9348 117.2939 223.0118 251.4823 251.4823
0.3 108.0039 122.8726 117.7341 225.9495 254.0318 254.0318
0.4 115.1905 125.8011 120.9539 235.2020 263.7762 263.7762
0.5 124.6105 130.5359 126.0475 243.9122 272.3174 272.3174
0.6 141.3373 141.3371 137.0312 265.3476 294.8739 294.8739
0.7 164.8015 157.4136 153.3335 292.1363 322.4542 322.4542
0.8 208.1384 188.7934 184.8866 342.8744 374.9544 374.9544
0.9 291.9545 251.1717 247.4521 438.5919 473.5056 473.5056

Table 6: Values of PRE2i, i � 1, 2, 3, 4, 5, 6, when data is generated from normal distribution.

ρ PRE21 PRE22 PRE23 PRE24 PRE25 PRE26

0.1 101.0181 124.3780 118.3904 217.9915 245.8423 245.8423
0.2 104.2886 123.9487 118.2613 224.8510 253.5564 253.5564
0.3 110.1021 125.2597 120.0213 230.3391 258.9669 258.9669
0.4 119.5130 130.5218 125.4927 244.0280 273.6744 273.6744
0.5 132.3667 138.6610 133.8932 259.0942 289.2674 289.2674
0.6 156.7666 156.7664 151.9904 294.3147 327.0643 327.0643
0.7 194.8675 186.1317 181.3073 345.4330 381.2819 381.2819
0.8 280.3108 254.2577 248.9963 461.7666 504.9703 504.9703
0.9 537.7034 462.5924 455.7418 807.7712 872.0730 872.0730

Table 7: Values of PRE3i, i � 1, 2, 3, 4, 5, 6, when data is generated from normal distribution.

ρ PRE31 PRE32 PRE33 PRE34 PRE35 PRE36

0.1 100.1942 123.3636 117.4248 216.2135 243.8372 243.8372
0.2 100.7971 119.7990 114.3020 217.3233 245.0676 245.0676
0.3 101.7962 115.8103 110.9671 212.9626 239.4308 239.4308
0.4 103.2416 112.7516 108.4072 210.8042 236.4143 236.4143
0.5 104.9344 109.9242 106.1446 205.3983 229.3183 229.3183
0.6 107.4849 107.4847 104.2101 201.7928 224.2471 224.2471
0.7 110.3292 105.3832 102.6517 195.5756 215.8724 215.8724
0.8 114.1165 103.5101 101.3682 187.9884 205.5770 205.5770
0.9 118.5597 101.9983 100.4877 178.1077 192.2858 192.2858
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with the classification of ceramic samples depending on their
chemical composition from energy-dispersive X-ray fluo-
rescence. We use the subset of the dataset where attribute
“Part” takes the value “Body,” so that N � 44. Here,

X: percentage of MgO (wt%)

Y: percentage of CaO (wt%)

It is seen that ρ � 0.4880444. Taking n � 18 and r � 14,
the PREs are found to be as given in Table 17. +e MSEs of
the proposed estimators and the contemporary estimators
have been plotted in Figure 1.

Table 12: Values of PRE2i, i � 1, 2, 3, 4, 5, 6, when data is generated from Poisson distribution.

ρ PRE21 PRE22 PRE23 PRE24 PRE25 PRE26

0.1 101.0839 120.1505 115.1977 198.8759 222.1597 222.1597
0.2 104.2068 119.3588 114.8446 201.4276 224.5755 224.5755
0.3 109.7971 121.2508 117.0576 207.9239 231.2874 231.2874
0.4 117.6837 125.6658 121.6901 217.7541 241.5803 241.5803
0.5 132.9369 135.5324 131.8934 233.6141 257.5848 257.5848
0.6 154.1285 151.1888 147.6718 259.5705 284.6758 284.6758
0.7 194.6481 182.2176 178.9074 304.9776 331.2465 331.2465
0.8 271.3653 243.1221 239.8069 395.8247 425.4579 425.4579
0.9 496.6249 424.2693 420.7610 658.2995 696.7934 696.7934

Table 9: Values of PRE2i, i � 1, 2, 3, 4, 5, 6, when data is generated from Gamma distribution.

ρ PRE21 PRE22 PRE23 PRE24 PRE25 PRE26

0.1 100.6741 117.0325 112.8503 182.2043 201.6162 201.6162
0.2 103.0645 116.3549 112.4854 185.3837 204.9835 204.9835
0.3 107.7115 117.3927 113.9092 188.7801 208.0822 208.0822
0.4 114.9334 121.3123 118.0615 197.0819 216.6411 216.6411
0.5 125.8373 127.9748 125.0871 205.5973 224.5878 224.5878
0.6 145.2157 142.0415 139.3677 226.6064 245.9851 245.9851
0.7 177.3953 166.5220 164.1246 259.1369 278.5992 278.5992
0.8 249.3315 223.1874 221.1524 332.3534 352.1205 352.1205
0.9 459.0779 391.2590 390.0289 541.8213 561.5222 561.5222

Table 10: Values of PRE3i, i � 1, 2, 3, 4, 5, 6, when data is generated from Gamma distribution.

ρ PRE31 PRE32 PRE33 PRE34 PRE35 PRE36

0.1 100.1289 116.3988 112.2393 181.2177 200.5245 200.5245
0.2 100.5751 113.5445 109.7685 180.9060 200.0324 200.0324
0.3 101.3960 110.5096 107.2303 177.7114 195.8817 195.8817
0.4 102.5627 108.2550 105.3541 175.8693 193.3232 193.3232
0.5 104.1108 105.8793 103.4902 170.0999 185.8116 185.8116
0.6 106.3693 104.0442 102.0856 165.9872 180.1819 180.1819
0.7 109.1586 102.4678 100.9925 159.4575 171.4334 171.4334
0.8 113.0171 101.1665 100.2441 150.6494 159.6094 159.6094
0.9 117.7049 100.3165 100.0011 138.9198 143.9710 143.9710

Table 11: Values of PRE1i, i � 1, 2, 3, 4, 5, 6, when data is generated from Poisson distribution.

ρ PRE11 PRE12 PRE13 PRE14 PRE15 PRE16

0.1 100.8736 119.9006 114.9581 198.4622 221.6976 221.6976
0.2 103.3705 118.4010 113.9229 199.8112 222.7732 222.7732
0.3 107.7667 119.0086 114.8930 204.0789 227.0104 227.0104
0.4 113.8133 121.5329 117.6879 210.5924 233.6351 233.6351
0.5 125.0182 127.4591 124.0369 219.6983 242.2412 242.2412
0.6 139.5973 136.9348 133.7494 235.0984 257.8367 257.8367
0.7 164.6748 154.1583 151.3579 258.0149 280.2387 280.2387
0.8 204.1033 182.8606 180.3672 297.7136 320.0018 320.0018
0.9 281.7346 240.6873 238.6971 373.4524 395.2899 395.2899
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Table 16: Values of B(Ti), i � 1, 2, 3, for data simulated from Poisson distribution.

ρ B(T1) B(T2) B(T3)

0.1 0.000000828 0.000001026 0.000000197
0.2 0.000001651 0.000002044 0.000000393
0.3 0.000002523 0.000003123 0.000000601
0.4 0.000003280 0.000004061 0.000000781
0.5 0.000004092 0.000005067 0.000000974
0.6 0.000004944 0.000006121 0.000001177
0.7 0.000005703 0.000007061 0.000001358
0.8 0.000006627 0.000008205 0.000001578
0.9 0.000007342 0.000009090 0.000001748

Table 13: Values of PRE3i, i � 1, 2, 3, 4, 5, 6, when data is generated from Poisson distribution.

ρ PRE31 PRE32 PRE33 PRE34 PRE35 PRE36

0.1 100.1838 119.3312 114.3910 197.2077 220.3087 220.3087
0.2 100.7721 115.9988 111.4924 197.4902 220.5183 220.5183
0.3 101.7553 112.4365 108.5271 193.2357 215.0168 215.0168
0.4 103.1652 109.8054 106.3381 191.1441 212.0915 212.0915
0.5 104.8369 107.3226 104.3801 185.5838 204.8093 204.8093
0.6 107.3491 105.1686 102.7238 180.8278 198.3227 198.3227
0.7 110.1095 103.5049 101.5393 174.8319 190.2419 190.2419
0.8 113.8590 102.0032 100.5976 166.5320 179.0732 179.0732
0.9 118.2216 100.9056 100.0894 156.1465 165.1762 165.1762

Table 14: Values of B(Ti), i � 1, 2, 3, for data simulated from normal distribution.

ρ B(T1) B(T2) B(T3)

0.1 0.000000000 0.000000000 0.000000000
0.2 0.000000000 0.000000000 0.000000000
0.3 0.000000000 0.000000000 0.000000000
0.4 0.000000000 0.000000000 0.000000000
0.5 0.000000000 0.000000000 0.000000000
0.6 0.000000000 0.000001000 0.000000000
0.7 0.000001000 0.000001000 0.000000000
0.8 0.000001000 0.000001000 0.000000000
0.9 0.000001000 0.000001000 0.000000000

Table 15: Values of B(Ti), i � 1, 2, 3, for data simulated from Gamma distribution.

ρ B(T1) B(T2) B(T3)

0.1 0.000003240 0.000004010 0.000000770
0.2 0.000006470 0.000008010 0.000001540
0.3 0.000009960 0.000012330 0.000002370
0.4 0.000013400 0.000016590 0.000003190
0.5 0.000016650 0.000020610 0.000003960
0.6 0.000021350 0.000026430 0.000005080
0.7 0.000024060 0.000029790 0.000005730
0.8 0.000028700 0.000035540 0.000006830
0.9 0.000033500 0.000041480 0.000007980
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7. Conclusions

+e empirical study enables us to study the behavior of the
proposed estimator under various scenarios involving var-
ious values of parameters. +e chief conclusions that follow
are given next:

(1) Tables 5–7 show that the proposed classes of loga-
rithmic-type estimators Ti, i � 1, 2, 3, are more effi-
cient than the contemporary estimators when data is
generated from normal distribution.

(2) +e PRE of the proposed classes of estimators w.r.t.
the contemporary estimators is seen to increase with
the increase in the value of ρ, i.e., the correlation
coefficient between the study and the auxiliary
variables, as evident from Tables 5–7.

(3) From Tables 8–10, it is observed that the proposed
classes of logarithmic-type estimators
Ti, i � 1, 2, 3, dominate over the contemporary
estimators when data is generated from Gamma
distribution.

(4) +e proposed estimators Ti, i � 1, 2, 3, perform
better than the contemporary estimators in terms of
PREs when data is generated from Poisson distri-
bution, as seen from Tables 11–13.

(5) Tables 14–16 show that the biases of the proposed
estimators are negligible, being of orders 10− 6 and
10− 7, when data is generated from normal, Gamma,
and Poisson distributions, respectively.

(6) Table 17 shows that for the real data used in this
manuscript, the classes of logarithmic-type estima-
tors proposed in the manuscript dominate over the
contemporary estimators for situations when the
variables X and Y have a moderate positive value of
the correlation coefficient. Furthermore, from Fig-
ure 1, it is graphically seen that the MSEs of the
proposed estimators Ti, i � 1, 2, 3, are less than that
of the contemporary estimators.

Hence, the proposed estimator is seen to be consistent,
exists for all real positive values of parameters, has negligible
bias, and is more efficient than 6 other contemporary es-
timators. Hence, the proposed estimator may be recom-
mended for use in field work.
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