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An adaptive neural network (NN) backstepping control method based on command filtering is proposed for a class of fractional-
order chaotic systems (FOCSs) in this paper. In order to solve the problem of the item explosion in the classical backstepping
method, a command filter method is adopted and the error compensation mechanism is introduced to overcome the short-
comings of the dynamic surface method. Moreover, an adaptive neural network method for unknown FOCSs is proposed.
Compared with the existing control methods, the advantage of the proposed control method is that the design of the com-
pensation signals eliminates the filtering errors, which makes the control effect of the actual system improve well. Finally, two
examples are given to prove the effectiveness and potential of the proposed method.

1. Introduction

*e fractional calculus equations are increasingly used to
describe problems in optical and thermal systems, material
and mechanical systems, signal processing, system identi-
fication, control, robotics, and other applications.*e theory
of fractional calculus has also been paid more and more
attention by scholars at home and abroad, and especially, the
fractional differential equations abstracted from practical
problems have become the research focus of many math-
ematicians [1–3]. Bao and Cao [4] proved that fractional-
order differential equations can well simulate the dynamics
of various chemical materials and special materials in
practical applications. *e traditional integer-order differ-
ential equation can be regarded as a special model of
fractional-order differential equation. More information on
fractional-order differential integration can be found in
[5, 6]. In recent years, many achievements have been made
in the study of fractional-order calculus equations, which are
used to study the problems of stability analysis and control of
fractional-order strictly feedback nonlinear systems. For
example, Li et al. [7] proposed a Lyapunov direct method for
fractional-order nonlinear systems. Boroujeni and Momeni
[8] proposed a fractional-order state observer for fractional-

order nonlinear systems. Yang and Chen [9] presented a
finite-time stabilization method for fractional-order
switching systems. Adaptive control methods had been used
in the control of fractional-order nonlinear systems
[5, 6, 10]. Huang et al. [11] proposed a fuzzy feedback control
method for uncertain fractional-order chaotic systems
(FOCSs). *erefore, the research on the stability and control
of FOCSs is becoming more and more popular.

*e backstepping control was proposed for the first time
to obtain asymptotic tracking and global stability of strictly
feedback nonlinear systems [12]. *e backstepping tech-
nique has always been a powerful tool for the design of
controllers for nonlinear dynamic systems [13, 14]. How-
ever, the classical backstepping control has two obvious
disadvantages: one is the explosion of terms caused by the
repeated derivation of virtual control signals [15–17], and
the other is certain functions in the systems with uncertain
parameters must be linear [18–20]. Li et al. [20] presented a
fuzzy adaptive output feedback control method to improve
the tracking effect of the systems. In addition, Shao-Cheng
Tong et al. [21] proposed a backstepping method based on
command filters to solve the problem of item explosion
caused by repeated derivation of the virtual controller. *en,
the command filtered backstepping control was extended to
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the adaptive case in [22]. In each step of the control design,
the output of the command filter was used to approximate
the differential coefficient of the virtual control signal, which
eliminates the problem of item explosion. Note that the error
compensation mechanism was designed to eliminate errors
generated by the command filters [23]. However, the above
works considered only the cases of systems with unknown
parameters which are constant and systems without un-
known parameters. In addition, the above research results
only consider the case of integer-order systems, but the
research results of the backstepping control method based
on command filtering are relatively few for fractional-order
strict feedback systems. In this paper, a backstepping control
method based on command filtering is presented for a class
of fractional-order strictly feedback nonlinear systems.

Based on the radial-basis-function neural network
(NN), an adaptive control method based on approxi-
mation theory was proposed to deal with nonlinear sys-
tems with uncertain parameters [24–28] or NN [29–31]
approximation. *e neural network control based on the
backstepping control method of command filtering is
used to solve nonlinear problems in uncertain systems. It
can solve the nonlinear system which does not meet the
matching condition and the certain functions are non-
linear [32–35]. For a class of FOCSs, an adaptive con-
troller via the backstepping technology similar to [36, 37]
was designed in [38]. However, because it is difficult to
solve the fractional-order derivative of quadratic function,
the adaptive backstepping control technology of integer-
order nonlinear system cannot be directly applied to the
fractional nonlinear system. For FOCSs, an adaptive
backstepping control method was proposed in [39], and
the stability of the controller was analyzed by the integer-
order Lyapunov method. *erefore, for fractional-order
nonlinear systems, how to design an adaptive back-
stepping controller via Lyapunov stability theory is an
urgent problem to be solved.

According to the above discussion, an NN adaptive
backstepping control method based on command filtering is
proposed for FOCSs in this paper. *e NN is used to deal
with unknown functions in the system.*e command filters
are proposed to solve the problem of item explosion caused
by repeated derivation of virtual controllers, and compen-
sation signals are designed to eliminate the errors caused by
the command filter. Based on NN approximation theory, an
adaptive backstepping method based on command filtering
is presented. *e results show that this control method can
adjust the tracking error to the small neighborhood of origin
and ensure that all the closed-loop system signals have the
limit boundedness of half blade uniformity.

*e main advantages of this approach over current re-
sults can be summarized as follows:

(i) *e command filtered adaptive NN backstepping
control can solve two problems of classical back-
stepping of a class of fractional-order nonlinear
systems and reduce the calculation burden.

(ii) An error compensation mechanism is introduced to
overcome the shortcomings of the dynamic surface

method, and the tracking error is controlled in the
small neighborhood of zero.

*e rest of this article is organized as follows: Section 2 is
about the fuzzy logic system, fractional calculus description,
and the fractional-order nonlinear systems. In Section 3, de-
tailed controller design and stability analysis are given. In
Section 4, simulation results are given to verify the effectiveness
of the backstepping adaptive control method based on com-
mand filtering. Finally, Section 5 is the conclusion of this paper.

2. Preliminaries and Problem Description

2.1. Preliminaries of Fractional-Order Calculus. In recent
several decades, the relatively common two kinds of frac-
tional-order calculus are Riemann–Liouville (RL) fractional-
order calculus and Caputo fractional-order calculus. *e
nice property of the Caputo fractional-order differential
equation is that its integral value at zero makes sense.
*erefore, this paper will adopt the definition of Caputo
fractional-order calculus.

*e fractional-order calculus operators can be regarded
as a broader concept of integral calculus operators.

*us, the definition of the fractional-order integral can
be expressed as [1]

C
0 I

β
t x(t) �

1
Γ(β)

􏽚
t

0

x(ζ)

(t − ζ)
1− β dζ , (1)

where Γ(·) is the gamma function and Γ(s) � 􏽒
+∞
0 ts− 1e− tdt.

Consequently, the fractional-order derivative operator is
represented by [1]

C
0 D

β
t x(t) �

1
Γ(n − β)

􏽚
t

0

x
(n)

(ζ)

(t − ζ)
β+1− n

dζ. (2)

*e Laplace transform of (2) can be expressed as
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x
(k)
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where X(s) is the Laplace transform of X(t).
In the following sections, we examine only the case of

β ∈ (0, 1).

Definition 1 (see [1]). *e Mittag–Leffler function can be
expressed as

Eβ,c(z) � 􏽘
+∞

k�0

z
k

Γ(kβ + c)
, (4)

with β, c> 0, and z ∈ C. *e Laplace transform of (5) can be
described as

L t
c− 1

Eβ,c − at
β

􏼐 􏼑􏽮 􏽯 �
s
β− c

s
β

+ a
. (5)

Lemma 1 (see [1]). If there is a complex number c and two
real numbers β (0< β< 1) and ϖ, where ϖ satisfies the fol-
lowing condition:
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πβ
2
<ϖ<min π, πβ􏼈 􏼉, (6)

then, the following formula is true for all integers n≥ 1:

Eβ,c(z) � 􏽘
n

k�0

1
Γ(c − βj)z

j
+ o

1
|z|

n+1􏼠 􏼡, (7)

when |z|⟶∞ and ϖ≤ |arg(z)|≤ n.

Lemma 2 (see [1]). If β (0< β< 2) and c are two arbitrary
real numbers, and there exists a positive constant ϱ satisfying
the following condition:

vπ
2

􏼒 􏼓< ϱ ≤min π, βπ􏼈 􏼉, (8)

then the following inequality holds:

Eβ,c(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
C

1 +|z|
, (9)

where C> 0, ϱ ≤ |arg(z)|≤ π, and |z|≥ 0.

Definition 2 (see [7]). Suppose w: [0, c)⟶ I is a con-
tinuous function. If the continuous function is strictly in-
creasing and w(0) � 0, then it is said to be class K.

Lemma 3 (see [7]). If an equilibrium point of fractional-
order nonlinear system D

β
t y(t) � g(t, t(x)) is origin, which

g: I ×Ω⟶R is Lipschitz continuous. 4ere exist a
Lyapunov function V(t, y(t)) and class K functions wi(i �

1, 2, 3) to satisfy

w1(‖y(t)‖)≤V(t, y(t))≤w2(‖y(t)‖),

D
β
t V(t, y(t))≤w3(‖y(t)‖).

(10)

4en, D
β
t y(t) � g(t, t(x)) is asymptotically stable; i.e.,

limt⟶∞y(t) � 0.

Lemma 4 (see [2]). Assume that y(t) ∈ C1([t0,∞],Rn),
then

1
2
D

β
t y

T
(t)y(t)􏼐 􏼑≤y

T
(t)D

β
t y(t), (∀t ∈ I). (11)

2.2. Preliminaries of Radial-Basis-Function NN. Let h(χ(t))

be a continuous unknown nonlinear function defined over a
compact setΩ. *en, there exists a radial-basis-function NN
to appropriate the unknown nonlinear function h(χ(t)) as
follows:

􏽢h(χ(t)) � θTψ(χ(t)), (12)

where 􏽢h: Rn⟶R (n ∈ N) is a continuous mapping,
χ(t) � [χ1(t), χ2(t), . . . , χn(t)]T is the NN input vector, t≥ 0,
χi(t) ∈ C1[I,Ω] (i � 1, 2, . . . , n), θ � [θ1, θ2, . . . , θN]T ∈
RN (N> 1) is the weight vector, ψ(χ(t)) � [ψ1
(χ(t)),ψ2(χ(t)), . . . ,ψN(χ(t))]T ∈RN is a regressor, andN

is the number of NN nodes. *e regression variable ψı(χ(t))

selected in this paper is the Gaussian radial-basis-function

ψı(χ(t)) � exp
− x − δi

����
����
2

2ι2i
⎛⎝ ⎞⎠, (13)

where ı � 1, 2, . . . ,N, δı � [δ1ı, δ2ı, . . . , δnı]
T ∈ Rn, δJı�

(J � 1, 2, . . . , n) represent the centers of the Gaussian
function, and ιı ∈ R+ represent the widths of the Gaussian
function.

*erefore, according to the above notation, the optimal
estimate of h(χ(t)) can be expressed as

h(χ(t)) � θ∗Tψ(χ(t)) + ϵ(χ(t)), (14)

in which ϵ(χ(t)) � [ϵ1(χ1(t)), ϵ2(χ2(t)), . . . , ϵN(χN(t))]

and θ∗ is the optimal constant weight vector and satisfies the
following condition:

θ∗(t) � argmin
θ

[supχ(t)|h(χ(t)) − 􏽢h(χ(t))|]. (15)

Let
􏽥θ � θ − θ∗, (16)

in which 􏽥θ is the parameter estimation error. According to
the properties of the radial-basis-function NN, it is as-
sumed that the optimal approximation error remains
bounded. For any ϵ, there exists a sufficient number of NN
nodes such that

ϵı χı(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϵı, (17)

where ϵı is a known positive constant and ı � 1, 2, . . . ,N.
*en, one can obtain

􏽢hı χı(t), θı( 􏼁 − hı χı(t)( 􏼁

� 􏽢hı χı(t), θı( 􏼁 − 􏽢hı χı(t), θ∗ı( 􏼁 + 􏽢hı χı(t), θ∗ı( 􏼁 − hı χı(t)( 􏼁

� θT
ı ψı χı(t)( 􏼁 − θ∗T

ı ψı χı(t)( 􏼁 + ϵı χı(t)( 􏼁

� 􏽥θ
T

ı ψı χı(t)( 􏼁 + ϵı χı(t)( 􏼁,

(18)

in which ı � 1, 2, . . . ,N.

2.3. FOCSs. Consider the following FOCSs:

D
β
t x1(t) � x2(t) + f1 x1( 􏼁,

D
β
t xi(t) � xi+1(t) + fi xi( 􏼁,

D
β
t xn(t) � fn(x(t)) + d(t) + u(t),

y(t) � x1(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

where β(0< β< 1) is the system commensurate order, x(t) �

[1(t), x2(t), . . . , xn(t)]T ∈Rn is the state vector of the
system, x(t) � [x1(t), x2(t), . . . , xi(t)]T ∈Ri, fi(xi) ∈R
(i � 1, 2, . . . , n) are unknown smooth nonlinear functions,
d(t) ∈R is an unknown external disturbance, and u(t) ∈R
and y(t) ∈R are control input and control output of the
fractional-order strictly feedback nonlinear systems.
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Assumption 1. For the FOCSs, if d(t) is bounded and un-
known, then there exists an unknown constant d (d> 0) such
that |d(t)|≤d for all t≥ 0.

3. Adaptive NN Backstepping Control Design

Let

s1(t) � x1(t) − xd, (20)

si(t) � xi(t) − xi,c, (21)

in which xd is a known reference signal and xi,c

(i � 2, 3, . . . , n) are the command filters.
*e command filtering mechanism is defined as follows:

D
β
t xi+1,c(t) � − κi xi+1,c(t) − αi(t)􏼐 􏼑, (22)

where κi is a positive constant and αi(t) and xi+1,c(t)

(i � 1, 2, . . . , n − 1) are the input signal and the output signal
in the command filtering mechanism, respectively.

It is worth noting that command filtering produces
errors that add to the burden of getting better tracking
results. To solve this problem, an error compensation

mechanism is presented to overcome the errors (xi+1,c − αi)

generated during the filtering process.
*en, the error compensation mechanism is defined as

D
β
t λ1(t) � − k11λ1(t) + λ2 + x2,c − α1,

D
β
t λi(t) � − k1iλi(t) − λi− 1 + λi+1 + xi+1,c − αi,

D
β
t λn(t) � − k1nλn(t) − λn− 1,

(23)

where k1i > 0 are design parameters and λi

(i � 1, 2, . . . , n − 1) are the error compensating signals.
*e compensated tracking error signals ei(t) are

designed as

ei(t) � si(t) − λi(t), (24)

in which i � 1, 2, . . . , n.
Our goal is to design the control input u of the nonlinear

systems such that the control output y(t) of the system to
track xd and the compensated tracking error of the non-
linear systems e1(t) eventually converge to a sufficiently
small region of origin.

*en, the virtual control functions αi (i � 1, 2, . . . , n) are
constructed as

α1 � − θT
1ψ1 x1(t)( 􏼁 − k11s1(t) − k21sign e1(t)( 􏼁 + D

β
t xd(t), (25)

α2 � − θT
2ψ2 x2(t)( 􏼁 − k12s2(t) − k22sign e2(t)( 􏼁 − s1(t) + D

β
t x2,c(t), (26)

αi � − θT
i ψi xi(t)( 􏼁 − k1isi(t) − k2isign ei(t)( 􏼁 − si− 1(t) + D

β
t xi,c(t), (27)

where k2i > ϵi (i � 1, 2, . . . , n − 1) are design parameters and
ϵi will be determined later.

*e controller u(t) is designed as follows:

u(t) � − θT
nψn xn(t)( 􏼁 − k1nsn(t) − sn− 1(t) − k2n +

􏽢
d(t)􏼒 􏼓sign en(t)( 􏼁 + D

β
t xn,c(t), (28)

in which 􏽢
d(t) is the estimation of d, k2n > ϵn is a design

parameter, and ϵn will be determined later.
*en, the backstepping control algorithms of the frac-

tional-order nonlinear system are shown as follows.

Step 1. Consider the first Lyapunov function v1(x) as
follows:

v1(t) �
1
2

e
2
1(t). (29)
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According to Lemma 4, differentiating v1(x) can gain

D
β
t v1(t)≤ e1(t)D

β
t e1(t)

� e1(t) D
β
t x1(t) − D

β
t xd(t) − D

β
t λ1(t)􏼐 􏼑

� e1(t) x2(t) + f1 x1(t)( 􏼁 − D
β
t xd(t) − D

β
t λ1(t)􏽨 􏽩

� e1(t) s2(t) + x2,c(t) + f1 x1(t)( 􏼁 − 􏽢f1 x1 t, θ∗1( 􏼁( 􏼁 + 􏽢f1 x1 t, θ∗1( 􏼁( 􏼁􏽨

− D
β
t xd(t) + k11λ1(t) − λ2(t) − x2,c(t) + β1(t)

� e1(t) e2(t) − 􏽥θ
T

1ψ1 x1(t)( 􏼁 − ϵ1 x1(t)( 􏼁 + θT
1ψ1 x1(t)( 􏼁 − D

β
t xd(t) + k11λ1(t) + α1(t),􏼔

(30)

in which ϵ1(x1(t)) � 􏽢f1(x1(t, θ∗)) − f1(x1(t)) and 􏽥θ1 �

θ1 − θ∗1 .
Substituting (25) into (30), we can obtain

D
β
t v1(t)≤ e1(t) e2(t) − k11e1(t) − 􏽥θ

T

1ψ1 x1(t)( 􏼁 − ϵ1 x1(t)( 􏼁 − k21sign e1(t)( 􏼁􏼔 􏼕

≤ e1(t)e2(t) − k11e
2
1(t) − e1(t)􏽥θ

T

1ψ1 x1(t)( 􏼁 + ϵ1 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − k21 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ e1(t)e2(t) − k11e
2
1(t) − e1(t)􏽥θ

T

1ψ1 x1(t)( 􏼁,

(31)

where k11 > 0 and k21 > ϵ1 are design parameters.
Choose the Lyapunov function V1(x) as follows:

V1(t) � v1(t) +
1
2ρ1

􏽥θ
T

1 (t)􏽥θ1(t). (32)

*e design of adaptive law is as follows:

D
β
t θ1 � ρ1e1(t)ψ1 x1(t)( 􏼁 − c1θ1, (33)

where ρ1 and c1 are positive design parameters.
Because θ∗1 is a constant, then we have

D
β
t
􏽥θ1 � D

β
t θ1. (34)

*en, according to Lemma 4, we can have

D
β
t V1(t)≤Dβ

t v1(t) +
1
ρ1

􏽥θ
T

1D
β
t
􏽥θ1. (35)

Substituting formulas (31) and (33) into the above in-
equality, the following can be obtained:

D
β
t V1(t)≤ − k11e

2
1(t) + e1(t)e2(t) −

1
ρ1

􏽥θ
T

1 θ1

≤ − k11e
2
1(t) + e1(t)e2(t) −

1
ρ1

􏽥θ
T

1
􏽥θ1 −

1
ρ1

􏽥θ
T

1 θ
∗
1 .

(36)

According to Young’s inequality, then we can obtain

−
1
ρ1

􏽥θ
T

1 θ
∗
1 ≤

1
2ρ1

θ ∗T
1 θ∗1 +

1
2ρ1

􏽥θ
T

1
􏽥θ1. (37)

According to formulas (36) and (37), it can be obtained

D
β
t V1(t)≤ − k11e

2
1(t) + e1(t)e2(t) −

1
2ρ1

􏽥θ
T

1
􏽥θ1 +

1
2ρ1

θ∗T
1 θ∗1

≤ − k1V1(t) + e1(t)e2(t) + Θ1,
(38)

in which k1 � min 2k11, c1􏼈 􏼉 and Θ1 � (c1/2ρ1)θ
∗T
1 θ∗1 are

two positive constants.

Step 2. Consider the second Lyapunov function v2(x) as
follows:

v2(t) �
1
2

e
2
2(t). (39)

According to Lemma 4, differentiating v2(x) can gain
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D
β
t v2(t)≤ e2(t)D

β
t e2(t)

� e2(t) D
β
t x2(t) − D

β
t x2,c(t) − D

β
t λ2(t)􏼐 􏼑

� e2(t) x3(t) + f2x2(t) − D
β
t x2,c(t) − D

β
t λ2(t)􏽨 􏽩

� e2(t)s3(t) + x3,c(t) + f2 x2(t)( 􏼁 − 􏽢f2 x2 t, θ∗2( 􏼁( 􏼁 + 􏽢f2 x2 t, θ∗2( 􏼁( 􏼁

− D
β
t x2,c(t) + k12λ2 + λ1(t) − λ3(t) − x3,c(t) + α2(t)

� e2(t)e3(t) − 􏽥θ
T

2ψ2 x2(t)( 􏼁 − ϵ2 x2(t)( 􏼁 + θT
2ψ2 x2(t)( 􏼁 − D

β
t x2,c(t)

+ k12λ2 + λ1(t) + α2(t),

(40)

in which ϵ2(x2(t)) � 􏽢f2(x2(t, θ∗)) − f2(x2(t)) and􏽥θ2 �

θ2 − θ∗2 .
Substituting (27) into (41), we can obtain

D
β
t v2(t)≤ e2(t) e3(t) − k12e2(t) − 􏽥θ

T

2ψ2 x2(t)( 􏼁 − ϵ2 x2(t)( 􏼁 − k22sign e2(t)( 􏼁 − e(t)􏼔 􏼕

≤ e2(t)e3(t) − k12e
2
2(t) − e2(t)􏽥θ

T

2ψ2 x2(t)( 􏼁 + ϵ2 e2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

− k22 e2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − e1(t)e2(t)

≤ − k12e
2
2 + e2(t)e3(t) − e2(t)􏽥θ

T

2ψ2 x2(t)( 􏼁 − e1(t)e2(t),

(41)

where k12 > 0 and k22 > ε2 are design parameters.
Choose the Lyapunov function V2(x) as follows:

V2(t) � V1(t) + v2(t) +
1
2ρ2

􏽥θ
T

2 (t)􏽥θ2(t). (42)

*e design of adaptive law is as follows:

D
β
t θ2 � ρ2e2(t)ψ2 x2(t)( 􏼁 − c2θ2, (43)

where ρ2 and c2 are positive design parameters.
Because θ∗2 is a constant, then we have

D
β
t
􏽥θ2 � D

β
t θ2. (44)

*en, according to Lemma 4 and formulas (42) and (44),
we can have

D
β
t V2(t)≤ − kV1(t) + e1(t)e2(t) +Θ1 + D

β
t v2(t) +

1
ρ2

􏽥θ
T

2D
β
t
􏽥θ2. (45)

According to formulas (45) and (46), the above equation
can be reduced to

D
β
t V2(t)≤ − k1V1(t) + Θ1 − k12e

2
2(t) + e2(t)e3(t) −

1
2ρ2

􏽥θ
T

2
􏽥θ2 +

1
2ρ2

θ∗T
2 θ∗2

≤ − k2V2(t) + e2(t)e3(t) +Θ2,

(46)

in which k2 � min k1, 2k12, c2􏼈 􏼉 and Θ2 � Θ1 + (c2/
2ρ2)θ

∗T
2 θ∗2 are two positive constants.

Step 3. i (i � 3, 4, . . . , n − 1).
Consider the ith Lyapunov function vi(x) as follows:
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vi(t) �
1
2
e
2
i (t). (47) According to Lemma 4, differentiating vi(x) can gain

D
β
t vi(t)≤ ei(t)D

β
t ei(t)

� ei(t) D
β
t xi(t) − D

β
t xi,c(t) − D

β
t λi(t)􏼐 􏼑

� ei(t) xi+1(t) + fi xi(t)( 􏼁 − D
β
t xi,c(t) − D

β
t λi(t)􏽨 􏽩

� ei(t)si+1(t) + xi+1,c(t) + fi xi(t)( 􏼁 − 􏽢fi xi t, θ∗i( 􏼁( 􏼁 + 􏽢fi xi t, θ∗i( 􏼁( 􏼁

− D
β
t xi,c(t) + k1iλi + λi− 1(t) − λi+1(t) − xi+1,c(t) + αi(t)

� ei(t)ei+1(t) − 􏽥θ
T

i ψi xi(t)( 􏼁 − ϵi xi(t)( 􏼁 + θT
i ψi xi(t)( 􏼁

− D
β
t xi,c(t) + k1iλi + λi− 1(t) + αi(t),

(48)

in which ϵi(xi(t)) � 􏽢fi(xi(t, θ∗)) − fi(xi(t)) and
􏽥θi � θi − θ∗i .

Substituting (27) into (49), we can obtain

D
β
t vi(t)≤ ei(t) ei+1(t) − k1iei(t) − 􏽥θ

T

i ψi xi(t)( 􏼁 − ϵi xi(t)( 􏼁 − k2isign ei(t)( 􏼁 − ei− 1(t)􏼔 􏼕

≤ ei(t)ei+1(t) − k1ie
2
i (t) − ei(t)􏽥θ

T

i ψi xi(t)( 􏼁 + ϵi ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − k2i ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ei− 1(t)ei(t)

≤ ei(t)ei+1(t) − k1ie
2
i − ei(t)􏽥θ

T

i ψi xi(t)( 􏼁 − ei− 1(t)ei(t),

(49)

where k1i > 0 and k2i > ϵi are design parameters.
Choose the Lyapunov function Vi(x) as follows:

Vi(t) � Vi− 1(t) + vi(t) +
1
2ρi

􏽥θ
T

i (t)􏽥θi(t). (50)

*e design of adaptive law is as follows:

D
β
t θi � ρiei(t)ψi xi(t)( 􏼁 − ciθi, (51)

where ρi and ci are positive design parameters.
Because θ∗i is a constant, then we have

D
β
t
􏽥θi � D

β
t θi. (52)

*en, according to Lemma 4, we can have

D
β
t Vi(t)≤ − ki− 1Vi− 1(t) + ei− 1(t)ei(t) +Θi− 1 + D

β
t vi(t) +

1
ρi

􏽥θ
T

i D
β
t
􏽥θi. (53)

From formulas (50), (52), and (54), we have

D
β
t Vi(t)≤ − ki− 1Vi− 1(t) + Θi− 1 + ei(t)ei+1(t) − k1ie

2
i −

1
ρi

􏽥θ
T

i θi

≤ − ki− 1Vi− 1(t) + Θi− 1 − k1ie
2
i (t) + ei(t)ei+1(t) −

1
ρi

􏽥θ
T

i
􏽥θi −

1
ρi

􏽥θ
T

i θ
∗
i .

(54)

According to Young’s inequality, then we can obtain
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−
1
ρi

􏽥θ
T

i θ
∗
i ≤

1
2ρi

θ ∗T
i θ∗i +

1
2ρi

􏽥θ
T

i
􏽥θi. (55)

Substitute the above formula into (55), the following can
be obtained

D
β
t Vi(t)≤ − ki− 1Vi− 1(t) + Θi− 1 − k1ie

2
i (t) + ei(t)ei+1(t) −

1
2ρi

􏽥θ
T

i
􏽥θi +

1
2ρi

θ ∗T
i θ∗i

≤ − kiVi(t) + ei+1(t)ei(t) +Θi,

(56)

in which ki � min ki− 1, 2k1i, ci􏼈 􏼉 and Θi � Θi− 1 + (ci/2ρi)

θ∗T
i θ∗i are two positive constants.

Step 4. n.
Consider the nth Lyapunov function vn(x) as follows:

vn(t) �
1
2

e
2
n(t). (57)

According to Lemma 4, differentiating vn(x) can gain

D
β
t vn(t)≤ en(t)D

β
t en(t)

� en(t) D
β
t xn(t) − D

β
t xn,c(t) − D

β
t λn(t)􏼐 􏼑

� en(t) fn xn(t)( 􏼁 + d(t) + u(t) − D
β
t xn,c(t) − D

β
t λn(t)􏽨 􏽩

� en(t)fn xn(t)( 􏼁 − 􏽢fn xn t, θ∗n( 􏼁( 􏼁 + 􏽢fn xn t, θ∗n( 􏼁( 􏼁

+ d(t) + u(t) − D
β
t xn,c(t) + k1nλn + λn− 1

� en(t) − 􏽥θ
T

nψn xn(t)( 􏼁 − ϵn xn(t)( 􏼁 + θT
nψn xn(t)( 􏼁

+ d(t) + u(t) − D
β
t xn,c(t) + k1nλn + λn− 1,

(58)

in which ϵn(xn(t)) � 􏽢fn(xn(t, θ∗)) − fn(xn(t)) and
􏽥θn � θn − θ∗n .

Substituting (28) into (59), one obtains

D
β
t vn(t)≤ en(t) − k1nen(t) − 􏽥θ

T

nψn xn(t)( 􏼁 − ϵn xn(t)( 􏼁 − k2n +
􏽢
d(t)􏼒 􏼓sign en(t)( 􏼁 − en− 1(t) + d(t)􏼔 􏼕

≤ − k1ne
2
n(t) − en(t)􏽥θ

T

nψn xn(t)( 􏼁 + ϵn en(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

− k2n +
􏽢
d(t)􏼒 􏼓 en(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − en− 1(t)en(t) + d en(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ − k1ne
2
n − en(t)􏽥θ

T

nψn xn(t)( 􏼁 − en− 1(t)en(t) −
􏽥
d(t) en(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(59)

where k1n > 0 and k2n > ϵn are design parameters and 􏽥
d(t) �

􏽢
d(t) − d is the estimation error.

Choose the Lyapunov function Vn(x) as follows:

Vn(t) � Vn− 1(t) + vn(t) +
1
2ρn

􏽥θ
T

n (t)􏽥θn(t) +
1
2ξ1

􏽥
d
2
(t).

(60)

*e design of adaptive law is as follows:

D
β
t θn � ρnen(t)ψn xn(t)( 􏼁 − cnθn, (61)

D
β
t
􏽢
d(t) � ξ1 en

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ξ2

􏽢
d(t), (62)

where ρn, cn, ξ1, and ξ2 are positive design parameters.
Because θ∗n is a constant, then we have

D
β
t
􏽥θn � D

β
t θn. (63)

*en, according to Lemma 4, we can have
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D
β
t Vn(t)≤ − kn− 1Vn− 1(t) + en− 1(t)en(t) + Θn− 1 + D

β
t vn(t)

+
1
ρn

􏽥θ
T

nD
β
t
􏽥θn +

1
ξ1

􏽥
d(t)D

β
t
􏽥
d(t).

(64)

From formulas (60) and (65), we have

D
β
t Vn(t)≤ − kn− 1Vn− 1(t) + Θn− 1 − k1ne

2
n − en(t)􏽥θ

T

nψn xn(t)( 􏼁

−
􏽥
d(t) en(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
ρn

􏽥θ
T

nD
β
t
􏽥θn +

1
ξ1

􏽥
d(t)D

β
t
􏽥
d(t).

(65)

By substituting (62) and (63) into the above inequality, it
can be obtained

D
β
t Vn(t)≤ − kn− 1Vn− 1(t) + Θn− 1 − k1ne

2
n −

cn

ρn

􏽥θ
T

n θn −
ξ2
ξ1

􏽥
d(t)

􏽢
d(t)

≤ − kn− 1Vn− 1(t) + Θn− 1 − k1ne
2
n −

cn

ρn

􏽥θ
T

n
􏽥θn −

cn

ρn

􏽥θ
T

n θ
∗
n

−
ξ2
ξ1

􏽥
d
2
(t) −

ξ2
ξ1

􏽥
d(t)d.

(66)

According to Young’s inequality, we can obtain

−
1
ρi

􏽥θ
T

n θ
∗
n ≤

1
2ρn

θ∗T
n θ∗n +

1
2ρn

􏽥θ
T

n
􏽥θn, (67)

−
ξ2
ξ1

􏽥
d(t)d(t)≤

ξ2
2ξ1

􏽥
d
2
(t) +

ξ2
2ξ1

d
2
. (68)

Substitute the above formulas into (67), one obtains

D
β
t Vi(t)≤ − kn− 1Vn− 1(t) +Θn− 1 − k1ne

2
n −

cn

2ρn

􏽥θ
T

n
􏽥θn +

cn

2ρn

θ∗T
n θ∗n

−
ξ2
2ξ1

􏽥
d
2
(t) +

ξ2
2ξ1

d
2 ≤ − knVn(t) + Θn,

(69)

in which kn � min kn− 1, 2k1n, cn, ξ2􏼈 􏼉 and Θn � Θn− 1 + (cn/
2ρn)θ ∗T

n θ∗n + (ξ2/2ξ1)d
2 are two positive constants.

*e stability analysis of fractional-order nonlinear sys-
tems is shown below:

Theorem 1. Consider system (20) under Assumption 1. 4e
control input is constructed as (29) with (26)–(28), and the
adaptation laws are designed as (34), (44), (52), (62), and
(63); then, there exist appropriate design parameters, such

that the tracking error e1(t) tends to an arbitrarily small
region of the origin.

Proof. According to (70), there exists a function q(t)≥ 0
such that the following equation holds on:

D
β
t Vi(t) + q(t) � − knVn(t) +Θn. (70)

*e Laplace transform of equation (71) is applied to
obtain
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Vn(s) �
s
β− 1

s
β

+ kn

Vn(0) +
Θn

s s
β

+ kn􏼐 􏼑
−

Q(s)

s
β

+ kn

�
s
β− 1

s
β

+ kn

Vn(0) +
s
β− (1+β)Θn

sβ + kn

−
Q(s)

s
β

+ kn

,

(71)

in which Vn(s) and Q(s) are Laplace transforms of Vn(t)

and q(t), respectively, and Vn(0)is the initial condition.
According to (6) and (71), it can be represented as

Vn(t) � Vn(0)Eβ,1 − knt
β

􏼐 􏼑 + Θnt
β
Eβ,1+β − knt

β
􏼐 􏼑 − q(t)∗ t

− 1
Eβ,0 − knt

β
􏼐 􏼑, (72)

where ∗ is the convolution operator. If sine q(t) and
t− 1Eβ,0(− kntβ) are both nonnegative functions, then
q(t)∗ t− 1Eβ,0(− kntβ)≥ 0 can be obtained. Hence, the fol-
lowing inequality holds on:

Vn(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Vn(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Eβ,1 − knt
β

􏼐 􏼑 + Θnt
β
Eβ,1+β − knt

β
􏼐 􏼑. (73)

Because arg(− kntβ) � − π, | − kntβ|≥ 0, for all t≥ 0 and
β ∈ (0, 2) and according to Lemma 2, then there exists a
positive constant A such that

Eβ,1 − knt
β

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
A

1 + knt
β. (74)

According to (75), one can obtain

lim
t⟶∞

Vn(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Eβ,1 − knt
β

􏼐 􏼑 � 0. (75)

Consequently, for every η> 0, there exists a constant
tr > 0, such that t> tr holds on, then one can obtain

Vn(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Eβ,1 − knt
β

􏼐 􏼑<
η
3
. (76)

In addition, according to Lemma 1, one can obtain

Eβ,β+1 − knt
β

􏼐 􏼑 �
1
Γ(1)knt

β + o
1

− knt
β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+1

⎛⎜⎜⎝ ⎞⎟⎟⎠, (77)

in which the integer n is chosen as 1. According to (78), for
every η> 0, there exists a constant tb > 0, such that t> tb

holds on, one obtains

Θnt
η
Eη,η+1 − knt

η
( 􏼁≤

Θn

kn

+
η
3
. (78)

*en, we can select appropriate design parameters such
that (Θn/n)≤ (η/3). *erefore, from (74), (77), and (79), the
following inequality can be obtained:

Vn(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< η. (79)

According to (80) and the definition of Vn(t), all signals
in the closed-loop system are bounded and the tracking error
e1(t) tends to an arbitrary small region of the origin, i.e., for
all t>max tr, tb􏼈 􏼉, such that (1/2)e21(t)≤ η. □

4. Simulation Results

In this section, two examples will be given to demonstrate
the effectiveness of the adaptive neural network back-
stepping control based on the command filtering.

Example 1. *e fractional-order Duffing’s Oscillator chaos
system is as follows:

D
β
t x1(t) � x2(t),

D
β
t x2(t) � x1(t) − x

3
1(t) − 0.5x2(t) + 1.3 cos t + d(t) + u(t),

⎧⎨

⎩ (80)

in which f1(x1(t)) � 0 and f2(x1(t), x2(t)) � x1
(t) − x3

1(t) − 0.5x2(t) + 1.3 cos t are unknown functions.
Let the fractional-order β � 0.95 and the initial conditions
x1 � 0.21 andx2 � 0.13. In addition, it can be seen from
Figures 1 and 2 that the nonlinear system is unstable when
both the controller u(t) and the disturbance signal d(t) of
the system are zero.

*e known smooth reference signal xd(t) and the un-
known external disturbance signal d(t) are chosen as sin(t)

and sin(t) + cos(t), respectively. *e parameters to be
designed are selected as follows: k11 � k12 � 1, k21 � k22 � 1,
ρ1 � ρ2 � 5, c1 � c2 � 0.5, ξ1 � ξ2 � 1, and κ1 � 50. In the

process of designing the controller, sign(·) is used to rep-
resent arctan(10) to avoid the chattering phenomenon.

Next, let us design the radial-basis-functions. According
to the property of the radial-basis-function NN, the input
variable is x1(t) in the first radial-basis-function and six
Gaussian functions evenly distributed within the interval
[− 5, 5] are designed. *e second radial-basis-function uses
x1(t) and x2(t) as input variables. Same as the first radial-
basis-function, each input variable corresponds to six
Gaussian functions evenly distributed on [− 5, 5]. *e initial
conditions are presented to be θ1(0) � [1, 1, 1, 1, 1, 1]T ∈R6

and θ2(0) � [1, 1, . . . , 1]T ∈R36.
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Figure 1: *e uncontrolled fractional-order Duffing’s oscillator
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Figure 6: *e control input of system (81).
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When the above initial conditions are met, the simu-
lation of the nonlinear system (81) is shown in Figures 3–7.

As can be seen from Figures 3 and 4, the state variables
x1(t) and x2(t) of the system are tracked by signals xd(t)

and x2c(t) and the tracking effect is relatively well. As shown
in Figure 5, the tracking error e1(t) rapidly converges to a
relatively small neighborhood of the origin. From Figure 6,
the control input is large at first, then decreases rapidly, and
when the system reaches stability, it is controlled in a rel-
atively small neighborhood. As shown in Figure 7, the
adaptive laws of the system are bounded and converge
rapidly to the neighborhood of the origin. Consequently, the
effectiveness of the adaptive neural network backstepping
control method based on command filtering for a class of
classical fractional-order nonlinear strictly feedback systems.

Example 2. *e fractional-order Arneodo’s chaos system is
as follows:

D
β
t x1(t) � x2(t),

D
β
t x2(t) � x3(t),

D
β
t x2(t) � 5.5x1(t) − 3.5x2(t) − 0.8x3(t) + x

3
1(t) + d(t) + u(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(81)

where β � 0.97, x1(0) � − 0.2, x2(0) � 0.5, andx3(0) � 0.2.
If the input and disturbance of the system satisfy u(t) � 0
and d(t) � 0, the state variables of the system are shown in
Figures 8 and 9.

*e known smooth reference signal xd(t) and the un-
known external disturbance signal d(t) are sin(t) and
2 sin(t)cos(t), respectively. *e parameters to be designed
are selected as follows:k11 � 40, k12 � 25, k13 � 30,
k21 � k22 � k23 � 15, ρ1 � ρ2 � ρ2 � 15, c1 � c2 � c3 � 0.5,
ξ1 � ξ2 � 1, κ1 � 1, and κ2 � 20.

In Example 2, there are three radial-basis-function
neural networks. In the first radial-basis-function NN, the
input variable is x1(t) and four Gaussian functions evenly
distributed within the interval [− 3, 3] are designed. *e
second radial-basis-function uses x1(t) and x2(t) as input

variables. Same as the first radial-basis-function, each input
variable corresponds to four Gaussian functions evenly
distributed on [− 3, 3]. *e third radial-basis-function uses
x1(t), x2(t), and x3(t) as input variables. Same as the before
radial-basis-functions, four Gaussian functions in every

|| θ1 ||2

|| θ2 ||2
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Figure 7: *e adaptive laws of system (81).
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Figure 10: *e trace of x1 and xd of system (81).
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input variable are evenly distributed on [− 3, 3]. *e initial
conditions are presented to be θ1(0) � [1, 1, 1, 1]T ∈R4,
θ2(0) � [1, 1, . . . , 1]T ∈R16, and θ3(0) � [1, 1, . . . , 1]T

∈R64. When the above initial conditions are met, the
simulation of the nonlinear system (81) is shown in
Figures 10–15.

*e simulation results of Example 2 are shown above,
which is similar to the result analysis of Example 1, and the
final results are the same as that of Example 1.

5. Conclusion

In this paper, an adaptive neural network backstepping
control method based on command filtering is proposed for
a class of fractional-order strictly feedback nonlinear sys-
tems. *e command filtering technology is used to deal with
the explosive of terms in the traditional backstepping
technology, and the error compensation mechanism is in-
troduced to overcome the shortcomings of the dynamic
surface method. *e simulation results of the fractional-
order nonlinear strictly feedback system show the effec-
tiveness of the proposed method. *e future research will be
adaptive neural network control of fractional-order non-
linear strictly feedback system with disturbance observer
based on command filtering.
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Figure 11: *e trace of x2 and x2c of system (81).
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Figure 12: *e trace of x3 and x3c of system (81).
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Figure 13: *e tracking error of the output y(t) of system (81).
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Figure 14: *e control input of system (81).
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