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In this paper, uniformlymost powerful unbiased test for testing the stress-strengthmodel has been presented for the first time.&e
end of the paper is recommending a method which is appropriate for no large data where a normal asymptotic distribution is not
applicable. &e previous methods for inference on stress-strength models use almost all the asymptotic properties of maximum
likelihood estimators. &e distribution of components is considered exponential and generalized logistic. A corresponding
unbiased confidence interval is constructed, too. We compare presented methodology with previous methods and show the
method of this paper is logically better than other methods. Interesting result is that our recommendedmethod not only uses from
small sample size but also has better result than other ones.

1. Introduction

In reliability literature, the quantity R � P(X>Y) is often
referred to the stress-strengthmodel. In addition to reliability,
this parameter has application in some scientific fields such as
biostatistics, quality control, engineering, stochastic prece-
dence, and probabilistic mechanical design. Kotz et al. [1] and
Ventura and Racugno [2] have presented a comprehensive
review on this matter, especially from its applications. Re-
garding [1] an instance of real practice of the stress-strength
model is in a clinical study, where Y and X are assumed as the
outcomes of a treatment and a control group, respectively.
&en, the ineffectiveness of the treatment is measured by R. In
terms of reliability, Y is considered the strength of a com-
ponent, which is under X stress. Henceforth, two quantities R

and (1 − R) indicate the probabilities of system performance
and system failure, respectively. Many distributions have been
applied by authors for estimation of R. For instance, see
Rezaei et al. [3] and Nadar et al. [4] for a nearly complete list
of distributions used in this matter.

A distribution, whose application in reliability and es-
pecially in estimation of R has established, is generalized
logistic (GL) distribution. &is distribution, as one of three
generalized forms of the standard logistic distribution, has
been defined by Balakrishnan and Leung [5]. A random
variable X is said to have a GL distribution if it has the
following probability density function:

f(x) � αλ e
− λx 1 + e

− λx
􏼐 􏼑

− α− 1
, α> 0, λ> 0, x ∈ R, (1)

which is denoted by GL(α, λ). Furthermore, its cumulative
distribution function is

F(x) � 1 + e
− λx

􏼐 􏼑
− α

. (2)

Here, α and λ are the shape and scale parameters,
respectively.

It has also been called the skew-logistic distribution and
is defined on (− ∞,∞). Estimation of GL distribution pa-
rameters has been received attention for practical usage by
some works such as Balakrishnan [6], Asgharzadeh [7], and
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Gupta and Kundu [8]. Among the recent articles, Alkasasbeh
and Raqab [9] estimated the unknown parameters of the GL
lifetimemodel using different approaches and Vasudeva Rao
et al. [10] obtained maximum likelihood estimation by a
linear approximation. In stress-strength literature, when
distribution of components is GL, Asgharzadeh et al. [11]
and Rasekhi et al. [12] have investigated in statistical in-
ference of R and its multicomponent version, respectively.

In almost all studies, authors have applied maximum
likelihood estimator (MLE) and its asymptotic distribution
for estimating and inference on R. &is method leads to
asymptotic Confidence Interval (C.I) for R and analogously
asymptotic Critical Region (C.R) for testing hypotheses on
R. &ese asymptotic C.I and C.R have suitable efficiency for
data with large sample size. In the other words, performance
of any asymptotic method for small data is not appropriate.
For small sample size, nonasymptotic and exact statistical
methods are needed in order to reach reliable results.
However, an exact C.I and C.R of R has not been presented
in previous works. &erefore, we are motivated for esti-
mation of R with small sample size based on a testing hy-
pothesis approach and finding its Uniformly Most Powerful
Unbiased Test (UMPUT). &e mentioned methodology of
this study has been applied for the first time in stress-
strength literature. For this goal, we find UMPUT and its
corresponding C.I for R in the case where components have
exponential distribution. &en, by using of relationship
between exponential distribution and GL distribution, our
findings are applied and modified to the case of GL dis-
tributed components.We have chosen GL distribution since,
by its relation with exponential distribution paper, it covers
this distribution, too. On the contrary, GL distribution has
been used in many other previous papers on stress-strength
models, which is mentioned above. Also, GL distribution is
flexible and can be fitted to numerous datasets.

&e rest of the paper is organized as follows. We obtain
UMPUT and unbiased C.I for R when components have
exponential distributions in Section 2. Section 3 is devoted to
similar work as Section 2, however, for GL distributed
components. A comparison between the introduced method
and previous methods which are based on asymptotic dis-
tribution of maximum likelihood estimators has been
provided in Section 4.

2. UMPUT for R in Exponential Distribution

Suppose random variables X and Y are independent and
X ∼ E(λ1) and Y ∼ E(λ2); then,
R � P(X>Y) � (λ2/λ1 + λ2). &roughout this section, this
supposes that X1, . . . , Xn ∼ X and Y1, . . . , Ym ∼ Y. An as-
ymptotic C.I for R has been obtained in the following
proposition.

Proposition 1. ,e ML estimators for parameters are 􏽢λ1 �

(1/X) and 􏽢λ2 � (1/Y), so 􏽢R � (􏽢λ2/􏽢λ1 + 􏽢λ2). Also,
(􏽢R − R/􏽢σ1)⟶ N(0, 1) as n and m tend to infinity and
(n/m)⟶ d, for 0<d< +∞, where
􏽢σ21 � (n + m/nm)(􏽢λ

2
1
􏽢λ
2
2/(􏽢λ1 + 􏽢λ2)

4).

From this proposition, (1 − α) × 100 percentage C.I of R

is given by

R ∈ 􏽢R − z1− (α/2) 􏽢σ1 , 􏽢R + z1− (α/2) 􏽢σ1􏼐 􏼑. (3)
We define three testing hypotheses about R as

H0: R � r

K0: R> r
􏼨 , H0: R � r

K1: R< r
􏼨 , and H0: R � r

K2: R≠ r
􏼨 . &e critical

region (C.R) for these tests based on a normal approxi-
mation are C.Ras,0 � Z> z1− α􏼈 􏼉, C.Ras,1 � Z< zα􏼈 􏼉, and
C.Ras,2 � |Z|> z1− (α/2)􏽮 􏽯, respectively where Z � (􏽢R − r/􏽢σ1).

In continuation of this section, we find UMPUT for
above tests. First, we consider problem of comparing pa-
rameters of two independent exponential populations in
&eorem 1.

Theorem 1. Consider problem of testing hypotheses
HE,0: λ2 � λ1
KE,0: λ2 > λ1

􏼨 , HE,0: λ2 � λ1
KE,1: λ2 < λ1

􏼨 , and HE,0: λ2 � λ1
KE,2: λ2 ≠ λ1

􏼨 . ,en,

(i) C.Rs of UMPUTs for KE,0 and KE,1 are given by
C.RUMPU,0 � W> qbeta(1 − α, n, m)􏼈 􏼉 and
C.RUMPU,1 � W< qbeta(α, n, m)􏼈 􏼉, respectively. Here,
qbeta(α, n, m) is αth quantile of distribution
beta(n, m).

(ii) Also, the acceptance region of UMPUT for KE,2 is
A.RUMPU,2 � dα <W< cα􏼈 􏼉, which dα and cα are
determined by the following equations:

pbeta cα, n, m( 􏼁 − pbeta dα, n, m( 􏼁 � 1 − α, (4)

pbeta
cα

T
, n + 1, m􏼒 􏼓 − pbeta

dα

T
, n + 1, m􏼠 􏼡 � (1 − α)pbeta

1
T

, n + 1, m􏼒 􏼓, (5)

where W � (S/T), S � 􏽐
n
i�1 Xi, T � 􏽐

n
i�1 Xi

+ 􏽐
m
j�1 Yj, and pbeta(b, n, m) is cumulative distri-

bution function of distribution beta(n, m) in b.

Proof. First, notice that if random variable B has a beta
distribution B ∼ beta(n, m), then P(B< qbeta(α, n, m)) � α
and P(B< b) � pbeta(b, n, m).
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&e joint distribution of X � (X1, . . . , Xn) and
Y � (Y1, . . . , Ym) is given by

fX,Y(x, y) � λn
1λ

m
2 e

− λ1 􏽘
i�1 nxi − λ2 􏽘

m

j�1yj
⋉ e

λ2− λ1( ) 􏽘
i�1 nxi − λ2 􏽘

m

j�1
yj + 􏽘

n

i�1
xi

⎛⎝ ⎞⎠. (6)

&erefore, regarding Lehmann and Romano [13], in
Section 3, there exists UMPUT of three hypotheses con-
cerning the parameter θ � λ2 − λ1. &e tests are performed
based on S � 􏽐

n
i�1 Xi conditionally on T � 􏽐

n
i�1 Xi + 􏽐

m
j�1 Yj.

Our computations show that the conditional distribution of
S given T is as follows:

fS|T(s, t) �
Γ(n + m)

Γ(n)Γ(m)

1
t

s

t
􏼒 􏼓

n− 1
1 −

s

t
􏼒 􏼓

m− 1
. (7)

In fact, S|(T � t) ∼ tbeta(n, m).
Now, C.R of KE,0 is given by C.RUMPU,0 � S> cα,t􏽮 􏽯 and

􏽒
cα,t

0 fS|T(s, t) ds � 1 − α. Substitution of equation (7) in the
above integral and using a change of variable z � (S/t) leads
to

􏽚
cα,t/t( )

0

Γ(n + m)

Γ(n)Γ(m)
z

n− 1
(1 − z)

m− 1 dz � 1 − α, (8)

which shows cα,t � tqbeta(1 − α, n, m). &erefore,
C.RUMPU,0 � S>Tqbeta(1 − α, n, m)􏼈 􏼉 completes the first
part of proof. &e CR of KE,1 named C.RUMPU,1 is earned by
similar computations.

For proof of part (ii), we have
C.RUMPU,2 � S< dα,t or S> cα,t􏽮 􏽯, where dα,t and cα,t are de-
termined by

E IC.RUMPU,2
|t􏼐 􏼑 � α (9)

and

E S IC.RUMPU,2
|t􏼐 􏼑 � αE( S|t). (10)

From equation (9), we have 􏽒
cα,t

dα,t
fS|T(s, t) ds � 1 − α

which by thw similar method with (i) leads to equation (4).
Solving equation (10) is the last pace of proof, first, we

compute E(S|t) and E(SIC.RUMPU,3
|t) as follows:

E( S|t) � 􏽚
1

0
s fS|T(s, t) ds � t 􏽚

(1/t)

0

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz �
n

n + m
tpbeta

1
t
, n + 1, m􏼒 􏼓,

E SIC.RUMPU,3
|t􏼐 􏼑 � t 􏽚

dα,t/t( )

0

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz + 􏽚
(1/t)

cα,t/t( )

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz􏼨 􏼩

� t 􏽚
(1/t)

0

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz − 􏽚
cα,t/t( )

dα,t/t( )

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz􏼨 􏼩.

(11)

From these equations, we have

αpbeta
1
t
, n + 1, m􏼒 􏼓 � pbeta

1
t
, n + 1, m􏼒 􏼓 − 􏽚

cα,t/t( )

dα,t/t( )

Γ(n + m)

Γ(n)Γ(m)
z

n
(1 − z)

m− 1 dz, (12)

which clearly leads to equation (5).
Now, we can apply &eorem 1 in order to find UMPUTs

of hypotheses K0, K1, and K2. □

Theorem 2. ,e CRs of UMPUTs for K0 and K1 are

C.RUMPU,0∗ � W
∗ > qbeta(1 − α, n, m)􏼈 􏼉 (13)

and

C.RUMPU,1∗ � W
∗ < qbeta(α, n, m)􏼈 􏼉, (14)

respectively.

Also, the acceptance region of UMPUT for K2 is

A.RUMPU,2∗ � dα <W
∗ < cα􏼈 􏼉, (15)

In which dα and cα are determined by the following
equations:
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pbeta cα, n, m( 􏼁 − pbeta dα, n, m( 􏼁 � 1 − α, (16)

pbeta
cα

T
∗, n + 1, m􏼒 􏼓 − pbeta

dα

T
∗, n + 1, m􏼠 􏼡 � (1 − α)pbeta

1
T
∗, n + 1, m􏼒 􏼓, (17)

where S∗ � (1 − r/r) 􏽐
n
i�1 Xi, T∗ � (1 − r/r) 􏽐

n
i�1 Xi +

􏽐
m
j�1 Yj, and W∗ � (S∗/S∗ + T∗).

Proof. Notice that R � (λ2/λ1 + λ2) � r is equivalent with
λ2 � λ∗1 , where λ∗1 � (r/1 − r)λ1. First, we convert
X∗i � (1 − r/r)Xi, for i � 1, . . . , n. Since X∗i ∼ E(λ∗1 ) we can

perform H0: R � r

K0: R> r
􏼨 , H0: R � r

K1: R< r
􏼨 , and H0: R � r

K2: R≠ r
􏼨 based

on independent samples X∗1 , . . . , X∗n and Y1, . . . , Ym. &e

corresponding hypothesis are H0: λ2 � λ∗1
K0: λ2 > λ

∗
1

􏼨 ,

H0: λ2 � λ∗1
K1: λ2 < λ

∗
1

􏼨 , and H0: λ2 � λ∗1
K2: λ2 ≠ λ

∗
1

􏼨 , by considering proof of

&eorem 1 is completed.
For achieving an unbiased C.I for R, we check which one

of values of r satisfies equations (15)–(17). &ese values
construct mentioned C.I.

Note 1. Besides three basic tests H0: R � r

K0: R> r
􏼨 , H0: R � r

K1: R< r
􏼨 ,

and H0: R � r

K2: R≠ r
􏼨 , one may wish to test hypotheses

H3: R≤ r1 or R≥ r2
K3: r1 <R< r2

􏼨 and H4: r1 ≤R≤ r2
K4: R< r1 or R> r2

􏼨 . However,

these two hypotheses cannot be converted to tests based on
X∗ and Y. In other words, there is no linear function be-
tween λ1 and λ2 which is equivalent with hypotheses H3, K3,
H4, and K4.&erefore, UMPUTdoes not exist for H3 against
K3 and H4 versus K4. □

3. TestingR inGLDistributionwithKnownand
Common Scale Parameter

In this section, we compute asymptotic test and UMPUTof
the stress-strength model for GL distribution. &is is as-
sumed that two-scale parameters are equal and known. An
asymptotic test has been computed for comparison with
UMPUT.

Suppose random variables V and U are independent and
V ∼ GL(α1, λ) and U ∼ GL(α2, λ); then,

R � P(V>U) �
α1

α1 + α2
. (18)

First, we find asymptotic test by using MLEs of pa-
rameters and their asymptotic distribution. Let
V1, . . . , Vm ∼ GL(α1, λ) and U1, . . . , Un ∼ GL(α2, λ); then,
the likelihood function is

ι � m ln α1( 􏼁 + n ln α2( 􏼁 +(m + n)ln(λ) − λ 􏽘

m

i�1
vi + 􏽘

n

j�1
uj

⎛⎝ ⎞⎠

− α1 + 1( 􏼁S1(v, λ) − α2 + 1( 􏼁S1(u, λ),

(19)

where S1(w, a) � 􏽐
q

i�1 ln(1 + e− a wi ) and w � (w1, . . . , wq).
By derivation with respect to parameters, we have

􏽢α1 �
m

S1(V, λ)
, 􏽢α2 �

n

S1(U, λ)
. (20)

By substitution 􏽢η � (􏽢α1, 􏽢α2) in equation (3), we have

􏽢R �
m S1(U, λ)

m S1(U, λ) + n S1(V, λ)
. (21)

Fisher’s information matrix and its inverse are J(η) �

(m/α21) 0
0 (n/α22)

􏼢 􏼣 and J− 1(η) �
(α21/m) 0

0 (α22/n)
􏼢 􏼣.

Since 􏽢η⟶ N2(η, J− 1(η)), by the multivariate Delta
method, one can see that 􏽢R⟶ N(R, σ2(η)), where
σ2(η) � (zRG/zη)J− 1(η)(zRG/zη)T, (zRG/zη) � ((zRG/
zα1), (zR G/zα2)), (zRG/zα1) � (α2/(α1 + α2)

2), and
(zRG/zα2) � (− α1/(α1 + α2)

2). &erefore, (􏽢R − R/􏽢σGL)⟶
N(0, 1) as n and m tend to infinity and (n/m)⟶ d, for a
0<d< +∞, where

􏽢σ2GL �
n + m

nm

􏽢α21􏽢α22
􏽢α1 + 􏽢α2( 􏼁

4. (22)

Now, the (1 − α) × 100 percentage C.I of R and its
corresponding tests based on normal approximation for
hypotheses K0, K1, and K2 are the same with Section 2 with
􏽢σ2GL in equation (22) instead of 􏽢σ21.

3.1.UMPUTforR inGLDistribution. For UMPUTof K0, K1,
and K2, we only need to convert original data to
Xi � ln(1 + e− λUi ), for i � 1, . . . , n, and Yj � ln(1 + e− λVj ),
for j � 1, . . . , m. &is can be simply seen as
X1, . . . , Xn ∼ E(α2) and Y1, . . . , Ym ∼ E(α1). From this
point, all results of &eorems 1 and 2 can be used here
with substitution α2 and α1 instead λ1 and λ2. To put it
more clearly, first of all, we define three statistics
UGL � ((1 − r)S1(U, λ)/(1 − r)S1(U, λ) + rS1(V, λ)), S∗GL
� (1 − r/r)S1(U, λ), and T∗GL � (1 − r/r)S1(U, λ) + S1(V, λ).
Now, CRs of UMPUTs for K0 and K1 are, respectively,

C.RUMPU,0 � UGL > qbeta(1 − α, n, m)􏼈 􏼉 (23)

and

C.RUMPU,1 � UGL < qbeta(α, n, m)􏼈 􏼉. (24)
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Also, the acceptance region of UMPUT for hypothesis
K2 is achieved from the following equation:

A.RUMPU,2 � c1 α, T
∗
GL( 􏼁< S

∗
GL < c2 α, T

∗
GL( 􏼁􏼈 􏼉, (25)

where two values c1(α, T∗GL) and c2(α, T∗GL) are determined
by the following equations:

pbeta
c2 α, T

∗
GL( 􏼁

T
∗
GL

, n, m􏼠 􏼡 − pbeta
c1 α, T

∗
GL( 􏼁

T
∗
GL

, n, m􏼠 􏼡 � 1 − α,

(26)

pbeta
c2 α, T

∗
GL( 􏼁

T
∗
GL

, n + 1, m􏼠 􏼡 − pbeta
c2 α, T

∗
GL( 􏼁

T
∗
GL

, n + 1, m􏼠 􏼡

� (1 − α)pbeta
1

T
∗
GL

, n + 1, m􏼠 􏼡.

(27)

Again similar with the previous section, for getting an
unbiased C.I. for R in case of GL model, we check which one
of the values of r satisfies equations (25)–(27). &en, one can

have an unbiased C.I. Also, Note 1 remains right here in case
of GL distribution.

4. Comparison between UMPUT and
Asymptotic Test

In this section, we compare two tests for hypotheses K0, K1,
andK2 based onUMPUTand asymptotic test. First, we show
tests done by asymptotic distribution of 􏽢R are unbiased for
three mentioned hypotheses.

Lemma 1. Let X1, . . . , Xn ∼ E(λ1) and Y1, . . . , Ym ∼ E(λ2)
and C.R s for testing hypotheses K0, K1, and K2 are C.Ras,0,
C.Ras,1, and C.Ras,2. ,en, these tests are unbiased.

Proof. We prove theorem for three hypotheses separately by
computation of its power function for a fixed point r1 in
alternative hypothesis β(r1) � PR�r1

(C.R). For hypothesis
K0: R> r, C.R is C.Ras,0 � Z> z1− α􏼈 􏼉 for Z � (􏽢R − r/􏽢σ1). So,
the power function is

β r1( 􏼁 � PR�r1

􏽢R − r

􏽢σ1
> z1− α􏼠 􏼡 � P Z> z1− α −

r1 − r

σ1
􏼠 􏼡 � 1 − Φ z1− α −

r1 − r

σ1
􏼠 􏼡. (28)

Since r1 > r, we have β(r1)> α. For hypothesis K1: R< r,
similar to the previous case, we have β(r1) � Φ(zα − (r1 −

r/σ1)) which for r1 < r is clearly bigger than α. For the last
case, the proof is complicated. For K2: R≠ r, one can show

β(r1) � P(Z>d1) + P(Z<d2), where
d1 � z1− (α/2) − (r1 − r/σ1) and d2 � − z1− (α/2) − (r1 − r/σ1).
Now, we consider two cases r1 > r and r1 < r separately. If
r1 > r, we have

β r1( 􏼁 � P Z> z1− (α/2)􏼐 􏼑 + P Z< − z1− (α/2)􏼐 􏼑 + P d1 <Z< z1− (α/2)􏼐 􏼑 − P d2 <Z< − z1− (α/2)􏼐 􏼑. (29)

By these facts that two intervals (d1, z1− (α/2)) and
(d2, − z1− (α/2)) have equal lengths and second interval is
placed in tail of Standard Normal distribution, it has less

probability than the first interval. &is demonstrates that
β(r1)> α. For case of r1 < r, the power function is as follows:

β r1( 􏼁 � P Z> z1− (α/2)􏼐 􏼑 + P Z< − z1− (α/2)􏼐 􏼑 + P − z1− (α/2) <Z<d2􏼐 􏼑 − P z1− (α/2) <Z< d1􏼐 􏼑. (30)

By similar logic as case of r1 > r, one can show that
β(r1)> α. &ese results complete the proof.

Now, we can compare two tests, asymptotic and
UMPUT, in the following theorem. □

Theorem 3. Let X1, . . . , Xn ∼ E(λ1) and
Y1, . . . , Ym ∼ E(λ2) and asymptotic C.R s for testing hy-
potheses K0, K1, and K2 be C.Ras,0, C.Ras,1, and C.Ras,2. ,en,

UMPUTs based on equations (13)–(17) are more powerful
than these asymptotic tests.

Proof. &e proof comes from unbiasedness of asymptotic
tests in Lemma 1 and definition of UMPUT.

&eorem 3 guaranties that the unbiased C.I earned by
using of acceptance region of K2 is more accurate than
asymptotic C.I.
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All results achieved about comparison between asymptotic
test andUMPUTfor exponential distribution are satisfied forGL
distribution, too. In the other words, Lemma 1 and &eorem 3
are held for case of GL distributed components. &e most
important matter which has value for repeat is this point that
UMPUTs based on equations (23)–(27) are more powerful than
the asymptotic tests by using of statistic Z � (􏽢R − r/􏽢σGL). □

5. Conclusion and Future Works

In this paper, we found UMPUTfor stress-strength quantity
in case of exponential and GL distributed components,
respectively. By using this test in two sides’ case, C.I for R

was achieved. &is has been proved that UMPUT is more
powerful than the asymptotic test. Our methodology has
been used on stress-strength models for the first time.

As we mentioned in Section 1, a numerous distributions
have been applied to estimation of stress-strength quantity.
In almost all of these papers, estimation is performed by
MLE and its consistency property. Also, in some cases the
Bayesian estimation is performed. &ese methods have an
appropriate performance usually for large data sample size.
&e methodology introduced in this article can be applied to
other distributions such as generalized exponential, gener-
alized Pareto, Kumaraswamy, etc. (see Alshanbari et al. [14]).

Saber and Yousof [15] surveyed a generalization of
stress-strength models named generalized stress-strength
models (RG),

R
G

� P(Y< X<Z), (31)

for GL distribution. Finding UMPUT for testing this
quantity is an interesting work which may be done in future.

Recently, the study of R by censoring data has been
expanded by many authors. For instance, Abu-Moussa et al.
[16] and Almongy et al. [17] studied R under progressive
censoring data for Rayleigh and Weibull extended distrib-
uted components, respectively. &e study on UMPUT of R

for censoring data can be a challenging and interesting work
for the future.
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