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Hyperheuristics rise as powerful techniques that get good results in less computational time than exact methods like dynamic
programming or branch and bound..ese exact methods promise the global best solution, but with a high computational time. In
this matter, hyperheuristics do not promise the global best solution, but they promise a good solution in a lot less computational
time. On the contrary, fuzzy logic provides the tools to model complex problems in a more natural way. With this in mind, this
paper proposes a fuzzy hyperheuristic approach, which is a combination of a fuzzy inference system with a selection hyper-
heuristic. .e fuzzy system needs the optimization of its fuzzy rules due to the lack of expert knowledge; indeed, traditional
hyperheuristics also need an optimization of their rules. .e fuzzy rules are optimized by genetic algorithms, and for the rules of
the traditional methods, we use particle swarm optimization. .e genetic algorithm will also reduce the number of fuzzy rules, in
order to find the best minimal fuzzy rules, whereas traditional methods already use very few rules. Experimental results show the
advantage of using our approach instead of a traditional selection hyperheuristic in 3200 instances of the 0/1 knapsack problem.

1. Introduction

Hyperheuristics are high-level methods created to solve
problems by either selecting among different solvers [1] or
by generating new ones based on the components of others
[2]. .ese solvers are usually referred to as low-level heu-
ristics (or simply, heuristics). Since heuristics are approxi-
mation methods, they have the advantage of being fast to
execute, but they cannot guarantee to find the optimal so-
lution. .en, hyperheuristics attempt to choose the best
heuristic for each type of problem to improve the quality of
the solutions. Burke et al. [3] refer to hyperheuristics as
“high-level heuristics,” and classify them into two broad
categories: selection and generation. In this work, we focus
on selection hyperheuristics. As the name suggests, selection
hyperheuristics decide which is the best heuristic to apply in
different states of the problem. In general, one heuristic is
likely to be better than the others for some specific instances.
.is phenomenon causes that selection hyperheuristics to

choose this heuristic most of the time—perhaps more than
needed. .roughout fuzzy logic, we think we can overcome
this problem by creating a more balanced way in which the
hyperheuristics select heuristics. Another mechanism of the
hyperheuristics that can be enhanced is how they select the
heuristics, and this is usually done by the difference between
the current state of the problem (represented by a vector of
metrics or features) and a set of rules generated by a search
and optimization method. A fuzzy inference system has
fuzzy rules that can determine which heuristic to select
through the defuzzification process, which involves the use
of autogenerated knowledge or the knowledge of an expert.

Fuzzy logic comprises a series of tools [4, 5] designed to
model a problem in the way humans would do it. For in-
stance, when we talk about the weather, we ignore the exact
temperature, but we can communicate if it is hot or cold
(and others will understand). Similarly, we can decide what
to do according to inaccurate measurements. A fuzzy in-
ference system (FIS) is a rule-based expert system that
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processes inputs with the help of a knowledge base (fuzzy
rules) and brings the result as the output. In this regard,
Mamdani [6] proposed the first type of FIS, and Sugeno [7]
proposed a faster way to compute the output of a FIS. .e
main difference between these two types of FIS is how they
compute the output. While Mamdani uses a more natural
manner to model a problem by a combination of fuzzy sets,
Sugeno uses equations for a faster calculation of the output.
In this investigation, we have preferred Sugeno as FIS for its
faster computational time.

.e knapsack problem is still a difficult combinatorial
problem to solve for exact methods [8], so in this research,
we adopt it as a benchmark for comparison, to see if our
fuzzy approach can get better results when compared to
nonfuzzy selection hyperheuristics. .e difficulty in this
problem lies in having to select a subset of items si⊆SI,∀i ∈ I,
that does not exceed the total weight w≤W allowed by the
knapsack and maximizes a profit P � 􏽐

n
i�1 pixi.

In our proposed approach, we use a FIS as a selection
hyperheuristic. Under our proposal, the problem features
are inputs to the FIS, while the output is the selected
heuristic. .en, the defuzzification process is how the
hyperheuristic computes the “distance” between rules and
the current problem state. In other words, we change the way
the hypeheuristic works internally by incorporating a FIS.
For the sake of brevity, we will refer to this type of
hyperheuristic as a fuzzy hyperheuristic.

.e main innovations derived from this research are as
follows. First, we have proposed a model that optimizes the
fuzzy rules of a FIS and uses it as a hyperheuristic. We
optimize the model using easy-to-solve instances and apply
it to hard-to-solve instances, without reoptimizing its rules.
.ese tests prove, with the help of a genetic algorithm (GA),
that our model gets the knowledge to solve a knapsack
problem and save it as fuzzy rules. .is model combines the
advantages of selection hyperheuristics and fuzzy logic in-
ference to increase the quality of the results, compared to
traditional selection hyperheuristics optimized by particle
swarm optimization (PSO). .e optimization performed by
the GA has the aim of getting the consequents of the fuzzy
rules and also reducing the number of rules, while the
optimization of the traditional methods performed by PSO is
by finding the values of the rules and their consequents, but
these rules are less (4, 6 or 8) than the fuzzy rules (128), that
is why the GA also reduces the number of fuzzy rules. For the
optimization process of both methods, we use a set of 120
instances of the knapsack problem and 680 instances of the
same type for testing, and we also include 2400 hard in-
stances for testing. Even when the methods were not op-
timized with the hard instances (which are of a special type
of instances), the results on these instances show that our
proposed fuzzy approach has an advantage over the tradi-
tional hyperheuristic methods.

We organize the rest of the paper as follows. Section 2
captures the state-of-the-art works related to this research.
Section 3 presents the theoretical basis and concepts used in
this research. Section 4 explains the methodology used to
optimize and transform a FIS into a hyperheuristic. Section 5
presents all the experiments, and the results we got. Section 6

discusses the results in a graphical view and a statistical
comparison. Finally, in Section 7, we present the conclusions
and feature work.

2. State-of-the-Art

.is section covers the main works conducted on related
topics like selection and generation hyperheuristics, meta-
heuristics to combinatorial problems, fuzzy logic, knapsack
problem, genetic algorithms to optimize fuzzy inference
systems, and the combination of fuzzy logic with
hyperheuristics.

Ross [1] described some ideas related to hyperheuristics
and several applications to different problems like Boolean
satisfaction, scheduling, and bin packing. Cowling et al. [9]
presented a hyperheuristic that can adapt to the problem
under exploration. .ey use a choice function that deter-
mines the best heuristic on each state of the problem, leading
to an autonomous hyperheuristic which automatically
adapts its parameters and gets superior results when com-
pared to other techniques. Sosa-Ascencio et al. [10] proposed
an algorithm that uses genetic programming to generate
selection hyperheuristics, using a grammar extracted from
the existing heuristics. .eir generated heuristics have an
improved performance when compared against human-
designed heuristics, but not in all instances. Lopez-Camacho
et al. [11] created a framework to develop and test hyper-
heuristics to solve bin packing problem (BPP) instances in
1D and 2D, by considering items with regular and irregular
forms in the case of 2D, and proposed an evolutionary
selection and constructive hyperheuristics that solve effi-
ciently distinct types of problems. Terashima-Marin et al.
[12] proposed a generalized hyperheuristic for solving BPPs
with different forms, which include regular (rectangular)
and irregular (concave or convex) ones. Using a variable-
length genetic algorithm, they evolve hyperheuristics that
solve the problems more efficiently than the best single low-
level heuristic for each instance. Tsai et al. [13] proposed a
hyperheuristic scheduling algorithm to find better solutions
for a cloud computing system, and their results show a
significant reduction of themakespan compared with several
state-of-the-art algorithms using two detection operators to
automatically determine when to change the low-level
heuristic and a perturbation operator to fine-tune the so-
lutions got. Sabar et al. [14] used a grammatical evolution
hyperheuristic to evolve several heuristic components to
produce a generic problem solver. .ey also included an
adaptive memory mechanism for the hyperheuristic. .eir
results show the advantage of their approach when com-
pared to some bespoke methods from literature, and this is
because of the use of an adaptive memorymechanism, which
contains a collection of the best solutions. Ortiz-Bayliss et al.
[15] applied a genetic algorithm (GA) with variable-length
chromosomes to evolve selection hyperheuristics applied to
real and synthetic constraint satisfaction problems, using
seven heuristics..eir results confirm the robustness of their
approach in unseen instances without loss of efficiency.
Koulinas et al. [16] used particle swarm optimization (PSO)
to optimize a hyperheuristic applied to solve the resource-
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constrained project scheduling problem. .eir results are
competitive against other approaches from the literature.
Also, they claim a linear increase in computational time
using their approach to solve a set of schedules. Ortiz-Bayliss
et al. [2] proposed a method to generate new heuristics by
evolving a set of features from other heuristics from the
literature, applied to randomly generate constraint satis-
faction problems, where they get better heuristics than the
ones taken from literature, but could not achieve a general
heuristic able to solve different types of problems. Maashi
et al. [17] described a multiobjective hyperheuristic with a
learning selection choice function. .ey used multiobjective
evolutionary algorithms as low-level heuristics applied to the
vehicle crashworthiness design problem. .e results show
the advantage of the hyperheuristic over the low-level
heuristics on its own and also over an adaptive multimethod
search from the literature. Zhao et al. [18] use an evolu-
tionary hyperheuristic for location-routing problem with
simultaneous pickup delivery where they use various met-
aheuristic techniques to guide the search and help the
hyperheuristic to select the best low-level heuristic. .eir
proposal got better results than the best fine-tuned bespoke
state-of-the-art approaches in the literature. Wang et al. [19]
also applied a hyperheuristic to the location-routing prob-
lem but with the constraint of fuel consumption as a
multiobjective problem where their results show better
performance than the well-knownNSGA-II algorithm. Yang
et al. [20] use a hyperheuristic to select the best heuristic
mutation operators from a pool to search for a solution in
the space of the problem of dynamic economic and envi-
ronmental load dispatch in order to determine the amount
of electricity in a power plan, and their results show the
effectiveness of their proposal. Soria et al. [21] use a
hyperheuristic to select the most promising operator in the
problems of vehicle routing and timetabling, their strategy is
found a balance between diversification and intensification
heuristics, and their results show an improved performance
and new best-known solutions for the timetabling bench-
mark problem.

Zhao et al. [22] applied a discrete water wave optimi-
zation algorithm along with a greedy algorithm, and these
methods have their advantages and disadvantage; to over-
come their disadvantages, they use hybridization. .e hy-
bridization is a technique where, with the combination of
two or more methods, their advantages are included in a
single method. .is is the fundamental idea of our proposal
for this paper. Deng et al. [23] use a greedy algorithm with a
population to tackle a job-shop scheduling problem where it
does not allow waste time between two jobs: the greedy
algorithm works with iterations and the population evolved
by their destruction and construction..eir results show the
advantage of using their proposal over other methods, and
even they claim that their method could work in a real-world
application. Ribas et al. [24] also use a greedy algorithm with
a variable neighborhood search to a job-shop scheduling
which has a constraint that increases the complexity of the
problem by allowing a machine has a storage capability, so a
machine can be not available before the previous machine
has finished their job. .ey use two strategies to tackle this

problem and to select the critical line which has the highest
tardiness. .eir comparison of results shows an improve-
ment over other benchmark algorithms proposed for a
problem related to their own problem, since they consider
that their approach is the first in applying to this problem.

Zadeh [4] introduced the early concepts of fuzzy sets. For
Zadeh, a fuzzy set is a class of objects with continuum grades
of membership. Zadeh [5] also explained the main difference
between classical logic and fuzzy logic. Besides, he presented
problems classical logic cannot answer because of the un-
certainty and imprecision of data, but fuzzy logic can, by
using fuzzy sets and fuzzy rules. Martinez et al. [25] pre-
sented a comparison between the metaheuristics ant colony
optimization (ACO) and a hierarchical genetic algorithm
(HGA) for the optimization of fuzzy rules, using the idea of
searching for the consequent of the rules and the activation/
deactivation method. .ey concluded that ACO got better
results than the HGA. Adanez et al. [26] used a GA to find
the best antecedents of the fuzzy rules, while they used an
identification method for the consequent. In their work, they
used a Sugeno FIS that incorporates multidimensional
membership functions, showing that these functions get
better results than a single-dimensional membership func-
tion. Chhabra and Singh [27] proposed a Mamdani-type
fuzzy model to tackle the estimation of cost and effort in the
software development process, and they optimize their
membership functions in the fuzzy model through a GA,
getting better results than traditional methods. Lin [28] used
a triangular fuzzy number to model the time needed for a
machine to complete an assigned job in the flexible job-shop
scheduling problem. .en, he applied a backtracking search
algorithm to create hyperheuristics that schedule the jobs for
each machine. .e results and comparisons show the ad-
vantage of their proposal over state-of-the-art algorithms
from the literature. Asmuni et al. [29] proposed a FIS as a
metric for ordering the exams in a scholar calendar. .ey
make the ordering through simple heuristics, but a FIS
computes the complexity of the exams as a preprocessing
step. .e results over 12 benchmark problems datasets show
that their approach produces excellent quality solutions.
However, the computational time taken to optimize each
fuzzy model is very significant. Asmuni et al. [30] extended
their previous work [29], but this time for ordering courses
instead of exams. .ey optimize their FIS as previously, by
only moving some parameters of the membership functions.
More particularly, they only optimize the parameters that
cause an intersection between two membership functions.
.e results on 11 benchmark datasets show that their ap-
proach produces suitable quality solutions with low re-
quirements for rescheduling. And same as the previous
work, the only drawback is the time needed to optimize the
fuzzy model. Chaudhuri and De [31] proposed a hybrid GA
through hill-climbing methods applied to the timetabling of
resources (teachers, classrooms, and students) from a uni-
versity. .ey use a FIS to improve the objective function for
the soft constraints, aside from the objective function from
the GA to meet the hard constraints. .ey used hill climbing
to improve the genetic operators within the GA. With an
increase in computational complexity, their results show an
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advantage and achieve similarity better score over GA-based
solutions. Jackson et al. [32] used a FIS to control the late
acceptance parameter from the hyperheuristic, which makes
a performance ranking of the applied heuristics, where they
compare new evaluations with previous ones to see if there is
an improvement. .ey do this not only with the last one but
with a number L of previous solutions, and with this, the
system decides which heuristic has the best performance.
.eir results show that the fuzzy control is effectively im-
proving the performance of the hyperheuristic in seven of
the twelve instances. An area of opportunity is the inclusion
of other search state measures that help to avoid local
minima or too much diversification of the search space
leading to poor solutions. Zamli et al. [33] used a FIS as a
selection hyperheuristic, with inputs using various metrics
about the applied heuristics, and the system decides to
“change,” “stay,” or “may change” the last heuristic. From
their results, they found that the hyperheuristics are superior
when compared to metaheuristics. Also, using a FIS to
change the low-level heuristic applied, this shows an ad-
vantage when compared against most of the other strategies.
Yang and Petrovic [34] proposed a new similarity metric
between timetable problems represented as graphs, where
nodes (vertex) are exams, and the edges are the number of
students who will take the exam connected with the same
edge. Each vertex has a weight that represents the number of
students that will take that exam. .ey have a case base of
problems, and they want to know the similarity of a new
problem with the current ones. For this, they use different
metrics, including one based on a FIS..ey test the approach
on real-world problems and comparing the results against
state-of-the-art methods. .e fuzzy similarity measure leads
to an excellent selection of heuristics and outperforms the
state-of-the-art solutions. .ey believe that their new fuzzy
similarity measure can be applicable to other domains of
problems.

Different approaches to tackle the knapsack problem
have been proposed in the literature. Sahoo et al. [35]
presented how the knapsack problem is related to the
problem of optimal allocation of physical resource blocks. A
generalization of the standard 0-1 knapsack problem as the
set-union knapsack problem was proposed by Lin et al. [36].
Another representation of the knapsack problem is the joint
radio communication, caching, and computing decision
problem proposed by Dang and Peng [37]. Mengistu et al.
[38] modeled the virtual machine placement problem in
volunteer cloud computing as a bounded 0-1 multidimen-
sional knapsack problem and developed three heuristic-
based algorithms to meet the objectives and constraints
specific to volunteer cloud computing. Some methods ap-
plied to solve the knapsack problem are a tissue P system
with cell division [39] and a quantum-inspired binary wolf
pack algorithm [40].

As a summary of the revised works, we believe that
hyperheuristics have shown to be better than isolated
heuristics for many situations and provide a reliable tech-
nique for solving problems where exact methods require an
unfeasible computational time. We also mentioned different
problems where hyperheuristics have excelled in

performance and produce solutions close to optimal ones.
Research on fuzzy logic provides the tools needed to model
complex problems, which, combined with other methods,
helps to get better results. .e current literature still con-
siders the knapsack problem a hard and exciting problem
and contains plenty of other modern problems that can be
formulated as this generic one. .ey also provide a variety of
methods used to solve this problem, but no one method can
solve all knapsack problems. We found evidence that sup-
ports that the optimization of a FIS through GAs is feasible.
.en, we can use GAs to help the FIS improve the results. In
the literature, there is a gap in the combination of fuzzy logic
and hyperheuristics. .e paper proposed by Zamli et al. [33]
is the most related to our work since they also replace a
selection hyperheuristic with a FIS (other works only use a
FIS to solve an issue without replacing the hyperheuristic by
the FIS)..emain difference against our proposed approach
is that their fuzzy hyperheuristic does not select the next
heuristic to be applied and only keeps or changes the current
heuristic applied. In our proposed approach, in every state of
the problem, it takes into account the features of the problem
to decide which is the best heuristic to select (same as
hyperheuristics do).

3. Theoretical Basis and Problem Statement

3.1. Hyperheuristics. Heuristics are techniques created to
solve specific problems faster or approximately due to the
slowness of exact methods. Unfortunately, to get this ad-
vantage, heuristics sacrifice the assurance to get the global
optimum. Hyperheuristics—usually considered as high-level
heuristics [41]—represent a compelling option compared to
a simple heuristic [1], which also creates a symphony be-
tween heuristics through the combination of these at certain
times from resolving a problem, leading to getting (in most
of the cases) better results than any of the heuristics in
isolation. A hyperheuristic needs a set of rules to be opti-
mized by some search and optimization methods to create
this symphony of heuristics. Hyperheuristics can tackle the
knapsack problem in the following manner. First, define the
heuristics suitable for the problem; in our case, there are four
of them. Second, select the features that characterize the
problem state. Now, the hyperheuristic only needs a set of
rules, which will help to select the best heuristic for each
problem state. A search and optimization technique can find
these rules. A set of rules for a hyperheuristic is a matrix
where each row represents a rule. .ese rules contain in-
formation about the conditions where one heuristic should
be preferred before the others. For example, in rule
R1 � [0.2, 0.4, 0.9, 3], the values 0.2, 0.4, and 0.9 correspond
to features 1, 2, and 3, respectively. .e last value in the rule
indicates the index of the heuristic to apply; in this example,
the rule will select the third heuristic. We can define the
number of rules in the hyperheuristic arbitrarily:

HHRules �

0.2 0.4 0.9 3

0.9 0.1 0.3 4

0.5 0.8 0.9 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)
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Suppose a hyperheuristic has the rules shown in equa-
tion (1) and assume the features from the current state of the
problem are F � [0.8, 0.2, 0.4]. Given these conditions, the
closest rule to the current problem state is the one from the
second row (from the perspective of the Euclidean distance).
So, in this case, the hyperheuristic will recommend using the
fourth heuristic. We can create the rules of a hyperheuristic
through the generation of a matrix with random values, in
which the first n columns correspond to the n features and
the last column corresponds to the heuristic for each rule
from the heuristics available. To train (optimize) a hyper-
heuristic on a problem, we can use a search and optimization
method to find the best values for the matrix.

3.2. Fuzzy Inference System. .e Sugeno-type [7] FIS used in
this investigation uses the defuzzification process of com-
puting the weighted average of all rules weight (or firing
strength) using equation (2), where Rwi is the firing strength
and zi is the consequent of rule i. Our FIS has an output
which contains all the heuristics to select, each of them as
membership functions of constant type, i.e., the constant
values 1, 2, 3, and 4 assigned to each of the four heuristics,
respectively. From this perspective, one might think “wait,
how can we combine two heuristics? and say the weighted
average of (0.5)(1) + (0.5)(3) � 2;” in other words, the half
of heuristic 1 plus the half of heuristic 3 is heuristic 2. In fact,
this is how our fuzzy hyperheuristic works, but the
knowledge on what heuristics “combine” it will be optimized
by a metaheuristic. Just to be clear, our proposed approach
does not combine any heuristic, and this is an internal
process of a Sugeno FIS; at the end, we are looking for the
best fuzzy rules that select the best heuristic, given the
features of a problem state:

output � 􏽘
n

i�1

Rwizi

Rwi

. (2)

3.3. GeneticAlgorithms. .eGA is a metaheuristic proposed
by Holland [42], based on the natural evolution of species,
while share their best genes to improve further generations.
Using building blocks, GA can combine solutions to gen-
erate a better one. At the end (with enough generations), all
individuals in a population converge towards the best so-
lution..is is themethod we used for the optimization of the
fuzzy rules from our fuzzy approach. We use a custom
discrete version of the original GA, where all genes can have
only integer values. To optimize our fuzzy approach, we
implement a custom two-point crossover method. All
chromosomes have the configuration depicted in Figure 1,
where the half are control genes and the other half are
parameter genes. Control genes are used to manage the
activation/deactivation of fuzzy rules, while parameter genes
contain the consequent for each fuzzy rule.

In the selection process, individuals are chosen based on
a tournament, where two individuals are randomly selected
from the population (they may not be the same individual),
the one with the best fitness is selected, stored, and removed

from the population, the other individual is returned to the
population ready to be selected in the next round, and in this
way, until the necessary individuals are selected. For the
crossover depicted in Figure 2, we select parents in pairs to
produce two new offspring. We select first two random
genes: the first one in the range [1 to half] and the second one
from [half + 1 to last] of the chromosome. In this manner, we
try to maintain a crossover of both the control and pa-
rameter genes in the chromosome. For themutation process,
we mutate all offspring from crossover. .is comprises a
percentage of genes from each children chromosome, and
depending on the position, we can mutate it in two ways:

(i) Flip-bit mutation: if the chosen gene is a control
gene, we invert its value (0 goes to 1, and 1 goes to 0).

(ii) Random mutation: if the chosen gene is a parameter
gene, we change its value with a new value randomly
generated from the range from 1 to 4.

.e new population (the population that passes to the
next generation) is generated from an elitist selection from
the parents and its offspring, where they are ranked in a list
from the best to the worst, and we select only the best in-
dividuals to create the new population with the same size as
the previous one. With this, all bad solutions are deleted and
do not matter if it is a parent or an offspring, to ensure that
only the best individual passes to the next generation.

3.4.1e Knapsack Problem. .e knapsack problem is about,
given a set of items, getting a subset of them, so it satisfies the
constraints described in equations (3) and (4), where n is the
number of items on the set, pi is the profit of item i, xi is the
number of copies (0 or 1) of item i, wi is the weight of item i,
and W is the maximum weight limit of the knapsack. .e
weight from the subset of items needs to be less or equal to
the maximum weight limit and also be the subset that
maximizes the profit:

max􏽘

n

i�1
pixi, (3)

subject to 􏽘

n

i�1
wixi ≤W and xi ∈ 0, 1{ }. (4)

Eight hundred randomly generated instances create the
testbed used for this work. We used the generator proposed
by Pisinger [43]) to produce such instances. From these
instances, there are 200 instances suitable for each of the
heuristics. .e former means that we generated instances

… …

Control genes
[0 or 1]

Parameter genes
[1, 2, 3, or 4]

1 2 3 4 125 126 127 128 129 130 131 132 253 254 255 256

Figure 1: Representation of an individual as a chromosome.
Control genes activate/deactivate the parameter genes.
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until we have 200 instances where just one heuristic is better
than the others (this was done to create a testbed of instances
that is balanced, and no heuristic has any advantage over the
others on the whole set). Each instance contains 40 items
with a weight ranging from 1 to 32 and a profit ranging from
1 to 128, with a maximum capacity of the knapsack for all
instances of 25. To observe the advantages in learning from
our proposed fuzzy approach against the selection hyper-
heuristics, we selected 30 instances from each heuristic for
training. So, from all these 800 instances, we randomly
selected 15% (or 30 instances for each heuristic) for training
and the remaining 85% for testing, having 120 instances for
training and 680 instances for testing. We created both sets
of instances in a way that each one is still a balanced set. .is
is, we want to prove that, with a few instances, our fuzzy
hyperheuristic can learn the process of solving a knapsack
problem and test it with a broader set of instances. We are
also using the hard instances proposed by Pisinger [8] as a
test set, which corresponds to the instances with 20, 50, 100,
and 200 items and around 1000 as a maximum capacity of
the knapsack. We include 600 instances for each one of these
types, producing in total 2400 instances.

3.5. 1e Features. A hyperheuristic has to decide which
heuristic to use at a given decision point. For this reason, it is
very important to characterize the problem state by using the
appropriate set of features. To picture the current state of an
instance (while being solved), we work with seven features
based on the list of remaining items that have not been
packed yet. .en, every time an item is removed from the
list, the features are recomputed. We compute some features
based only on the weight of the items and others only on
their profit. .ese features can give us a view of the state of
the problem and help to determine the selection of the next
heuristic. We give next a brief description of each feature:

(i) MeanW is the average value of the weights from all
remaining items.

(ii) MedianW is the median value of the weights from
all remaining items.

(iii) StdW is the standard deviation of the weights from
all remaining items.

(iv) MeanP is the average value of the profits from all
remaining items.

(v) MedianP is the median value of the profits from all
remaining items.

(vi) StdP is the standard deviation of the profits from all
remaining items.

(vii) Corr is the correlation value between the weights
and the profits.

3.6.1eHeuristics. To solve the knapsack problem, we chose
the next four heuristics from the literature which are the
most commonly used in this problem [44, 45]. .ese heu-
ristics dictate which item should be selected from the list of
items to be packed. .ese heuristics select the next item
based on the following criteria:

(i) Default: it selects the first item in the list.
(ii) MaxP: it selects the item with the maximum profit

value from the list.
(iii) MinW: it selects the item with the minimum weight

value from the list.
(iv) MaxPW: it selects the itemwith the maximum value

for the quotient profit over weight calculation.

After defining the heuristics and the features of a
problem, the general algorithm for the selection hyper-
heuristics works as follows. First, from an instance, we
compute all features. In the hyperheuristic, it computes a

0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 3 2 4 1 1 2 4 2 2 3 4 3 1 3 4

0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 4 4 2 3 3 1 2 3 4 1 2 3 4 4 2

Parent 1

Parent 2

Control genes Parameter genes

Random point 1 Random point 2

0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 3 2 4 1 1 2 4 2 2 3 4 3 4 4 2

0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 4 4 2 3 3 1 2 3 4 1 2 3 1 3 4

Offspring 1

Offspring 2

Half

Figure 2: Example of a 2-point crossover between two chromosomes. A random point in the control genes and the other in the parameter
genes, to force the combination of both sections of the chromosome.
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distance from all rules to the current features and decides
which heuristic applies. After it applies the heuristic, the
problem state changes, so all features are computed again to
measure the distance for the selection of the next heuristic,
until the problem is solved or it meets termination criteria.
Hyperheuristics (and our fuzzy approach) can use up to
seven features to decide which of the four heuristics are
selected at a moment of the execution of the algorithm. To
accomplish this task, the metaheuristic PSO is used to op-
timize the set of rules from the hyperheuristics and the GA
for the set of fuzzy rules from the FIS.

4. Methodology and Solution Model

We use the fuzzy inference system depicted in Figure 3 as a
base model for our fuzzy approach. .is FIS is Sugeno type
and can have up to n features and m heuristics. In this paper,
we use up to seven features and four heuristics, which are the
inputs and the output of the fuzzy inference system. .e
number of fuzzy rules in the FIS is given by the number of
inputs and membership functions for each of these inputs.
.e membership functions of the inputs of the FIS depicted
in Figure 3 are triangular because, from the types of
membership functions, these are the easiest to manipulate.
All inputs have two triangular membership functions: “low”
and high” described by equation (5). .e output represents
the available heuristics, which are represented by constant
output membership functions:

(i) Parameters for “low”: a � −1, b � 1, m � 0.
(ii) Parameters for “high”: a � 0, b � 2, m � 1.

μA(x) �

0, x≤ a,

x − a

m − a
, a<x≤m,

b − x

b − m
, m< x< b,

0, x≥ b.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

To search for the consequent of each fuzzy rule, the GA
must use the chromosome, as illustrated in Figure 1, with a
size of 256 genes for all the fuzzy rules, where it includes
control genes and parameter genes. Here, control genes
show which rules are considered in the system and which
ones are ignored, using a procedure for activation or de-
activation of fuzzy rules using the values 1 or 0, respectively.
Parameter genes show the heuristic recommended by each
rule (values ranging from 1 to 4). .e decoding process is as
follows:

(i) Take an individual from the population.
(ii) Each consequent (from the parameter dimensions)

is assigned into its corresponding rule.
(iii) With the values from the control dimensions, the

rules will be deleted if 0 or kept if 1.

(iv) .e remaining set of fuzzy rules is saved into the
fuzzy hyperheuristic (depicted in Figure 3) and is
ready to be applied to solve the instances of the
knapsack problem using Algorithm 1.

.e GAmust convert a chromosome into a fuzzy rule set
to be included and evaluated as a fuzzy hyperheuristic. .e
GA uses the solving process from Algorithm 1 to test an
individual and compute its fitness using the training set. We
can apply the same process to solve another set of instances
like testing or other knapsack problems. It is important to
mention that the fuzzy hyperheuristic used in Algorithm 1
can be an optimized FIS or a FIS that is being optimized; that
is, the process described in Algorithm 1 represents the way in
which we compute the fitness from an individual of the
population of the GA. While a fuzzy inference system is
being optimized by GA, an individual is transformed into a
set of fuzzy rules and integrated into the FIS for solving the
training set and get its fitness. On the contrary, an optimized
FIS can be applied to solve the testing set of instances to see
its performance once optimized. .e evaluation process
depicted in Algorithm 1 illustrates how a fuzzy hyper-
heuristic solves a set of instances.

.e rules for the hyperheuristics are coded in the fol-
lowing manner. Taking the example rules from equation (1),
in our case, each rule has 7 features and 1 last element to
indicate the heuristic per rule, which means that each rule
has a length of 8. So, PSO will need a chromosome of 8 × 4 �

32 dimensions to optimize the rules of the hyperheuristic
with 4 rules, 8 × 6 � 48 dimensions for the 6-rule hyper-
heuristic, and 8 × 8 � 64 dimensions for the 8-rule
hyperheuristic.

5. Experiments and Results

.e parameters used to run the GA and PSO are described as
follows. Both algorithms run for 100 iterations by using a
population of 30 individuals. For the GA, we used 256 genes
and 0.8 and 0.1 as crossover and mutation rates, respectively.
For PSO, we use 32, 48, and 64 dimensions to find the rules
for the selection hyperheuristics with 4, 6, and 8 rules, re-
spectively..e inertia weight is linear, decreasing from 0.9 to
0.1 over the iterations. Also, as suggested by Rashedi [46], the
values of C1 and C2 were both set to 2. We use these two
metaheuristics for the optimization of the rules in our
hyperheuristics. .e difference is that PSO is used to gen-
erate the traditional selection hyperheuristics, and the GA
generates the fuzzy rules of the FIS in our fuzzy approach. In
the end, we compare the selection hyperheuristics optimized
by PSO against the fuzzy hyperheuristics optimized by GA.
.e optimization process held by PSO for the selection
hyperheuristics was in the following manner. Each particle
represents a set of rules and its corresponding heuristic. .e
number of features is the size of each rule plus a value for the
heuristic. .e decodification process converts each particle
into a set of rules by dividing it onto a set of vectors rep-
resenting the rules..e last item in the vector is the heuristic.
In this way, PSO can find the corresponding values for each
rule from each heuristic.
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For comparison, we apply a binary genetic algorithm to
solve directly the knapsack problem, to have a point of view
from a metaheuristic perspective. So, in this case, we are
using the same algorithm (but different parameters and
configuration of the chromosomes) as the GA used to op-
timize the consequents of the fuzzy rules from our fuzzy
hyperheuristic approach, but now, we are using chromo-
somes that only have genes with the value 0 or 1. Also, a
chromosome has the same length as the number of items per
instance; with this, if the n gene has a value of 1, then the n
item will be added to the knapsack, or not if this value is 0.
.e main difference between this metaheuristic and the
hyperheuristic is that GA will not save any knowledge of the
problem, and in every instance, a new population needs to be
evolved to bring the best solution to the instance. .e pa-
rameters used to run this version of GA are as follows: the
algorithm will run for 10 generations with a population of 20
chromosomes and 0.80 and 0.05 as crossover and mutation
rates, respectively. For the size of the chromosome, this will
vary depending on the number of items in an instance; in our
case, the numbers of items are 20, 40, 50, 100, and 200.

We use a synthetic hyperheuristic called Oracle (which
represents the best heuristic for each instance). .e Oracle
works by using all heuristics to solve an instance, and the
result of the best heuristic is saved as the result of the Oracle
method. In other words, the Oracle is a hyperheuristic which
always select the best heuristic but only after each heuristic is
applied to solve the problem. .e results from the heuristics
and the Oracle only bring one result. If we solve the same set
of instances with the same heuristic or the Oracle, we will get
the same result. However, for each type of selection
hyperheuristic or the fuzzy approach, we generate 30 of
them. So, in the case of hyperheuristics, we can bring the
average, standard deviation, and best and worst results from
these 30 variations and applied to solve the instances from
the testing set. Table 1 shows these results. Note that there
are 680 instances in the testing set and in the standard
deviation metric, and we include the coefficient of variation
as a percentage: (σ/μ∗ 100%).

Table 1 shows that, after the Oracle, our proposed fuzzy
hyperheuristic approach gets the best results on average,
standard deviation, and best and worst metrics of the testing
set. .e results from the binary GA approach are bad when

compared to the hyperheuristics, but with more generations,
this approach can overcome the other methods. .e only
disadvantage is that, on every instance, the binary GA needs
to evolve an entire population to find a solution, and the
hyperheuristics and the fuzzy approach only need to see the
instances for training to be able to solve the unseen instances
from the testing set. Table 1 shows that traditional selection
hyperheuristics get better results than the heuristics but
worst than the fuzzy approach. .e reason why the
hyperheuristics and the fuzzy approach are better than the
heuristics is because the heuristics are simple methods which
are faster but does not always guarantee the global best. On
the contrary, hyperheuristics create a symphony of heuristics
and are driven by the features of the problem, and when the
features change, the hyperheuristics select the best heuristic
for the current features. .e Oracle synthetic hyperheuristic
is our goal in the developing of any kind of hyperheuristics.
.e results presented in Table 1 show that the Oracle gets the
best results, and this is because it always selects the best
heuristic for each instance. However, there are some in-
stances were the hyperheuristics (fuzzy approach included)
get better or equal on results of profit than the Oracle
method. .ese results are presented in Table 2, where the
percentages are computed based on the total of instances
solved between all instances of the testing set:
Percentage � (Number of instances/680∗100%). From the
results in Table 2, we can observe that the fuzzy approach
gets the best results in the majority of the metrics used,
except in the standard deviation. .ese results show that the
fuzzy hyperheuristic gets better or equal results than the
Oracle in 44.87% on average of the total instances solved. It
is important to remember that we generate all instances from
the sets for training and testing randomly. For each instance,
one heuristic, in particular, was better than the others. .is
means that each heuristic is the best in 25% of the instances,
but the Oracle knows which is the best one. With this in
mind, it is clear why the Oracle gets the best results. .is is
why we need another set of instances for testing the already
optimized methods.

All methods are used to solve a series of instances from
Pisinger [8], called “hard instances,” where these are only for
testing purpose. We tested all trained methods without
modification or further optimization (except for the binary

Feature 1

Feature 2

Feature n

…

Fuzzy 
inference 

system

(rules)

Heuristic 1
Heuristic 2

…
Heuristic m-1
Heuristic m

Output

Figure 3: Fuzzy inference system used as hyperheuristic. It can have n features as inputs 2n rules and one output with m heuristics.
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GA method which for each instance needs to evolve a
population to find the solution). Table 3 presents the results
from all methods applied to the 2400 hard instances for
testing, where it shows the results on profit got, in terms of
average, standard deviation, and best and worst results from
each of the 30 different hyperheuristics of eachmodel. In this
table, we are also including the coefficient of variation as a
percentage in the standard deviation of the results, to see the
differences between the fuzzy approach and the traditional
selection hyperheuristics. We are using four types of hard
instances with 20, 50, 100, and 200 items, with 600 instances
per each set, giving 2400 hard instances for testing all
methods. Results from the hard instances illustrated in
Table 3 show the behavior of the exact methods, where the
heuristic ”Default” gets better results than “MaxP” in less
time. .e heuristic “MaxPW” is still the best heuristic. .e
Oracle hyperheuristic gets the best results. Results of Table 3
show that the proposed fuzzy hyperheuristic gets better
results on average and the lowest standard deviation values,
when compared with the three selection hyperheuristic
models. It also shows that the binary GAmethod got a better
result on average than our proposed approach in the in-
stances with 20 items and got the best results on standard
deviation in all the instances. Nevertheless, Table 3 shows
that the selection hyperheuristic with 4 rules (HH4) gets the
best individual results on the set of instances with 50, 100,

and 200 items. .e coefficient of variation also shows that
the fuzzy approach is more stable in its results because the
standard deviation is the lowest, and the results are the best
on average than the other hyperheuristics. Even though the
binary GA got the lowest values on standard deviation, its
results on average are poor, except for the results from the
instances with 20 items, where it got an excellent result on
average.

Table 4 shows the percentage of how many times the
trained hyperheuristics get better or equal results on the 600
instances per each set. From these results, we can see that the
fuzzy approach has an advantage than the traditional selection
hyperheuristics. Nevertheless, the selection hyperheuristics get
great results, but compared with the fuzzy approach, it is clear
that the inclusion of a fuzzy inference system in the inner
working of a selection hyperheuristic is beneficial and helps in
getting better quality results. All results from Table 4 are
computed using percentage � (number of instances/600∗
100%).

.e proposed fuzzy approach has the particularity
that, after being optimized, it will select mostly two of the
heuristics (MaxP and MaxPW), and depending on the
problem, it has the ability to switch between them. .is
behavior is important since selection hyperheuristics most
times select the best heuristic. Table 5 contains the per-
centage of selection of heuristics on average by each 30

Input: a set of instances
Output: a set of knapsacks, one per instance

(1) for each instance in the set do
(2) Create a new empty knapsack
(3) while knapsack not full OR there are items in the instance do
(4) Compute the features from the instance.
(5) Give the features as input to the FIS
(6) .e FIS processes the features and gives an output
(7) Use the output to select a heuristic.
(8) Apply the heuristic to select and remove an item from the instance to be packed into the knapsack
(9) end while
(10) Save the knapsack of the solved instance
(11) end for

ALGORITHM 1: Solving a set of instances.

Table 1: Results in profit from all methods in the testing set.

Methods
Metrics

Average Standard deviation Best Worst
Default 191080 0 191080 191080
MaxP 234917 0 234917 234917
MinW 282972 0 282972 282972
MaxPW 330949 0 330949 330949
Oracle 377244 0 377244 377244
HH4 337979.36 2543.48 (0.75%) 342036 331936
HH6 336062.20 3369.03 (1.00%) 342381 326238
HH8 336574.20 2918.92 (0.86%) 341739 330495
Binary GA 324800.33 930.31 (0.28%) 326982 323036
FuzzyHH 344353.66 759.35 (0.22%) 345661 342531
Results in bold are the best.
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hyperheuristics, when applied to each set of instances. We
also show the total selected heuristics by each method per
set of instances and which is the most used heuristic based
on the percentage of use. .ere are many instances of the
knapsack problem, in which the selection hyperheuristics
only select the best heuristic which is MaxPW. In fact,
results from Table 5 show that, on average, selection
hyperheuristics follow the next pattern where MaxPW is
the most selected, followed by MinW and MaxP, and the
less selected is default. Also, it does not matter if the
problem has different features, like when we change from
the set for testing to the hard instances. .e traditional
selection hyperheuristics still follow the same pattern.
From the results of the total selected heuristics, all the

selection hyperheuristics make a selection of 816000 heuristics
in the set of instances for testing. It is based on the fact that
there are a total of 816000 items in the set of instances for
testing (680 instances of 40 items each for 30 hyperheuristics).
We assume that each of the traditional selection hyper-
heuristics workwith all items before the knapsack is full, but the
fuzzy approach only selects 572522 heuristics whichmeans that
some knapsacks are full before it reaches all items in the in-
stance. All this tells us that the fuzzy approach makes better
decisions on the selected heuristics because it needs to select
less heuristics in the process of solving an instance. On the
contrary, the fuzzy approach selects Default and MinW just a
few times, and in the set for testing, MaxP is the most selected
followed by MaxPW, but in the hard instances, it changes, and

Table 3: Results from the hyperheuristics with the 2400 hard instances.

Methods Hard Pisinger instances
20 50 100 200

Default 3804271 9562959 18985439 37922860
MaxP 3724588 9269841 18382930 36723430
MinW 3867345 10055148 20287616 40898138
MaxPW 4039708 10353555 20791627 41776413
Oracle 4084003 10380851 20802281 41783753

HH4

Average 3949205.76 10048476.70 20107840.33 40333536.33
Standard deviation 99734.35 (2.52%) 380935.64 (3.79%) 874132.26 (4.34%) 1871087.96 (4.63%)

Best 4045507 10355658 20791627 41776413
Worst 3734571 9312890 18502165 36963737

HH6

Average 3950021.50 10079568.63 20193352.10 40525684.03
Standard deviation 84499.05 (2.13%) 324209.91 (3.21%) 747259.32 (3.70%) 1601814.81 (3.95%)

Best 4038167 10350020 20786768 41775010
Worst 3741617 9314130 18502041 36957315

HH8

Average 3957540.76 10089769.23 20192245.86 40509777.40
Standard deviation 92317.06 (2.33%) 333676.40 (3.30%) 777075.35 (3.84%) 1681688.34 (4.15%)

Best 4042198 10353705 20791627 41776413
Worst 3741978 9307530 18303016 36466476

Binary GA

Average 4073227.76 9755928.90 18475255.43 35069085.23
Standard deviation 3096.26 (0.07%) 7888.44 (0.08%) 17760.93 (0.09%) 41037.09 (0.11%)

Best 4078723 9767818 18503545 35167446
Worst 4067968 9738018 18433895 34989419

FuzzyHH

Average 4008457.76 10175892.16 20342907.40 40794413.63
Standard deviation 43384.17 (1.08%) 155492.79 (1.52%) 359855.26 (1.76%) 772999.81 (1.89%)

Best 4050373 10355610 20777933 41757401
Worst 3886225 9787082 19477163 39003392

Results in bold are the best.

Table 2: Percentage of times when the hyperheuristics get better or equal results than the Oracle applied to the testing set of instances.

Metrics Methods
HH4 HH6 HH8 FuzzyHH

Average Equal 41.10% 39.24% 39.26% 44.67%
Better 0.12% 0.05% 0.06% 0.20%

Standard deviation Equal 5.13% 4.41% 5.34% 1.97%
Better 0.19% 0.11% 0.13% 0.13%

Best Equal 47.94% 45.58% 47.20% 47.94%
Better 0.44% 0.44% 0.44% 0.58%

Worst Equal 28.23% 29.55% 25.88% 41.32%
Better 0 0 0 0

Percentage � (number of instances/680∗100%). Results in bold are the best.

10 Computational Intelligence and Neuroscience



MaxPW is now the most selected followed by MaxP. We
believe that this behavior is due to the way in which a fuzzy
inference system takes the features as inputs and transforms
them by means of fuzzy sets in degrees of membership, to later
unite all the firing strengths of the fuzzy rules and at the end
brings an output through the defuzzification process.

We finally present the best hyperheuristics based on the
results from the testing set of instances. .e rules are pre-
sented in the form of a matrix. .ese rules are the result of
the optimization process held by PSO. .e rules of the
hyperheuristics are presented in equation (6) for the best 4-
rule hyperheuristic, equation (7) for the best 6-rule

hyperheuristic, and equation (8) for the best 8-rule hyper-
heuristic. .e rules of the best FIS in the fuzzy approach are
presented in equation (9). .ese rules are the result of the
optimization of GA from the total of 128 rules from the
beginning. .e GA optimizes the number of rules and tries
to find the best consequent for each fuzzy rule. .e rules
from the fuzzy inference system in equation (9) were op-
timized by the GA. .ere are a total of 15 fuzzy rules using
only 5 features which are as follows: the mean, median, and
standard deviation of the weights, the median of the profits,
and the correlation between the weights and the profits from
all the remaining items in the instance:

Table 4: Percentage of times when the hyperheuristics get better or equal results than the Oracle applied to the sets of hard instances.

Metrics Set of instances
Methods

HH4 HH6 HH8 FuzzyHH

Average

Equal

20 43.67% 51.75% 56.14% 59.94%
50 41.31% 50.55% 55.10% 59.13%
100 43.01% 51.38% 55.00% 59.08%
200 38.64% 36.95% 35.26% 33.90%

Better

20 3.10% 3.30% 2.76% 7.13%
50 2.47% 2.60% 1.97% 5.18%
100 1.74% 1.69% 1.27% 3.22%
200 0.82% 0.96% 0.66% 1.73%

Standard deviation

Equal

20 12.19% 12.19% 13.12% 8.05%
50 19.67% 18.40% 20.39% 10.63%
100 25.03% 22.80% 25.76% 14.38%
200 29.45% 26.67% 30.12% 17.16%

Better

20 3.96% 3.72% 3.44% 2.76%
50 3.11% 3.05% 2.46% 2.72%
100 2.06% 1.86% 1.63% 1.86%
200 0.92% 0.87% 0.73% 1.37%

Best

Equal

20 59.83% 74.83% 83.83% 93.16%
50 59.33% 74.16% 83.16% 92.83%
100 59.66% 74.83% 83.83% 93.16%
200 55.16% 66.16% 74.33% 82.33%

Better

20 12.50% 12.16% 12.50% 13.66%
50 9.16% 9.00% 8.00% 12.00%
100 7.16% 6.16% 6.33% 6.16%
200 3.16% 2.50% 2.66% 5.16%

Worst

Equal

20 21.00% 14.16% 20.00% 28.50%
50 16.83% 12.66% 13.83% 23.50%
100 15.33% 12.16% 9.50% 17.66%
200 13.83% 11.66% 7.00% 14.33%

Better

20 0 0 0 2.00%
50 0 0 0 0.66%
100 0 0 0 0.50%
200 0 0 0 0.16%

Results in bold are the best.
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HH4Rules �

0.3050 0.8297 0.8401 0.4919 0.6046 0.6499 0.9743 3

0.8561 0.8327 0.4889 0.1796 0.6799 0.8800 0.8456 1

0.9148 0.3480 0.0682 0.5154 0.3796 0.7554 0.5197 2

0.2230 0.4073 0.1687 0.6771 0.5526 0.6501 0.2346 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

HH6Rules �

0.1445 0.5143 0.1327 0.5787 0.5424 0.5878 0.6423 4
0.1077 0.7055 0.7022 0.2693 0.1643 0.4226 0.4865 2
0.0877 0.4774 0.5443 0.1795 0.5553 0.4256 0.2052 4
0.7413 0.5267 0.3172 0.1156 0.7187 0.4712 0.8156 2
0.4322 0.1651 0.1941 0.3388 0.8479 0.8611 0.9912 3
0.4774 0.0277 0.6285 0.7475 0.0820 0.4760 0.1824 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

HH8Rules �

0.6730 0.8060 0.7614 0.4829 0.4522 0.0549 0.5093 3
0.1832 0.6296 0.4090 0.4644 0.6313 0.9099 0.4093 3
0.0482 0.5832 0.3192 0.1975 0.5213 0.1740 0.1743 3
0.3065 0.4228 0.9555 0.2742 0.3936 0.2426 0.1143 1
0.8092 0.4996 0.1078 0.6202 0.3630 0.1916 0.5458 2
0.4771 0.5313 0.5219 0.4525 0.4035 0.4390 0.3831 4
0.8770 0.7844 0.3277 0.4401 0.4666 0.6499 0.2835 4
0.3411 0.1472 0.7087 0.2996 0.7242 0.4152 0.3837 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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6. Discussion of Results and Statistical

It is hard to see results in its full potential with just a table
full of values, so in this section, we will present the results in
a graphical view to see the differences in a better way. It is
important to mention that we compute the optimal value
from all instances using dynamic programming (marked as
a dashed blue line in the figures), but because of its hu-
mongous computational time, it is not worth using it.
Figure 4 shows an improvement from a selection hyper-
heuristic (HH4, HH6, and HH8) versus a fuzzy

hyperheuristic, where all results from our fuzzy approach
are better than any results from selection hyperheuristics.
We illustrate the results with the four sets of hard instances
using all methods in Figure 5, where it is shown the per-
formance of hyperheuristics in a set of instances is very
different from those used for training and testing. Also, it
shows that our fuzzy approach gets better results when
compared with the selection hyperheuristics. From all
results in Figure 5, we observe that the heuristic MaxP
changes its performance and now is worse than the other
heuristics, while MaxPW is sometimes better than
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hyperheuristics. However, the proposed fuzzy hyper-
heuristics gets more closed results (with less standard
deviation) than the selection hyperheuristics. Figure 6 il-
lustrates how many times a method selects each heuristic
on average in all sets of instances, using the selection
hyperheuristics and the fuzzy hyperheuristics. .e results
from Figure 6 show that our proposed approach changes
the percentages of the heuristics selected. While on set of
instances for testing, it selects mostly MaxP followed by
MaxPW; now in the hard instances, it changes to select
more MaxPW followed by the MaxP. From the hard in-
stances, the difference between the Oracle and the best
heuristic is tiny, so there is no hyperheuristic that can get
better results than the best heuristic.

When analyzing the results, we found variations in the
process to train a given method, so this is the reason we
ran some statistical tests to determine if there was a better
method in terms of average and variance. No variations
were found in the results for the exact methods, the
trained hyperheuristic and the fuzzy hyperheuristic. We
have at least 30 results for each tested method and because
each of these results are an independent run with the same
parameter, we perform a statistical Z-test to know if our
proposed fuzzy hyperheuristic is better than a selection
hyperheuristic approach. .is test will address the dif-
ferent sets of instances used and the different

metaheuristics used to optimize the methods. .e pa-
rameters of the statistical Z-test are as follows: a signifi-
cance level of 5%, a critical value of 1.645, μ1 is our fuzzy
approach, μ2 is any other method, the null hypothesis (H0)
is μ1 ≤ μ2, and the alternative hypothesis (Ha) is μ1 > μ2.
Null hypothesis (H0) says that our proposed method gets
on average less or equal (worst) results than the other
method, and the alternative hypothesis (Ha) state that our
fuzzy approach gets on average greater (better) results
than the other method. We present the results of the
statistical test in Table 6, where it shows a comparison
with the fuzzy approach and all the other hyperheuristics.
.e results from Table 6 show that (9/20) results cannot
reject the null hypothesis. For the results above the critical
value of 1.645, there is enough evidence to reject the null
hypothesis. .erefore, we can say that our proposed fuzzy
hyperheuristic gets on average better results than all se-
lection hyperheuristics in the training and testing sets, but
in the sets of hard instances, it only gets on average better
results than all the selection hyperheuristics in the set with
20 items. In the comparison against the binary GA, there
is enough evidence to say that our proposed approach gets
better results in almost all sets, except for the hard in-
stances with 20 items. We need to mention that the binary
GA approach with enough generations will get better
results than our proposed approach, but it will not save
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Figure 4: Results from all methods applied to solve the set of 680 instances for testing. Boxplot of the results.

Table 5: Heuristic selection percentage per method on each set of instances.

Methods Set of instances
Heuristics

Total selected heuristic Most used heuristic
Default (%) MaxP (%) MinW (%) MaxPW (%)

HH4 Test 0.62 28.27 32.47 38.64 816000 MaxPW
Hard 3.05 25.34 14.48 57.13 360000 MaxPW

HH6 Test 2.70 23.25 36.17 37.88 816000 MaxPW
Hard 3.37 21.18 19.11 56.34 900000 MaxPW

HH8 Test 2.52 19.15 34.48 43.85 816000 MaxPW
Hard 5.26 19.44 16.63 58.67 1800000 MaxPW

FuzzyHH Test 0.12 64.71 0.02 35.15 572522 MaxP
Hard 0.05 44.31 0.42 55.22 340324 MaxPW

Results in bold indicate the highest percentage of use of each heuristic.
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Figure 5: Results from all methods using the set of hard instances for testing. Boxplot of the results with the testing set of hard instances.
(a) Hard20. (b) Hard50. (c) Hard100. (d) Hard200.
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any knowledge, and it does not need a training phase
because it always needs to evolve a population for every
instance.

7. Conclusions

Hyperheuristics get better results than the heuristics alone.
Our proposed fuzzy hyperheuristic approach helps in
getting better quality results when is included in the inner
working of a selection hyperheuristic. .e fuzzy approach
gets better results with an increase in computational time,
slower than a selection hyperheuristic with 4 rules, but at
the same level than the others with 6 or 8 rules. .e
proposed approach gets better results in a controlled en-
vironment (with the sets of instances for training and
testing), and when it is applied to different instances (the
hard instances), it helps to improve the quality of the re-
sults. But if the results from the best heuristic are closer to
the results from the Oracle, then it is a problem where no
hyperheuristic can improve the quality of the results (like
the hard instances) and even with that our proposed ap-
proach gets better quality results than the selection
hyperheuristics in the hard instances with 20 items. Sta-
tistical test shows that there is enough evidence to say that
our proposed fuzzy hyperheuristic gets better results in half
of the sets of instances than selection hyperheuristics (also
when compared with heuristics since hyperheuristics get
better results), but in the three more difficult problems, we
cannot get enough evidence because of the closeness in the
results from the best heuristic and the Oracle. Against the
binary GA method, our approach got better results in 4/5
sets of instances, even when the binary GA evolves a
population of chromosomes for each instance, while our
proposed approach only sees the instances from the

training set. Based on the results of the total selected
heuristics, we can state that our fuzzy approach made better
decisions because it used fewer heuristics than the tradi-
tional selection hyperheuristics. In fact, the fuzzy approach
uses 22% fewer heuristics than the hyperheuristic with four
rules, 46% fewer than the hyperheuristic with six rules, and
65% fewer heuristics than the hyperheuristic with eight
rules. .is means that the fuzzy approach requires fewer
operations in an instance to fulfill a knapsack and gets the
best profit from it. Future work includes the application of
our proposed approach into different problem domains to
see the performance and differences between these and the
selection hyperheuristics. Also in another direction for
future work, we can use more advanced techniques to find
better features or combine them to help the fuzzy inference
system select a heuristic.
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Table 6: Results of the statistical test.

Other methods (μ2) Set of instances FuzzyHH (μ1)

HH4

Test 12.2448
Hard20 2.9839
Hard50 1.6961
Hard100 1.3620
Hard200 1.2469

HH6

Test 12.5431
Hard20 3.3696
Hard50 1.4672
Hard100 0.9876
Hard200 0.8275

HH8

Test 13.3465
Hard20 2.7340
Hard50 1.2813
Hard100 0.9636
Hard200 0.8423

Binary GA

Test 9.1834
Hard20 −8.1564
Hard50 4.7742
Hard100 4.3923
Hard200 6.5108

Results in bold are when the test rejects the null hypothesis.
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Camacho, and M. Valenzuela-Rendón, “Generalized hyper-
heuristics for solving 2d regular and irregular packing
problems,” Annals of Operations Research, vol. 179, no. 1,
pp. 369–392, 2010.

[13] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and
C.-S. Yang, “A hyper-heuristic scheduling algorithm for
cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 2,
pp. 236–250, 2014.

[14] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Grammatical
evolution hyper-heuristic for combinatorial optimization
problems,” IEEE Transactions on Evolutionary Computation,
vol. 17, no. 6, pp. 840–861, 2013.

[15] J. C. Ortiz-Bayliss, H. Terashima-Maŕın, and S. E. Conant-
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