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Noise in training data increases the tendency of many machine learning methods to overfit the training data, which undermines
the performance. Outliers occur in big data as a result of various factors, including human errors. In this work, we present a novel
discriminator model for the identification of outliers in the training data. We propose a systematic approach for creating training
datasets to train the discriminator based on a small number of genuine instances (trusted data). +e noise discriminator is a
convolutional neural network (CNN). We evaluate the discriminator’s performance using several benchmark datasets and with
different noise ratios.We inserted random noise in each dataset and trained discriminators to clean them. Different discriminators
were trained using different numbers of genuine instances with and without data augmentation. We compare the performance of
the proposed noise-discriminator method with seven other methods proposed in the literature using several benchmark datasets.
Our empirical results indicate that the proposedmethod is very competitive to the othermethods. It actually outperforms them for
pair noise.

1. Introduction

While the effectiveness of supervised machine learning al-
gorithms relies on the existence of large and high-quality
labeled datasets, it is a time-consuming and challenging
matter to create clean datasets that are free from noise (i.e.,
incorrectly labeled instances) [1, 2]. Outliers (noise and
outlier are used interchangeably in this paper to refer to the
mislabeled instances) occur in real-world datasets for many
reasons that are related to data collection, human errors, and
the widespread use of suboptimal automated processes to
compile large datasets. +e aim of this research is to propose
a machine learning method for identifying and eliminating
noise from datasets. We propose a method to train a noise
discriminator (ND). +e ND is trained using automatically
generated datasets based on a small number of genuine
instances. +e NDs that we propose are CNN classifiers.

Deep learning (DL) models, including CNN, have been
applied with great success in diverse areas with a perfor-
mance that often exceeds the capabilities of human beings

[3, 4]. DL models are particularly valuable in domains where
large amounts of training data are available. However, when
a training dataset’s size increases, so does the likelihood that
it contains outliers, leadingMLmodels to overfit the training
data, thereby undermining the performance [5]. Given the
negative effects of outliers on DL methods, a range of so-
lutions has been identified to mitigate these effects [6].

+is research focuses on developing a generalized CNN-
based discriminator for outlier identification. +e proposed
method trains the discriminator on a specially built dataset,
generated from a small number of genuine instances. +e
discriminator can be used as a preprocessing step to identify
and eliminate outliers prior to their use to train classifiers.

Our proposed method was inspired by the generative
adversarial network (GAN) model [7] that contains a dis-
criminator model that is trained to separate genuine images
from fake images produced by a generator. Similarly, we
build a noise discriminator that can identify outliers based
on preprepared genuine data (noise free). However, unlike
GAN, we do not have a generator model; rather, we
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systematically generate the training data. +e proposed
discriminator is trained using a dataset derived from the
trusted data. +e training dataset contains all the possible
mislabeled cases. In other words, the discriminator will be
trained using every genuine instance and all of its potential
mislabeling.

+e remainder of this paper is organized as follows.
Section 2 presents an overview of the related works that deal
with outliers. In Section 3, the proposed discriminator is
presented. Section 4 discusses the empirical results used for
evaluating the performance of the proposed discriminator.
Finally, Section 5 is the conclusion.

2. Related Work

Various studies have been conducted to develop methods for
mitigating the effect of mislabeled instances. Some of those
methods are based on using an improved loss function that is
robust against mislabeling, such as [8, 9]. Other methods,
such as [10, 11], use instance reduction techniques to reduce
the size of the training set and eliminate noise.

Another approach for handling noise is based on using
the trusted data. Zeng and Martinez [12] proposed a neural
network-based noise filter for a pretraining process to reduce
the effect of noise in the nearest neighbor classifiers. +eir
mechanismwas based on using a class probability vector that
is updated consistently during training for each instance.
+e class probability vector is updated using a learning
algorithm that is based on the disparity between its value and
the neural network prediction. A potential limitation of this
approach is that it requires training the neural network using
a sufficient number of correct instances that may not always
be available.

Sukhbaatar and Fergus [13] developed a framework in
the context of neural networks that includes an extra noise
layer on top of the network to handle the noisy labels. +ey
proposed bottom-up and top-down noise models. In the
bottom-up model, the label probability output is varied
according to the noisy labels. In contrast, the top-down
model is used for modifying the noisy labels before using
them for training. +ey introduced a technique for esti-
mating the noise distribution using clean and noisy data.
+is technique involves building two confusion matrices for
both clean and noisy data; the difference between these two
confusion matrices represents the noise distribution. +ey
also found that reducing the weight of the noisy data is very
effective.

+e concept of distillation, Hinton et al. [14], involves
training one model using the knowledge transferred from
another model. +is concept inspired Li et al. [15] to develop
a framework that can learn from noisy labels. A model is
trained using a small clean dataset, and the learned
knowledge is transferred for training another model on
large, noisy datasets. However, obtaining a sufficient number
of clean data remains a challenge for this method. Hendrycks
et al. [16] proposed Gold Loss Correction, a loss function for
handling noise. +e proposed method is based on the
availability of trusted data that is used for estimating a
matrix C of corruption probabilities Cij � ρ( 􏽥Y � j|Y � i);

the matrix isK×K, whereK represents the number of classes
in a dataset.+ematrixC is then used to train a classifier that
is expected to be able to predict correct labels. However, the
minimum genuine data required were 5%, which may be too
large in datasets such as MNIST [17], CIFAR-10 [18], and
SVHN [19].

Various methods for handling noise have also been
proposed in the context of CNN training [6, 20]. A
probabilistic graphical model was integrated by Xiao et al.
[21] into a deep learning framework to schematize the
relationships between the input, class labels, and noisy
labels in a clothing dataset. +ey utilized the expectation-
maximization algorithm in the training process. JoCoR
[22] is a method that utilizes two networks that are trained
simultaneously. During every batch of training, each
network feeds the other by supposedly clean instances
during training, where clean instances are identified by
having small-loss values. +e two networks are imple-
mented with one regularization term to reduce the diversity
between the two networks. Another method called EBF
[23, 24] is used as a filtration technique during the training
of neural network-based models. It detects and removes
noisy instances based on the exponential moving average
(EMA) of the loss values for instances. +e assumption is
that any EMA of an instance that exceeds a certain
threshold represents noise. In turn, elimination occurs
during the training procedure.

+e GAN model [7] contains two submodels, a gener-
ator, and a discriminator. +e generator model is trained to
produce fake images that are assumed to be similar to the
original ones, while the discriminator is trained to be able to
determine if an image is original or fake. During training, the
generator and the discriminator are locked in a contest, each
attempting to beat the other one until the generator can
produce fake images that the discriminator cannot identify.

In this paper, we propose a discriminator trained on a
dataset produced using a few genuine (trusted) data for
identifying mislabeling instances.

3. Discriminator for Outlier Detection

Machine learning (ML) methods seek to find a good ap-
proximation of a target function that maps an input, x, into
an output, y [5].+us, ML algorithms learn a function, f(x),
that can predict an output y for any given input x. +is
section presents a method for constructing classifiers that
can identify outlier instances in a noisy dataset. Specifically,
the proposed method involves building a discriminator
model for outlier detection that can be used for data
cleansing.+e discriminator receives an input instance and a
possible label, after which it seeks to determine whether the
label is correct or not, as shown in Figure 1.

3.1. Generating the TrainingData. +e noise discriminator is
trained using a training dataset that is generated based on a
small number of trusted (genuine) instances; we call them
the seeds. We use the trusted instances to create a dataset
that contains instances labeled with either 1 or 0. An instance
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has label 1 if it is a genuine instance (not noisy) and label 0 if
it is a noisy instance. To create noisy instances, we populate
the dataset with instances labeled with all classes other than
their correct class. Genuine instances are inserted and
replicated to ensure that the dataset is balanced.

+e discriminator is trained using the generated dataset 􏽥D,
where 􏽥D is derived from a small set of data, DTrusted. For every
genuine instance of the form 〈x, y〉, in the trusted dataset,
DTrusted, we deriveK instances and insert them in 􏽥D, whereK is
the number of classes. For every class c and a genuine instance,
〈x, y〉, 􏽥D is augmented with one instance of the form
≪x, y> , 1> and K − 1 instances of the form ≪x, c> , 0> ,
where c≠y. In 􏽥D, if an instance has label 1, this indicates that it
is a genuine instance with the correct class; however, if an
instance has label 0, this indicates that it is a mislabeled instance
(an instance with an incorrect class).

Considering the example of the digit recognition
problem [25], for every seed (genuine) instance, 􏽥D will
contain ten instances: one instance of the form≪x, y> , 1>
representing that y is the correct digit of x and nine in-
stances of the form ≪x, c> , 0> representing the fact that c

is not the correct digit of x. +ese nine instances cover all
possible mislabeling of x. Table 1 illustrates the instances
that will be added to 􏽥D for a genuine instance (image) of
digit two. +is means that, for every seed instance, 􏽥D will be
augmented by one instance of class 1 and nine instances of
class 0.

To ensure that the resulting dataset is balanced, each
instance of class 1 in 􏽥D is duplicated K − 2 times. +is is a
form of oversampling to balance the training set. Algo-
rithm 1 provides a detailed account of the procedure for
creating 􏽥D.

+e size of 􏽥D (i.e., number of instances) can be calculated
as follows:

number of instances in 􏽥D � G × K × 2(K − 1), (1)

whereG represents the number of seed instances per class. In
addition, data augmentation methods can be used to gen-
erate more training data and avoid overfitting. For instance,
operations such as zooming, rotation, shearing, and shifting
are commonly used methods in image recognition systems
[26]. +erefore, we apply the following data augmentation
procedures: firstly, shifting the width and height by 0.2;
secondly, rotating by 50 degrees; thirdly, zooming by 0.9 for
width and 0.8 for height; and finally, shearing with the
transformation intensity of 0.2.+e size of 􏽥D (i.e., number of
instances) in case of using data augmentation methods can
be obtained as follows:

no. of instances in 􏽥D � G × K × 2(K − 1) × AugFact × DA, (2)
where AugFact is the number of times we perform data
augmentation and DA denotes the number of augmented

images produced from each original image (including the
original ones).

3.2. A Convolutional Neural Network-Based Discriminator.
In this section, we discuss the architecture of the noise
discriminator. It is a CNN-based architecture that con-
tains some convolutional and pooling layers. +e con-
volutional layers are an effective model for feature
extraction [27]. In particular, CNN comprises multiple
convolution layers where the output of each layer is fed as
input for the next layer. Early layers map the basic fea-
tures, while the deeper layers detect higher-level features
such as edges, faces, and objects. Features are represented
by a number of parameters, and pooling layers are used to
reduce the number of parameters without affecting the
feature representation.

Figure 2 shows a general architecture of the proposed
noise discriminator. +e model architecture consists of a set
of convolutional and pooling layers, which is changeable
according to the nature of the training dataset, followed by
four hidden layers (512, 128, 64, and 10) of the fully con-
nected neural network. +e set of convolutional and pooling
layers are left unspecified because they are problem-
dependent.

4. Evaluating the Discriminator

To evaluate the proposedmodel’s performance in identifying
outliers, the MNIST, CIFAR-10 [18], and CIFAR-100 [18]
datasets were used. A brief description of each dataset is
provided in Table 2.

+e experiments undertaken in this section were divided
into four main parts: the first part examined the

Table 1: A sample of the generated dataset for digit 2.

Input
Output(0 or 1)

x y

0 0

1 0

2 1 (correct)

3 0

4 0

5 0

6 0

7 0

8 0

9 0

Data instance

Label
Discriminator True/false

Figure 1: Discriminator input and output.
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discriminator’s behavior in identifying outliers; the second
part verified the effectiveness of the proposed method in
terms of the achieved classification accuracy of classifiers
trained using the cleaned datasets compared to other
methods reported in the literature; the third part investigates
the effect of the discriminator on training time; and the last
part compares different methods in terms of their accuracy
in identifying outliers.

+e discriminator outputs a value of 1 for genuine in-
stances and a value of 0 for outliers, and to decrease the
number of genuine instances that might be incorrectly
classified as outliers, we used a threshold of 0.75, instead of
0.5. +is reduces the number of false negatives; however, it
may also increase the number of false positives as a side
effect.

4.1. Evaluating the Ability of the Discriminator in Identifying
Outliers. +is section investigates the ability of the proposed
discriminator to identify outliers in a noisy dataset. For each
noisy dataset, three discriminators were trained on different

datasets, 􏽥D, generated using a various number of seeds
(trusted instances). Each discriminator’s performance was
evaluated by verifying the extent to which it could distin-
guish between outliers and genuine instances in a noisy
dataset.

+e outliers were created by flipping the classes of
randomly selected instances. +e discriminators for MNIST,
CIFAR-10, and CIFAR-100 datasets were trained for 50
epochs; after that, they were used to clean datasets with
different noise ratios: 10%, 50%, and 90%.

4.1.1. Evaluation on MNIST. To implement the discrimi-
nator so as to identify the outliers added to the MNIST
dataset, two convolution layers (32 and 64), in addition to a
max-pooling layer, were used as shown in Figure 3.

+ree discriminators were trained for MNIST, each of
which was trained on a different dataset. +e dataset of the
first was generated using five seed instances per class with no
data augmentation, whereas the datasets for the second and
third were generated using two and five seed instances per
class and with data augmentation. +e augmentation
methods we used are rotation, shifting, shearing, and
zooming.

+e first dataset contained 900 instances. Table 3 sum-
marizes the results. It reveals that the discriminator iden-
tified most outlier instances with a low false-negative rate. In
addition, the false-positive rate decreases as the noise ratio
increases which is expected because as the number of
outliers increases, the likelihood that the discriminator is
correct when it classifies an instance as an outlier also in-
creases. +is observation also justifies the inverse correlation
identified between the overall recall values and the noise
ratio. However, the false-negative rate was found to increase
as we increase the noise ratio.

Table 4 summarizes the results we obtained using the
second discriminator, which is based on two seed instances
and with data augmentation. +e generated training set
contained 36,000 instances. +e results show that this dis-
criminator outperformed the first one, which shows the
usefulness of using the augmentation operations.

For the third discriminator (i.e., based on 5 seed in-
stances and data augmentation), 􏽥D contained 90,000 in-
stances.+is noise discriminator outperformed both the first

(1) : Input: a dataset of genuine instances DTrusted, number of classes K

(2) : for every instance 〈x, y〉 in DTrusted do:
(3) : for every class value c do:
(4) : if c≠y do:
(5) : insert the instance ≪x, c> , 0> , in 􏽥D

(6) : else:
(7) : insert the instance ≪x, c> , 1> in 􏽥D

(8) : end for//every class
(9) : end for//every instance
(10) : Replicate every instance of the form ≪x, y> , 1> (K − 2) times
(11) : Output 􏽥D

ALGORITHM 1: Creating dataset ( 􏽥D) for training the proposed discriminator.

512
128 64

10

1

Related label (y)

Input (x)

A set of suitable layers Fully connected neural network

Figure 2: A general architecture of the noise discriminator.

Table 2: Brief description of datasets.

Dataset Dim. Training set (K) Testing set (K) # classes
MNIST 28× 28 60 10 10
CIFAR-10 32× 32 50 10 10
CIFAR-100 32× 32 50 10 100
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and second discriminators, as can be seen in Table 5. With a
noise ratio of 90%, this discriminator identified 97.56% of
the outliers with a 1.8% false-positive rate.

A comparison of Tables 3–5 indicates that the applied
data augmentation methods positively influenced discrim-
inator performance. Although 90% is a high noise ratio, the
first, second, and third discriminators identified almost all
outliers with false-negative rates of 12.9%, 8.9%, and 8.77%,
respectively. Furthermore, with 10% and 50% noise, the
discriminators identified a reasonable number of outliers
with a false-negative rate of less than 2%.

A noteworthy point for high noise ratios in MNST (i.e.,
50% and 90%) is that the discriminator performance was
more effective compared to low noise ratios (10%). +is
result stands to reason because when the amount of noise in
a training dataset is substantial, the likelihood of the false
positive decreases.

4.1.2. Evaluation on CIFAR-10. +e noise discriminator we
trained for this dataset contained a 20-layer ResNet where
each convolutional layer is of 16×16× 3. It was shown that
ResNet models are very effective for feature extraction for
this dataset [28].

We trained three noise discriminators for the CIFAR-10
dataset using a different number of seed instances with data
augmentation.

+e first discriminator was based on 100 seed instances
per class with an augmentation factor of 5. +us, according
to equation (2), the total number of instances used to train
the discriminator amounted to 450,000. For the second
discriminator, 200 seed instances were used per class with an
augmentation factor of 2. +erefore, the total number of
instances used to train the discriminator was 360,000. As for
the third discriminator, 400 seed instances were used per
class with an augmentation factor of 1. Hence, 360,000
instances were used to train the discriminator.

+e results of the first, second, and third discriminators
are given in Tables 6–8, respectively. +e results clearly
indicate that there is a proportional relationship between the
number of seed instances used and the performance as the
performance in terms of the F1 measure improves as we
increase the number of seed instances regardless of the noise
ratio.

4.1.3. Evaluation on CIFAR-100. Similarly, for this dataset,
we also used a 20-layer ResNet model for feature extraction,
where each convolutional layer is of 16×16× 3.

We also trained three discriminators for CIFAR-100
using a different number of seeds for generating the dataset
to train each discriminator; data augmentation was used in

Table 3: +e results of the 5-seed discriminator for MNIST.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 68.42 80.25 95.6
F1 measure 38.44 83.48 97.54
False negative 0.19 1.04 12.9
False positive 76.1 28.1 3.7

Table 4: +e results of the 2-seed discriminator for MNIST with
data augmentation.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 75.68 86.17 96.64
F1 measure 44.93 87.68 98.06
False negative 0.12 1.1 8.9
False positive 70.9 21.3 2.88

Table 5: +e results of the 5-seed discriminator for MNIST with
data augmentation.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 84.82 93.78 97.56
F1 measure 56.54 93.83 98.58
False negative 0.17 1.8 8.77
False positive 60.4 9.9 1.8

A set of suitable layers

Convolution layers
Fully connected neural network

28 × 28 Input image

Related label (y)

128
64

10

1

32

32

64

64
Conv1
feature
maps

Conv2
feature
maps

Max-pool
(k = 3, s = 2)

Figure 3: +e architecture of the discriminators used for MNIST.
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all cases. +e first discriminator was trained using a dataset
generated based on 10 seed instances per class and with an
augmentation factor of 1. +erefore, the total number of
instances used to train the discriminator was 792,000. +e
second discriminator was trained based on 30 seed instances
per class with an augmentation factor of 1. Hence, the total
number of instances used to train the discriminator was
1,188,000. As for the third discriminator, 50 seed instances
were used per class to generate the dataset with an aug-
mentation factor of 1. +e only augmentation method used
in this case was image rotation. +e total number of in-
stances used to train the discriminator amounted to
1,980,000. Of course, the large number of instances used to
train these discriminators is due to the large number of
classes in CIFAR-100.

+e results of the three discriminators are summarized in
Tables 9–11, respectively. It is clear that the discriminator that
was based on 50 seed instances outperformed its counterparts
in outlier identification. With 50% noise, the 50-seed dis-
criminator identified outlier instances with a false-negative rate
of 4.87%. In general, the F1measure improves as the number of
seed instances and noise ratio increase.

Finally, it is worth noting that, for all the experimental
evaluations undertaken in this section, the false-negative rate
was reasonable, while the false-positive rate was comparatively
high. +is is probably because we used a relatively high
threshold value of 0.75, which made the discriminators very
conservative in classifying instances as genuine and less so when
it comes to classifying the instances as outliers.+is accounts for
the high rate of false positives observed in these experiments.

4.2.ClassificationUsing theCleanedDatasets. In this section,
we compare different methods for noise handling indirectly

by training classifiers using the cleaned datasets obtained by
each method for the original classification problem. We
compare the performance of the proposed noise discrimi-
nator against the results of the methods reported in [29]. To
conduct a valid performance comparison in terms of
mitigating the effect of noise, the model’s architecture used
in [29] was adopted, along with the data corruption
procedures.

For dataset corruption, two types of noise transition ma-
trices were used: pair flipping [29] and symmetry flipping [30].
Pair flipping involves changing the classes of some randomly
selected instances to another specified class, according to a
transition matrix (Figure 4(a)). Each column in the matrix
represents a class, and the likelihood that an instance keeps its
current class is 1 − ε, and with ε probability, it may change its
class to the next class in the transition matrix. By contrast,
symmetry flipping changes the class of a selected instance to
any other class, where all classes are equally likely to be selected
as a replacement of the original class, according to the tran-
sition matrix shown in Figure 4(b). As in [29], the noise ratios
were 20% and 50% for symmetry noise, i.e., ε � 0.2, 0.5{ }, and
45% for pair noise type, ε � 0.45. All experiments were
implemented using a 9-layer CNN trained for 200 epochs.

We compared our noise discriminator method with
seven other methods for noise handling. +ese methods are
as follows:

(i) Bootstrapping [9]: fixes noisy labels using the labels
predicted by a neural network, where the consis-
tency of prediction is a weighted measure for
correct labels.

(ii) S-model [31]: detects noisy instances on the basis of
the constitution of a noisy transition matrix, which
is used by an additional softmax layer.

Table 8: +e results of the 400-seed discriminator for CIFAR-10.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 70.68 80.94 91.03
F1 measure 38.98 83.09 94.94
False negative 1.02 8.46 45.91
False positive 75.39 25.35 3.63

Table 6: +e results of the 100-seed discriminator for CIFAR-10.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 60.21 74.61 89.14
F1 measure 31.55 78.48 93.89
False negative 1.60 11.58 53.48
False positive 80.95 31.90 4.84

Table 7: +e results of the 200-seed discriminator for CIFAR-10.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 61.42 75.97 90.23
F1 measure 32.60 79.61 94.53
False negative 1.27 9.63 48.97
False positive 80.25 30.86 4.77
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(iii) F-correction [32]: corrects a network’s prediction
using a noise transition matrix, where the esti-
mation of the matrix occurs with a standard net-
work that undergoes initial training.

(iv) Decoupling [33]: leverages two classifiers and up-
dates the parameters based on the samples that have
predictions that contrast with the classifiers.

(v) MentorNet [34]: trains two networks, one a teacher
and another a student. +e purpose of the teacher
network is for pretraining and filtering noisy in-
stances. In turn, the output of the teacher network
is used as an input for the student network for
training, which is employed later for classification.

(vi) Coteaching [29]: relies on a pair of simultaneously
trained networks, each of which feeds its coun-
terpart with supposedly clean instances during
training. In this case, clean instances are defined
based on their small-loss values.

(vii) EBF [23, 24]: it is based on monitoring and an-
alyzing the distribution of exponential moving
average (EMA) values of the loss values of the
training instances. An instance that continues to
have a large EMA is identified as an outlier and
eliminated.

All of the discriminators trained in Section 4.1 were used
as a preprocess to clean the datasets. +en, a 9-layer CNN

Table 11: +e results of the 50-seed CIFAR-100 discriminator.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 46.95 69.58 92.21
F1 measure 27.04 76.29 95.76
False negative 0.46 4.87 31.80
False positive 84.33 37.50 6.24

Table 9: +e results of the 10-seed CIFAR-100 discriminator.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 20.05 55.36 90.63
F1 measure 19.91 69.02 95.03
False negative 0.63 4.70 31.46
False positive 88.94 47.15 8.98

Table 10: +e results of the 30-seed CIFAR-100 discriminator.

Noise ratio 10 (%) 50 (%) 90 (%)
Recall 44.29 67.90 91.49
F1 measure 25.91 75.20 95.37
False negative 0.74 6.49 38.06
False positive 85.06 38.73 6.55
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Figure 4: Definition of the noise transition matrix for 5 classes as an example. ε stands for the noise ratio, and C is the number of classes.
(a) Transition matrix of pair flipping. (b) Transition matrix of symmetry flipping.
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was trained using the cleaned data for the corresponding
classification problem.

4.2.1. Evaluation Using MNIST. Table 12 summarizes the
results of all methods in terms of the classification accuracy
for digit recognition using the cleaned version of the noisy
MNIST. We used three noise discriminators based on two
seed instances with data augmentation (2S +DA), five seed
instances without data augmentation (5S), and five seed
instances with data augmentation (5S +DA).

+e results clearly indicate that noise negatively im-
pacted all methods, and the accuracy decreases as the noise
ratio increases. However, training a classifier using the
cleaned data by the proposed discriminator enabled the
model to achieve reasonable performance regardless of
the noise type and noise ratio.

Under a 20% symmetry noise, every method achieved a
reasonable classification accuracy. However, this accuracy
decreased with a 50% noise ratio. Notably, the best-performing
discriminators, which yielded overall accuracies of 96.33% and
93.07%, were the discriminator based on 5 seed instances with
data augmentation and the discriminator based on 2 seed
instances with data augmentation, respectively. However, they
came after EBF, which achieved 98.27%.

Pair flipping represents the hardest type of noise com-
pared to symmetry flipping, as can be seen from the results of
all methods. However, all of the proposed noise discrimi-
nators outperformed all other methods. In particular, the
discriminator based on five seed instances was the best,
where it achieved an overall accuracy of 97.13% (approxi-
mately 9% higher than EBF, which is the second top-per-
forming method).

It is noteworthy that the data augmentation procedure
displayed a considerable improvement in terms of dis-
criminator performance. +is can be seen in Table 12, where
the discriminator based on 2 seed instances for each class
with data augmentation outperformed the discriminator
based on 5 seed instances and without data augmentation.

4.2.2. Evaluation Using CIFAR-10. +e three discriminators
built for CIFAR-10 in Section 4.1.2 were used to clean the

noisy datasets of CIFAR-10. Table 13 summarizes the ac-
curacy of all methods. +e table reveals that the proposed
discriminators are competitive with the other methods.
Moreover, the three discriminators outperformed their
counterparts for pair noise.

Table 13 shows that the discriminator based on 400 seeds
(400S) outperformed all other methods by a large margin
with 50% symmetry noise and 45% pair noise. Specifically,
the discriminator outperformed the second-best method by
approximately 5% under 50% symmetry noise; and it out-
performed the second-best method by approximately 8%
under 45% pair noise. For 20% symmetry noise, EBF and the
discriminator outperformed the other methods by achieving
85.58% and 84.72%, respectively.

4.2.3. Evaluation Using CIFAR-100. +e number of classes
that a dataset contains is a major factor that influences the
performance of all noise mitigation methods.+e higher this
number is, the more challenging the dataset is.+erefore, the
CIFAR-100 dataset, which contains 100 classes, represented
a significant challenge for all methods.

In this experiment, the three discriminators built for
CIFAR-100 in Section 4.1.3 which were based on 10, 30, and
50 seeds per class were used to clean the noisy CIFAR-100
dataset. Table 14 summarizes the results of all methods.

As shown in Table 14, for 45% pair noise, the dis-
criminator based on 50 seeds (50S) outperformed all other
methods by at least 12% higher accuracy. It also came in
second place (after EBF) for 50% symmetry noise. However,
EBF accuracy was drastically decreased for 45% pair noise.

4.3. 4e Effect of the Discriminators on Training Time.
+is section investigates the impact of the discriminator on
the training time of the classifiers that were trained using the
cleaned datasets. We will also study its impact on the
number of epochs and the achieved classification accuracy
under specific conditions. Several experiments were un-
dertaken on noisy versions of the MNIST, CIFAR-10,
CIFAR-100, Fashion [35], and Traffic Signs [36] datasets,
which were used to train a 9-layer CNN before and after

Table 12: Average test accuracy on MNIST over the last ten epochs. +e top part of the table presents the results that were adapted as
published in [29]. +e bottom part shows the results achieved by our implementation.

Method
Flipping rate

Symmetry-20% Symmetry-50% Pair-45%
Standard 94.05 (±0.16) 66.05 (±0.61) 56.52 (±0.55)
Bootstrap 94.40 (±0.26) 67.55 (±0.53) 57.23 (±0.73)
S-model 98.31 (±0.11) 62.29 (±0.46) 56.88 (±0.32)
F-correction 98.80 (±0.12) 79.61 (±1.96) 0.24 (±0.03)
Decoupling 95.70 (±0.02) 81.15 (±0.03) 58.03 (±0.07)
MentorNet 96.70 (±0.22) 90.05 (±0.30) 80.88 (±4.45)
Coteaching 97.25 (±0.03) 91.32 (±0.06) 87.63 (±0.21)
EBF 98.75 (±0.29) 98.27 (±0.39) 88.91 (±0.62)
Discriminator (2S +DA) 96.27 (±0.20) 93.07 (±0.73) 93.29 (±0.32)
Discriminator (5S) 89.12 (±0.23) 87.67 (±0.51) 93.26 (±0.20)
Discriminator (5S +DA) 96.98 (±0.34) 96.33 (±0.36) 97.13 (±0.18)
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cleaning the datasets with the proposed discriminator. It is
intuitive that if the discriminator effectively eliminates
outliers, the training time and the number of epochs needed
to train the classifiers will decrease while increasing the
classification accuracy.

Rather than training the classifiers for a specific number
of training epochs, as we did so far, in the following ex-
periments, the training process will continue until one of the
following two conditions is met: either the training loss
(error) value falls below 0.03 or when a maximum of 300
epochs is reached. In each experiment, we recorded the
training time.

Given that three discriminators were trained for each
dataset in Section 4.1, we used the discriminator that gave
the best classification accuracy for every dataset, namely, for
MNIST, we used the discriminator based on five seeds, while
for CIFAR-10 and CIFAR-100, we used the discriminators
based on 400 and 50 seeds, respectively.

In this section, we also use two more datasets: Fashion
and Traffic Signs. Fashion dataset includes 60,000 instances
in the training set and 10,000 instances in the test set. Each
instance is a 28× 28 gray image and labeled with one of ten
classes. +e Traffic Signs dataset contains 34,799 instances
for training purposes and 12,630 instances for testing
purposes. Each instance is represented as an RGB image of
32× 32 and is labeled by one of 43 classes. For the Fashion
dataset, we trained a discriminator based on ten seeds with
data augmentation. We used an augmentation factor of ten,
which means that the discriminator was trained using 90,000
instances (see equation (2)). +e architecture of the dis-
criminator model for Fashion is the same as the model used
for MNIST. Finally, for the Traffic Signs dataset, we trained a
discriminator using ten seeds with data augmentation. Due
to the large number of classes in this dataset (43 classes), we
used a small augmentation factor of one, which implies that
the discriminator was trained on 180,600 instances (see
equation (2)). +e discriminator model’s architecture was
the same as the model used for CIFAR-10.

Table 15 shows that, after using the proposed discrim-
inator to clean the noisy datasets and using the cleaned data
to train classifiers, a substantial improvement was observed
in classification accuracy and training time compared to
training the classifiers using the noisy (uncleaned) dataset.
+e only exception was in the Fashion dataset with 20%
symmetric noise. +e use of the discriminator led to a re-
duction in accuracy by 1.42%, but the training time was also
reduced in this experiment too.

A remarkable improvement in classification accuracy
was observed for the MNIST dataset after using the dis-
criminator to clean the data, along with improvements in the
required number of training epochs and the required
training time. Notably, a considerable improvement was
achieved for the MNIST results as a result of using the
discriminator, as can be seen in Table 15.

As for CIFAR-10, Table 15 shows that a considerable
improvement in classification accuracy was achieved for all
types of noise. However, with 20% symmetric noise, a slight
increase of two training epochs was noted, but still, the
training time was reduced from 8.2K seconds down to 5.1 K.
+e reduction in training time is due to the reduction in the
size of the training data (as a result of eliminating the noisy
instances). Also, in the case of 45% pair noise, the number of
training epochs grew from 89 to 129, but still, the training
time was reduced from 8.6 K down to 5.3 K seconds.

Table 14: Average test accuracy on CIFAR-100 over the last ten
epochs.

Method
Flipping rate

Symmetry-20% Symmetry-50% Pair-45%

Standard 47.55 (±0.47) 25.21 (±0.64) 31.99
(±0.64)

Bootstrap 47.00 (±0.54) 21.98 (±6.36) 32.07
(±0.30)

S-model 41.51 (±0.60) 18.93 (±0.39) 21.79
(±0.86)

F-correction 61.87 (±0.21) 41.04 (±0.07) 1.60
(±0.04)

Decoupling 44.52 (±0.04) 25.80 (±0.04) 26.05
(±0.03)

MentorNet 52.13 (±0.40) 39.00 (±1.00) 31.60
(±0.51)

Coteaching 54.23 (±0.08) 41.37 (±0.08) 34.81
(±0.07)

EBF 59.90 (±0.66) 48.51 (±0.61) 32.65
(±0.60)

Discriminator
(10S) 24.45 (±0.83) 20.93 (±0.62) 21.42

(±0.88)
Discriminator
(30S) 44.36 (±0.47) 37.70 (±0.67) 39.26

(±0.81)
Discriminator
(50S) 49.31 (±0.67) 41.79 (±1.11) 44.62

(±0.54)

Table 13: Average test accuracy on CIFAR-10 over the last ten
epochs.

Method
Flipping rate

Symmetry-
20%

Symmetry-
50% Pair-45%

Standard 76.25 (±0.28) 48.87 (±0.52) 49.50
(±0.42)

Bootstrap 77.01 (±0.29) 50.66 (±0.56) 50.05
(±0.30)

S-model 76.84 (±0.66) 46.15 (±0.76) 48.21
(±0.55)

F-correction 84.55 (±0.16) 59.83 (±0.17) 6.61 (±1.12)

Decoupling 80.44 (±0.05) 51.49 (±0.08) 48.80
(±0.04)

MentorNet 80.76 (±0.36) 71.10 (±0.48) 58.14
(±0.38)

Coteaching 82.32 (±0.07) 74.02 (±0.04) 72.62
(±0.15)

EBF 85.58 (±0.58) 74.30 (±1.26) 59.17
(±1.91)

Discriminator
(100S) 78.09 (±0.90) 70.84 (±0.81) 74.24

(±1.31)
Discriminator
(200S) 79.79 (±0.61) 72.44 (±1.93) 76.33

(±1.15)
Discriminator
(400S) 84.72 (±0.53) 79.05 (±0.72) 80.57

(±1.21)
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Regarding the CIFAR-100 dataset, the maximum number
of training epochs (300) was reached in all experiments.
However, a substantial improvement occurred in classification
accuracy and training time in all experiments.+e reduction in
training time is due to the reduction in the size of the training
data, which was reduced from 50,000 instances to 16,701,
10,920, and 11,917 instances in case of 20% symmetric noise,
50% symmetric noise, and 45% pair noise, respectively.

As for the Fashion dataset, training the classifiers using
the cleaned data considerably improved the classification

accuracy and reduced the number of training epochs and
training time. +e only exception is with 20% symmetry
noise, where the classification accuracy was reduced from
85.76% down to 84.34%.

Regarding the Traffic Signs dataset, which contains 43
classes, using the discriminator to clean the training data
resulted in considerable improvements in training time,
training epochs, and classification accuracy.

+e results indicate that the proposed noise discrimi-
nator method led to a substantial reduction in training time

Table 15: Effect of the discriminator model on the training time.

20% symm. noise 50% symm. noise 45% pair noise
Test acc. Time (sec) Epochs Test acc. Time (sec) Epochs Test acc. Time (sec) Epochs

MNIST Standard 93.15 15.1 K 148 64.41 29.8 K 300 54.39 19.5 K 197
Discriminator 95.60 273.43 4 94.83 523.97 12 96.02 198.38 4

CIFAR-10 Standard 71.38 8.2 K 90 47.50 15.2 K 158 47.58 8.6 K 89
Discriminator 83.06 5.1 K 92 78.69 5.4 K 139 80.00 5.3 K 129

CIFAR-100 Standard 37.78 27.3 K 300 16.60 27.7 K 300 27.63 27.7 K 300
Discriminator 50.78 10.8 K 300 42.46 7.6 K 300 44.69 8.2 K 300

Fashion Standard 85.76 14.7 K 145 56.93 30.3 K 300 54.67 19.3 K 190
Discriminator 84.34 1.1 K 19 79.58 1.1 K 29 85.09 793.46 18

Traffic Signs Standard 88.55 21.3 K 300 73.64 21.4 K 300 51.44 21.2 K 300
Discriminator 92.95 1.3 K 21 92.12 1.7 K 51 91.96 3.7 K 101

K refers to a thousand of seconds.
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Figure 5: Comparison of training time with and without using the proposed discriminator: (a) MNIST, (b) CIFAR-10, (c) CIFAR-100,
(d) Fashion, and (e) Traffic Signs.
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across every dataset. +is comes as a result of reducing the
number of training epochs, reducing training data size, or
both. Furthermore, the use of the discriminator increased
the classification accuracy, particularly when we have a high
ratio of outliers. Hence, it is reasonable to conclude that the
use of a noise discriminator to clean the training data has a
positive effect on the training time, training epochs, and
classification accuracy in most cases.

It is worth noting that, in this evaluation, the training
time of the discriminator was not taken into consideration.
Nevertheless, Figure 5 indicates that the reduction in
training time was remarkable, which compensates for the
procedures undertaken as a preprocess before training. In
any case, the improvement in the classification accuracy
justifies the training time of the discriminator.

4.4. Comparing the Classification Accuracy of Different
Methods. Noise type and noise ratio are critical factors that
pose major challenges for the performance of noise miti-
gation methods. Pair flipping represents the hardest case of
noise. For instance, F-correction performed reasonably
under symmetry noise, while it failed completely to learn
under pair noise in all datasets (see Tables 12–14). +e
accuracy of every method was lower for pair noise compared
to symmetry noise, but by contrast, the proposed discrim-
inator performed well under pair noise as was discussed in
Section 4.2.

Figures 6–8 present each method’s classification accu-
racy results for different types and ratios of noise for all
datasets. It is clear from these figures that the type and ratio
of noise represent a challenge for all methods. However, the
proposed noise discriminator’s performance is stable irre-
spective of the type and ratio of noise. +erefore, it is
reasonable to conclude that the proposed discriminator
offers a vital improvement in terms of accelerating the
training process after cleansing the training data.

Although the proposed discriminator demonstrates
superior results compared to the other methods, its limi-
tations cannot be overlooked for datasets with many classes.
Training the proposed discriminator to clean a dataset with a

substantial number of classes requires a large training
dataset. +is is because the size of the dataset generated to
train a discriminator is proportional to the number of seeds
and the number of classes.+erefore, if the number of classes
is large, then the size of the dataset needed to train the
discriminator will also be large. For a dataset of 100 classes,
for instance, the discriminator may need to be trained on a
dataset of 1,980,000 instances, which requires relatively
processing resources. Investigating other methods to reduce
this number may be an interesting future work.

5. Conclusion

Many machine learning methods, including deep learning
models, require vast amounts of high-quality training data to
perform well. However, large datasets usually contain noise,
which may undermine the performance. +is paper pro-
poses a novel discriminator for outlier detection, and it
presents a systematic approach for generating the dataset
required for training the noise discriminators based on a
small number of genuine instances. +e empirical results
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Figure 6: Test accuracy of each method among different types and
ratios of noise on MNIST.
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Figure 7: Test accuracy of each method among different types and
ratios of noise on CIFAR-10.
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Figure 8: Test accuracy of each method among different types and
ratios of noise on CIFAR-100.
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show that the proposed method is effective, especially for
training data that contain excessive noise. +e results also
indicate that the proposed method performs well regardless
of the type of noise (e.g., pair or symmetry noise). +e
method was compared with seven other methods with re-
spect to the achieved accuracy after noise mitigation.

In the future, we intend to investigate utilizing other
algorithms of learning such as semisupervised learning or
weakly supervised learning to take advantage of those in-
stances which were identified as outliers by the proposed
discriminator. Furthermore, we intend to investigate the use
of similar discriminators to relabel the identified outliers.
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