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Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, and, at present, once it has been diagnosed, there is no
effective curative treatment. Accurate and early diagnosis of Alzheimer’s disease is crucial for improving the condition of patients
since effective preventive measures can be taken in advance to delay the onset time of the disease. 18F-Fluorodeoxyglucose positron
emission tomography (18F-FDG PET : PET) is an effective biomarker of the symptom of AD and has been used as medical imaging
data for diagnosing AD. Mild cognitive impairment (MCI) is regarded as an early symptom of AD, and it has been shown that
MCI also has a certain biomedical correlation with PET. In this paper, we explore how to use 3D PET images to realize the effective
recognition of MCI and thus achieve the early prediction of AD.(is problem is then taken as the classification of three categories
of PET images, including MCI, AD, and NC (normal controls). In order to get better classification performance, a novel network
model is proposed in the paper based on 3D convolution neural networks (CNN) and support vector machines (SVM) by utilizing
both the excellent abilities of CNN in feature extraction and SVM in classification. In order to make full use of the optimal
property of SVM in solving binary classification problems, the three-category classification problem is divided into three binary
classifications, and each binary classification is being realized with a CNN+SVM network. (en, the outputs of the three
CNN+SVM networks are fused into a final three-category classification result. An end-to-end learning algorithm is developed to
train the CNN+SVM networks, and a decision fusion algorithm is exploited to realize the fusion of the outputs of three
CNN+SVM networks. Experimental results obtained in the work with comparative analyses confirm the effectiveness of the
proposed method.

1. Introduction

Alzheimer’s disease (AD), as a chronic neurodegenera-
tive disease characterized by irreversible loss of neurons
and genetically complex disorder, is often found in the
elderly people [1]. Unfortunately, there is no effective
curative treatment to reverse AD at present due to the
irreversible brain atrophy. (us, the early diagnosis of
AD and its prodromal stage, i.e., mild cognitive im-
pairment (MCI), is vital for patient care and slowing
down progressive deterioration [2]. However, patients
with MCI only have subtle typical changes, so the ac-
curate diagnosis of MCI is still a difficult problem in early
AD diagnosis.

Since the metabolic rate and structure of the brain
change accordingly with the progression of AD, the positron
emission tomography (PET) is usually utilized to quantify
the changes and further applied for computer-aided diag-
nosis (CAD) of AD [3–5]. In computer-aided AD diagnosis,
various pattern recognition-based methods have been
employed to predict AD andMCI, and these methods can be
roughly divided into two steps, feature extraction and
classification. (e feature extraction step is to extract dis-
criminative features from the PET images, and the classi-
fication step is to get prediction results according to the
extracted features. Gray et al. [6] used two support vector
machine (SVM) classifiers to identify NC vs. MCI and NC
vs. AD, in which the SVMs are trained with the features of
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mean signal intensity in the region of native MRI-space of
each subject. Garali et al. [7] proposed a novel brain region
validity ranking method to separate AD from healthy
controls, where SVM and random forest are employed for
classification with the features obtained from selected 21
regions. Silveira and Marques [8] developed a boosting
classification method that mixed a group of simple classifiers
to perform feature selection and segmentation. Cabral and
Silveira [9] used different ensemble classifiers based on SVM
and random forest to extract diverse features on different
sets of brain voxels for classification. Lu et al. [10] extracted
three groups of spatial features from PET images and
proposed a semisupervised classification method based on
random manifold learning with affinity regularization for
AD detection.

In recent years, deep learning technology has made great
strides on compute vision tasks, e.g. segmentation, classification,
and detection. Different from the conventional methods
mentioned above, deep learning-based methods can auto-
matically find discriminative features from inputs, avoiding
complex processing procedures and manually designed feature
extraction operators. Inspired by the impressive performance,
amounts of promising studies based on deep learning have been
developed for AD prediction. As the 3D PET images can be
divided into 2D slices, some scholars employed 2D CNNs to
classify AD. Wang et al. [11] proposed an eight-layer con-
volutional neural network (CNN) with the leaky rectified linear
unit and max-pooling layer for AD classification, in which 2D
slice of 3D MRI is employed as the input of CNN. Ding et al.
[12] introduced the inception v3 that stacks 11 inception
modules [13] into the method for AD classification with the
4× 4 grid images generated from the 3D PETas inputs. Liu et al.
[14] proposed a classification framework based on 2DCNN and
recurrent neural network (RNN) for AD classification, in which
the 2D CNN is used to capture the intraslice features, and RNN
is employed to learn and integrate the interslice features. Af-
terwards, the final results were obtained by fusing the prediction
scores from three directions of 3D PET.

Although the mentioned methods with 2D CNNs show
effectiveness in AD classification, one of the shortcomings of
themethods is that the spatial information of the 3D image is
not fully utilized. In order to solve this problem, CNNs with
3D kernels are developed to better utilize the spatial in-
formation. Huang et al. [15] constructed a 3D VGG variant
model based on single modality for AD diagnosis and
achieved multimodality detection by concatenating the
multimodality features obtained from MRI and PET images.
In addition, the experimental results in [15] showed that
hippocampus segmentation is not necessary for improving
the performance of the CNN-based classification method.
Liu et al. [16] developed a CNN-based model for AD au-
tomatic diagnosis with various techniques for designing the
CNN model. Zhou et al. [17] utilized a sparse-response deep
belief network (SR-DBN) with extreme learning machine
(ELM) to classify NC,MCI, and AD. Liu et al. [18] designed a
diagnostic framework to extract complementary informa-
tion frommultiple inputs by using zero-masking strategy for
prediction. Yee et al. [19] designed a 3D CNN-based net-
work with residual connections for AD diagnosis, and class

activation maps implicate many known regions affected by
AD. Pan et al. [20] developed a multiview separable pyramid
network-based classification model for AD prediction, in
which the features are extracted from axial, coronal, and
sagittal views of PET scans with the 3D CNN framework.

As inferred from literature, most of the existing studies for
AD diagnosis aim at recognizing AD vs. NC or MCI vs. NC,
which regard AD diagnosis as a binary classification problem.
Due to the importance of MCI in early diagnosis of AD, the
MCI should be accurately recognized from AD and NC. (us,
the three-category classification including NC, MCI, and AD is
more reasonable for AD prediction. However, MCI is a tran-
sition state from NC to AD, and it is more difficult to be
correctly identified compared with the identification of AD and
NC. To tackle the 3-category classification, one direct way is to
build a 3-category classifier for classification, but this is usually
not able to achieve excellent enough performance as usual,
especially for the prediction of MCI. (erefore, more attention
needs to be paid on the identification ofMCI than the other two
categories.

Besides, there is still a big space for improving the per-
formance in AD diagnosis of deep learning-basedmethods due
to the limitation of scarce training samples. Since the success of
deep learning is partially attributed to the training data, it is
believed that a discriminative and robust deep learning-based
model can be learned with a large-scale and variable dataset.
However, because of the difficulties of PET image acquisition
and the high cost ofmanual annotation, it is infeasible to obtain
sufficient training data, which decreases the generalization
ability in working data.

In view of the optimal property of SVM in solving binary
classifications and the powerful feature extraction ability of
deep CNNs, in this paper, we proposed a hybrid model
integrated with CNN and SVM networks for AD prediction.
(e CNN model composed of 3D convolution kernels is
developed to extract deep features, while the SVM [21] is
utilized for classification. Moreover, an end-to-end training
algorithm is developed for further fine-tuning the hybrid
system. Since the SVM-based classifier is designed for binary
classification, to tackle the 3-category classification problem
with the proposed hybrid model, a decision fusion algorithm
is proposed to fuse the results of three hybrid models for
performing NC, MCI, and AD prediction, in which one
network is employed for two of three-category prediction.
Extensive experiments have been conducted in the work,
and the experimental results show that the proposed ap-
proach achieves outstanding performance, compared with
the state-of-the-art methods.

(e sequel of this paper is organized as follows: Section 2
presents the detailed description of the proposed method, and
Section 3 gives the experimental results and performance
analysis on the database used in the work. Finally, Section 4
draws conclusions of the contributions made in the paper.

2. Proposed Method

2.1.Overall Scheme of the ProposedMethod. In this paper, we
proposed a hybrid model integrated with CNN and SVM
networks to predict NC, MCI, and AD. (e structure of the
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proposed model is shown in Figure 1 that consists of two
modules, a feature extraction module based on CNN with
3D kernels (3DCNN), and a SVM-based classification
module. Briefly, the feature extraction module is to extract
deep features of the input 3D PET images and the classi-
fication module is to classify the features to get final deci-
sions. Inspired by [16], the 3DCNNmodel is redesigned here
in according to the purpose of this paper so as to utilize the
spatial information provided by the PET images. In addition,
to further improve the performance of the model with small
batch sizes caused by large 3D data, instance normalization
(IN) [22] is employed for normalization. Besides, channel
attention [23] is also introduced into the 3DCNN to select
more important features. Under the assumption of scarce
annotated training data, the SVM-based classification
module with the kernel function is employed to find the
global structural optimal hyperplane of the training features
from all the training samples.

In the training stage, the training data are first sent to the
feature extraction module for classification. (en, the out-
puts of the global average pooling layer (GAP) of the feature
extraction module shown in Figure 2 are taken as the inputs
of the SVM-based classification module. Next, the param-
eters of the SVM are solved by the extracted features of
training data. Finally, the hybrid model is trained end-to-
end by the designed strategy to further optimize the pa-
rameters of themodel. In the testing stage, the inputs are first
sent to the 3DCNN module to extract deep features. (en,
the classification results are obtained by the SVM according
to the extracted features.

For early AD diagnosis, the proposed model should tackle
the problem of 3-category classification. Due to the optimal
classification performance for binary classifications of SVM, we
divide the three-category classification problem into three
binary classification problems so as to boost the performance of
3-category classification, each binary problem being solved by
one hybrid model. (e overall structure of this three-category
classification system is shown in Figure 3, in which it consists of
three branches, each binary classification being realized with
one 3DCNN+SVM hybrid network. In order to obtain the
final classification decision according to the three branch
classifiers, a decision fusion algorithm is proposed to fuse the
outputs of three 3DCNN+SVM classifiers. (e details of the
proposed classification system will be given in the sequel
sections.

2.2. 3DCNN-Based Feature Extraction Module. CNN is
widely used in the field of computer vision currently [24]
owing to its powerful feature extraction ability. Different
from conventional methods that extract features manually,
CNN can automatically learn features through an end-to-
end training process. In order to utilize the advantage of
CNN and the spatial information of input 3D PET images,
we design a 3DCNN-based feature extraction module to
extract deep features. (e structure of the designed 3DCNN
network is described in Table 1 and Figure 2, and it is
composed of 6 convolutional layers with 3D kernels to
extract features, 4 max-pooling layers for downsampling,

and 4 attention layers to select the informative channels. (e
typical 3D CNNs, such as 3D DenseNet [25] and 3D ResNet
[26], usually employ large-scale kernels to compress the
input in the first convolutional layer, which may lose the
detailed information. To better learn the lesion feature from
the 3D PET images, the first two convolutional layers in-
volved in the model do not perform dimension reduction.
(e kernel size of the two layers is 1× 1× 1 and 3× 3× 3 with
a stride of 1, and the number of kernels is set to 32 and 64 to
extend the features, separately. Afterwards, to reduce the
computational complexity, a 2× 2× 2MaxPooling3D layer is
employed to reduce the size of the features by half. (en,
four convolutional layers, each followed by a channel at-
tention module and a 2× 2× 2 MaxPooling3D layer, are
adopted to learn more generalization representations. (e
channel attention mechanism utilized here is based on the
CBAM [23] to enable the model to pay more attention to
significant features. (e mechanism employs multilayer
perceptron (MLP) with one hidden layer to generate at-
tention vector W as attention weights for feature selection,
and W can be computed as

W(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F))),

(1)

where F denotes the input feature map and σ(·) is the
sigmoid function. (e MaxPooling3D layer followed the
mechanism module is to compress the deep features.
Moreover, to speed up the network training and maintain
excellent performance on small batch size, the IN [22] layer
after each convolutional layer is introduced into the system
as in [16] to conduct feature normalization. Besides, after
each convolutional layer, a Rectified Linear Unit (ReLU) is
utilized as the activation function to conduct nonlinear
transformation, thereby preventing the network from
degrading into a linear system.

To optimize the model using the annotated data, a fully
connected layer after a global average pooling (GAP) layer is
utilized to perform binary classification at the end of the last
convolutional. Notably, the fully connected layer here is only
to optimize the network to gain initial weights, and the
outputs of the feature extraction module obtained after the
GAP layer are used for subsequent classification.

In addition, to improve the robustness of the model
against small batch size training, we update the network with
the average gradient from multiple batches. Moreover, the
technologies of dropout and label smoothing are employed
[27, 28] as well.

3DCNN SVM
y

Feature
Vector

Input

3D PET

Figure 1: Block diagram of the scheme for the 3DCNN+SVM
method.
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2.3. SVM-Based Classification Module and an End-to-End
Training Algorithm for CNN+ SVM Model. SVM with the
nonlinear kernel function is able to transform a nonlinear
separable problem into a linear separable problem and then
finds the structural optimal separate hyperplane that has the
maximum margin between the two classes [21]. Because of
the small size of annotated training data, the global optimal
solution of the training data is available in the conditional
that the features extracted by the feature extraction module
are fixed. To this end, we employ the SVM with polynomial
kernel as the classification module to find the structural
optimal solution from all the training data. Nevertheless, it is
known that the performance of SVM depends on the sup-
port vectors. Once the CNN is trained, the support vectors
are fixed. In order to further optimize the parameters of the
CNN by using the optimal hyperplane obtained by SVM in
the embedding feature space, an end-to-end training algo-
rithm is developed for the proposed hybrid model. (e

details of the SVM-based classification module and the end-
to-end training algorithm are introduced as follows.

As introduced in [21], the purpose of SVM is to find a
separation hyperplane, which maximizes the distances be-
tween the margins of two kinds of categories. For n sample
features (xi, yi)􏼈 􏼉

n
i�1, xi ∈ R1×d, xi � x1

i , x2
i , . . . , xd

i􏼈 􏼉, and
yi ∈ −1, 1{ }, the objective function of SVM is defined by

L(w, b, α, ξ) �
1
2
‖w‖

2
+ C 􏽘

n

i�1
ξi − 􏽘

n

i�1
aiyi wTxi + b􏼐 􏼑 − 1􏽨 􏽩􏽯,

(2)

where w ∈ Rd×1 is the coefficient vector, b is the bias term,
α≥ 0 is Lagrange multiplier, ξ is the slack variables, and C≥ 0
is a penalty parameter used to control the degree of penalty
for misclassification. To optimize the SVM by minimizing
the objective function, (2) is usually solved by the following
dual problem:

Table 1: (e architecture of 3DCNN designed in the paper.

Layer ID Layer Kernel number Kernel size/stride Output size
0 Input 1× 80×100× 76
1 Conv1 32 (1, 1, 1)/1 32× 80×100× 76
2 Conv2 64 (3, 3, 3)/1 64× 80×100× 76
3 MaxPool3D (2, 2, 2)/2 64× 40× 50× 38
4 Conv3 128 (3, 3, 3)/1 128× 40× 50× 38
5 Attention 128× 40× 50× 38
6 Maxpool3D (2, 2, 2)/2 128× 20× 25×19
7 Conv4 256 (3, 3, 3)/1 256× 20× 25×19
8 Attention 256× 20× 25×19
9 Maxpool3D (2, 2, 2)/2 256×10×12× 9
10 Conv5 512 (3, 3, 3)/1 512×10×12× 9
11 Attention 512×10×12× 9
12 Maxpool3D (2, 2, 2)/2 512× 5× 6× 4
13 Conv6 512 (3× 3× 3)/1 512× 3× 4× 2
14 GAP 512×1× 1× 1
15 Flatten 512
16 FC 2
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Figure 2: (e structure of the proposed feature extraction module.
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Figure 3: Block diagram of the overall scheme for three-category classification.
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Q(α) � 􏽘
n

i�1
αi −

1
2

􏽘

n

j�1
􏽘

n

i�1
αiαjyiyjK xi, xj􏼐 􏼑􏽮 􏽯,

Subjected to : 0≤ αi ≤C, 􏽘
n

i�1
aiyi � 0,

(3)

where i and j ∈ 1, . . . , n and K(xi, xj) is the kernel function.
In the paper, the polynomial kernel function is utilized as the
kernel function that is defined as

K x, xi( 􏼁 � x · xi( 􏼁 + 1􏼂 􏼃
q
, (4)

where x is the input vector, xi denotes the support vector of
SVM, and q is the order of polynomial.

For the input x, the decision function is defined as

y � sign 􏽘
i

αiyiK x, xi( 􏼁 + b⎛⎝ ⎞⎠ � sign(s). (5)

Obviously, after solving the parameters of αi and b, the
classification result of x can be obtained. In the paper, the
sequential minimal optimization (SMO) algorithm [29] is
utilized to calculate αi and b.

As shown in (5), a nonderivable sign function is
employed to binarize the value of the linear output of SVM
to obtain finally prediction. Due to that the output of sign
function is 1 or −1, the influence of the linear output value s
of SVM is ignored. In general, higher value of the output in
the classification indicates higher confidence that the input
belongs to the corresponding category. In addition, the BP
algorithm cannot be performed by using a nondifferentiable
sign function. In order to tackle the problems, a modified
SVM is proposed for classification and an end-to-end
training algorithm integrated with CNN and modified SVM
is proposed to further optimize the hybrid model.

For the modified SVM, the sign function is replaced with
a differentiable softmax-based function. Since SVM only has
one output, the linear value s together with its opposite
value, −s, are utilized as the inputs of softmax function. (e
structure of the modified SVM is shown in Figure 4, and its
output can be computed as

y � f 􏽘
n

i�1
wiK x, xi( 􏼁 + b⎛⎝ ⎞⎠ � f(s), (6)

where wi � αiyi can be regarded as the weights of the output
of K(xi, x), f (·) is the softmax function-based differentiable
function, and y� {y0, y1} is the output of the modified SVM,
in which y can be obtained by

y0 � q x ∈ d+( 􏼁 �
e

s

e
s

+ e
−s, (7)

y1 � q x ∈ d−( 􏼁 �
e

−s

e
s

+ e
−s, (8)

where x is the input feature, s is the linear output value of
SVM, q(x ∈ d+) denotes the probability of x belonging to the

positive class, and q(x ∈ d−) denotes the probability of x
belonging to the negative class.

(e modified SVM shown in Figure 4 can be equivalent
to a neural network with one hidden layer, thus the hybrid
model can be trained end-to-end. In the article, the cross-
entropy loss is employed to optimize the hybrid model, in
which the loss function is defined as

H(p, q) � − 􏽘
n

i�1
p xi ∈ d+( 􏼁logq xi ∈ d+( 􏼁(

+ 1 − p xi ∈ d+( 􏼁( 􏼁log 1 − q xi ∈ d+( 􏼁( 􏼁􏼁,

(9)

where p is the label function that is defined as p � 1 if
x ∈ positive sample; else, p� 0; and n indicates the total
number of the training samples.

Equations (7) and (8) can also be represented by

q x ∈ d+( 􏼁 �
1

1 + e
−2s

,

q x ∈ d−( 􏼁 �
1

1 + e
2s

.

(10)

Obviously, for a positive class feature, only s tends to
positive infinity, q(x ∈ d+) equals to 1, and loss function H
(p, q) tends to 0. Since s is positively related to the distance
from x to the hyperplane of SVM, the larger s means the
greater distance between x and the hyperplane. For a neg-
ative class feature, the loss functionH (p, q) tends to 0 when s
tends to negative infinity. (us, the loss function can be
utilized to optimize the features of CNN and further increase
the margin between the two classes.

(e optimization of SVM is to find the optimal
hyperplane from all training samples, which is different
from the backwardpropagation (BP) algorithm-based
optimization of 3DCNN. In order to jointly optimize
the hybrid system with the BP algorithm and maintain
the optimal structure of SVM, the parameters of the
SVM are not adjusted in the process of optimizing CNN
with the BP algorithm. After CNN converged, the pa-
rameters of SVM are re-calculated by the SMO algo-
rithm to find the new separate hyperplane for further
optimization.

Details for these operation steps are as follows:

K(x,x1)

K(x,x2)

K(x,xn)

∑  

. . .

. . .

w1

w2

wn
. . .

s

b

x

f(s)

q(x∊d+)

q(x∊d–)

Figure 4: (e equivalent neural network of SVM with the non-
linear kernel function.
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(i) Initialize a 3DCNN and a SVM to be trained, and
divide the PET dataset into 3 subsets (training set,
verification set, and test set)

(ii) Train the 3DCNN by using the samples in the
training set until converged, and then, use the
converged 3DCNN to extract the feature vector
output from its last pooling layer using all the
samples in the training set and in the verification
set as input

(iii) Train the SVM by using the extracted feature
vectors as training samples obtained by using the
input samples in the training set in Step (ii), until
the SVM converged

(iv) Construct a 3DCNN+SVM network using the
trained 3DCNN and SVM, and replace sign
function with softmax function as described in (7)
and (8)

(v) Fine-tune the 3DCNN+SVM network by using
the samples both in the training set and in the
verification set and the loss function computed
according to (9), with the weights of the SVM fixed
(without updated), until the 3DCNN converged
basically

(vi) Re-train the SVM by using the extracted feature
vectors output from the 3DCNN obtained in Step
(v) without updating the 3DCNN, until the SVM
converged basically

(vii) Repeat the Steps (iv)–(vi), until the whole
3DCNN+SVM network converged

(viii) Test the trained 3DCNN+SVM network by using
the samples in the test set

2.4. Decision Fusion Algorithm of 7ree Binary Classifiers.
At present, most of the existing studies related to AD aim to
solve binary classification problems, such as AD vs. NC and
MCI vs. NC. However, in practical applications, a robust 3-
category classificationmodel is crucial for the early diagnosis
of AD as mentioned above. Generally, this problem can be
well solved directly by a 3-category classifier, but it may not
be suitable for AD prediction with a simple 3-category
classifier as the MCI is hard to be accurately identified from
AD and NC. Since the proposed SVM-based classification
module can achieve global optimal structure solutions for
binary classification on the training data, 3-category clas-
sification task can be solved by using three hybrid models
with the proposed decision fusion algorithm.

As shown in Figure 3, three 3DCNNi + SVMi networks
(i� 1, 2, and 3) are built up to cope with the three-category
classification with one network for solving two of three-
category classification. Before making a final decision, three
3DCNN+SVM hybrid networks need to be trained in ad-
vance for performing the binary classifications of AD vs. NC,
MCI vs. NC, and AD vs. MCI. Afterwards, for a 3D PET
image to be classified, it is first fed into the three
3DCNNi + SVMi networks (i� 1, 2, and 3) respectively, and
then, outputs of the three classification models can be

obtained. In order to use the results of the three classifiers
effectively, in the paper, we design a decision fusion algo-
rithm as follows to get the final decision:

(1) If the results of two classification models belong to
the same category, the category is regarded as the
final classification result

(2) If all the three classification results are different, the
final decision is made according to the absolute
value, |si|, of the linear output of the SVMi (i� 1, 2,
and 3) as follows:

k � argmax
i

si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (11)

(en, final classification result is selected as the
binary classification result of the kth 3DCNN+SVM
network (i.e., the output of the SVMk).

3. Experiments

3.1. Database and Data Preprocessing. In order to evaluate
the proposed method in AD prediction, the 18F-Fluo-
rodeoxyglucose positron emission tomography (18F-FDG
PET : PET) data obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database [30] launched in
2003 are utilized in the paper, in which ADNI has been
committed to tracking the progress of AD through bio-
markers and clinical assessments. By identifying sensitive
and specific markers of early AD progression in the database
provided by the participants at different time, it can help
researchers and clinicians develop new treatments, monitor
the effectiveness, and reduce the cost of clinical trials.

In this work, we adopt 2706 3D PET images from 959
ADNI participants, including 267 AD subjects, 340 MCI
subjects, and 352 NC subjects. Table 2 presents the demo-
graphic details of the studied subjects in the work, where
MMSE is the abbreviation of the Mini-Mental State Ex-
amination. (e PET images are first preprocessed by per-
forming image registration, spatial normalization, intensity
normalization, and image smoothing. (en, the voxels
outside the brain are removed from the PET images, and the
images are cropped to a size of 80×100× 76.

3.2. Implementation Settings and Evaluation Indexes. All the
models and algorithms adopted in the work have been
implemented, and all the experiments are conducted by
using Python on a CPU+GPU platform with the CPU of
Intel ®Core™ i77700@3.60GHz and the GPU of NVIDIA
GeForce GTX 1080Ti.

In the experiment, five-fold cross-validation is per-
formed, where the dataset is divided into 5 equal parts in
which 1 part is used as the testing data and 4 parts are used as
training data with 1 part of them as verification data. And,
the experiments are conducted 5 times in turn, and the mean
values of the results of 5 trials are used as final indexes of the
method. (e data are strictly divided according to patient’s
IDs to ensure that the image samples of the same person will
not be put into different datasets, i.e., the PET images of one
participant are put into only one part in the data partition to
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avoid data leakage. (e stochastic gradient descent (SGD)
algorithm is utilized to minimize the loss function in
training the proposed model. (e batch size is set to 4, and
the weights of the network are updated every four batches
for better convergence in the training process.

To better evaluate the performance of the proposed
method and state-of-the-art methods, 4 technical indexes
[20] are employed for evaluation, including accuracy (ACC),
sensitivity (SEN), specificity (SPE), and AUC (area under
ROC curve). (e ACC, SEN, and SPE are the proportion of
correct predictions among all samples, positive samples, and
negative samples, respectively. Each of the indexes is
identified as

ACC �
TP + TN

TP + TN + FP + FN
,

SEN �
TP

TP + FN
,

SPE �
TN

TN + FP
,

(12)

where TP, FP, TN, and FN separately indicate the true
positive, false positive, true negative, and false negative. (e
AUC is obtained by computing the area under the receiver
operating characteristic curve (ROC) which is the curve to
describe the relationship between the true positive rate
(TPR) and the false positive rate (FPR) under varied
threshold settings. Obviously, the higher result stands for
better performance.

3.3. Evaluation of the Proposed Method Applied to Binary
Classification. In this section, experiments are conducted
for the proposed 3DCNN+SVM classification method and
also for the other state-of-the-art methods, respectively. (e
methods proposed in the cited literature were originally
designed for solving binary classification problems, such as
the prediction of AD vs. NC or MCI vs. NC. For our
proposed method, since a single 3DCNN+SVMmodel with
end-to-end training is also proposed for solving a binary

classification problem, we just need to use a single
3DCNN+SVM network to perform the classification
without needing three such networks.

Aiming to better evaluate the generalization perfor-
mance of the proposed method and the state-of-the-art ones,
we test the approaches on both training and testing sets.
Tables 3–5 present the experimental results implemented on
the data of AD vs. NC, MCI vs. NC, and AD vs. MCI, re-
spectively. Since the experimental results given in the cited
literature were obtained by using different data partitions
under different experiment settings, in order to make a fair
comparison, the methods without “∗” are implemented by
using the same PETdata under the same experiment settings
as in ours in the paper; meanwhile, the results of themethods
with “∗” are cited by the corresponding reference. From the
results shown in the tables, one can see that the proposed
method generally performs better than the other ones, and
its effectiveness can be confirmed by the experiments.

In addition, Figure 5 displays the comparisons of the
ROC curves on AD vs. NC, MCI vs. NC, and AD vs MCI.
From the figure, we can observe that the proposed method
achieves the best AUC compared with the mentioned state-
of-the-art methods and proves the robustness and effec-
tiveness of the hybrid model.

3.4. Evaluation of the ProposedMethod Applied to 3-Category
Classification. As mentioned before, in order to solve the
early prediction of AD symptoms, a hybrid 3-category
classification system is developed by integrating three binary
3DCNN+SVM classifiers with an optimal decision fusion
scheme. In this section, we present the experimental results
to evaluate this 3-category classification system by using the
3D PET images fromMCI, AD, and NC subjects. In order to
demonstrate the effectiveness of the proposed method, the
“CNN+BGRU” method introduced in [14] and the
“ADCNN” model proposed by Liu et al. [16] are imple-
mented in the paper for comparison. In this work, we re-
implement the CNN-based state-of-the-art methods and
train and test by using the same 3D PET images as used in

Table 3: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of AD vs. NC samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 81.60 82.7 80.4 90.0
Lu [10]∗ — — — — 89.44 88.89 90.0 —
Silveira [8]∗ — — — — 90.97 — — —
Ding et al. [12] 98.92 99.49 98.61 98.95 86.27 86.97 85.78 90.50
Liu et al. [14] 98.61 99.59 98.07 99.84 89.31 87.50 90.32 92.96
Huang et al. [15] 99.21 99.43 98.48 99.35 88.68 87.74 89.17 91.98
Proposed 99.19 99.39 99.54 99.88 90.82 91.29 90.59 93.75

Table 2: Demographic characteristics of the studied subjects.

Diagnosis Number Age Gender (F/M) MMSE
AD 514 75.98± 7.62 305/209 19.26± 5.64
MCI 1247 76.47± 7.54 809/438 22.83± 6.56
NC 945 76.99± 5.95 544/405 27.83± 3.63
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Table 4: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of MCI vs. NC samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 70.20 73.80 62.30 73.0
Lu [10]∗ — — — — 79.63 — — —
Silveira [8]∗ — — — — 70.00 46.96 80.44 —
Ding et al. [12] 98.70 98.05 99.55 99.43 72.37 74.70 69.31 79.19
Liu et al. [14] 99.04 98.52 99.74 99.73 73.80 73.16 74.69 80.45
Huang et al. [15] 98.30 97.72 99.09 99.97 73.52 75.50 70.90 79.65
Proposed 99.54 99.26 99.90 99.88 76.68 77.80 75.57 82.39

Table 5: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of AD vs. MCI samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 68.2 58.3 73.0 70.0
Lu [10]∗ — — — — — — — —
Silveira [8]∗ — — — — 70.0 — — —
Ding et al. [12] 92.39 97.50 90.29 98.59 71.19 68.52 72.36 77.28
Liu et al. [14] 96.10 99.93 94.52 99.18 73.79 75.00 73.28 79.16
Huang et al. [15] 96.09 99.66 94.53 99.39 73.83 74.93 73.42 78.53
Proposed 98.45 99.24 97.31 99.91 74.29 70.78 75.48 80.11
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Figure 5: ROC curves of the proposed method and state-of-the-art methods on AD vs. NC, MCI vs. NC, and AD vs. MCI. (a) AD vs. NC.
(b) MCI vs. NC. (c) AD vs. MCI.
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Table 6: Evaluation of the proposed method applied to 3-category classification in terms of ACC (%).

Method
Training set Testing set

AD MCI NC Average AD MCI NC Average
Cabral et al. [9]∗ — — — — — — —- 66.78
3DCNN 99.85 98.62 99.89 99.45 65.63 62.12 70.43 65.66
CNN+BGRU [14] 97.75 99.89 99.86 99.17 58.65 66.22 68.28 65.53
ADCNN [16] 99.81 98.35 99.99 99.38 65.16 63.25 68.63 65.44
Proposed 99.17 97.83 99.37 98.79 73.42 67.86 72.28 71.19

Table 8: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of MCI vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 99.80 99.66 99.55 99.99 75.04 75.54 72.97 79.74
3DCNN+SVM 98.35 98.30 98.41 99.99 75.58 76.42 74.41 80.80
3DCNN+SVM+E2E 99.54 99.26 99.90 99.88 76.68 77.80 75.57 82.39

Table 7: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68
3DCNN+SVM 98.62 99.01 98.40 99.95 90.20 90.34 90.19 93.36
3DCNN+SVM+E2E 99.19 99.39 99.54 99.88 90.82 91.29 90.59 93.75

Table 9: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of AD vs. MCI (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 98.37 99.73 97.72 99.81 73.56 73.84 73.51 77.82
3DCNN+SVM 97.72 99.43 96.80 99.84 73.95 71.88 74.89 78.75
3DCNN+SVM+E2E 98.45 99.24 97.31 99.91 74.29 70.78 75.48 80.11
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Figure 6: ROC curves of the ablation experiments on 3DCNN+SVM. (a) AD vs. NC. (b) MCI vs. NC. (c) AD vs. MCI.
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the paper. Table 6 shows the experiment results on training
and testing sets, in which the experimental results of
“3DCNN” are also included that are obtained by using a
three-dimensional CNN network with the same structure as
the 3DCNN shown in Figure 2 but adjusting the number of
the output fully connected layer nodes from 2 to 3.(is “3D-
CNN” model is also trained and tested by using the same
data as the other models and also used for performance
comparison in the experiment.

From the results shown in Table 6, it can be seen that the
proposed hybrid 3-category classification system obtains a sig-
nificant improvement on all the four evaluation indexes,
comparedwith the others. According to the results of Tables 3–6,

it implies that the proposed method not only achieves excellent
performance in binary classification tasks but also outperforms
the othermethods in three category classification by applying the
proposed decision strategywith three proposed binary classifiers.

3.5. Ablation Experiments of the CNN+ SVM Hybrid Model
with End-to-End Training Algorithm. For the proposed
method, the SVM is employed to replace the fully connected
layer of the proposed 3DCNN as the classifier, and an end-
to-end algorithm is developed to optimize the hybrid model.

In order to compare the performance of the improve-
ment and, meanwhile, validate the effectiveness of the
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Figure 7: (e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm on AD vs.
NC. (a) (e results before end-to-end training. (b) (e results after end-to-end training.
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Figure 8:(e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm onMCI vs.
NC. (a) (e results before end-to-end training. (b) (e results after end-to-end training.
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integration, we conduct ablation experiments to evaluate the
proposed improvement including the SVM-based classifier and
the end-to-end algorithm. Tables 7–9 show the ablation results
of the proposed module evaluated on the data of AD vs. NC,
MCI vs. NC, and AD vs. MCI on both training and testing sets,
respectively. In order to make a fair comparison, the 3DCNN
network illustrated in Figure 2 is employed as the baseline for
further comparison. To assess the effects of the SVM-based
classifier, in this section, the results of “3DCNN+SVM” are
obtained by directly combining the baseline with an SVM
without the proposed end-to-end algorithm, i.e., the two
modules are trained separately. From the results of the three
binary-category classification tasks, the “3DCNN+SVM” can
give relatively better overall performance than the baseline,
which proves the effectiveness of the SVM-based classifier on
AD prediction with scarce training data. To further optimize
the hybrid model, the end-to-end algorithm is developed to
fine-tune the 3DCNN model. (e results of
“3DCNN+SVM+E2E” are obtained by using the proposed
end-to-end training methods. With the assistance of the end-
to-end algorithm, the performance of the proposed module is

improved again on the indexes of ACC, SEN, SPE, and AUC.
Figure 6 displays the comparisons of the ROC curves onAD vs.
NC, MCI vs. NC, and AD vs. MCI for the above ablation
experiments, which further proves the effectiveness of the
proposed implementations for AD prediction. (erefore,
according to the ablation studies, the proposed SVM-based
classifier and the end-to-end algorithm play an important role
in boosting the performance of the baseline on AD diagnosis.

In addition, we also visualize the features extracted by
the outputs after the global average pooling layer of 3DCNN
before and after end-to-end training, and the visualization
results are shown in Figures 7–9 . From the results, it can be
seen that the features in visual are easier to be recognized
after end-to-end training, which confirms the feasibility of
the proposed end-to-end algorithm.

3.6. Ablation Studies of the Implemented 3DCNN. In this
section, we validate the effectiveness of the key technologies
employed in the 3DCNNmodel, mainly including the channel
attention mechanism and the instance normalization method.
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Figure 9: (e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm on AD vs.
MCI. (a) (e results before end-to-end training. (b) (e results after end-to-end training.

Table 10: Ablations studies of the channel attention mechanism on AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN w/o Atten 98.74 99.88 99.12 99.78 89.41 90.55 88.83 91.92
3DCNN with Atten 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68

Table 11: Comparison of different normalization functions of SVM on AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN with BN 99.04 99.21 99.48 99.92 89.36 89.68 89.16 91.96
3DCNN with IN 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68
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Table 10 shows the ablation results on AD vs. NC prediction.
(e “3DCNN w/o Atten” is the model that removes the
channel attention mechanism from the designed 3DCNN, and
the “3DCNN with Atten” is the proposed 3DCNN model
shown in Figure 2. As can be seen, the model with channel
attention is superior to the model without the attention
mechanism in the four indexes, which shows that the measure
is effective for improving the recognition accuracy.

In addition, due to the small batch size caused by a large
scale of image data, the instance normalization (IN) is
employed to replace the typical batch normalization (BN) for
the designed 3DCNNmodel. (e comparison experiments are
conducted in Table 11, in which the 3DCNN with BN is the
model that uses BN as the normalization function, and the
3DCNNwith IN is the proposed 3DCNNmodel. It can be seen
from the results that the performance of the 3DCNN is im-
proved after replacing BN with IN, and the sensitivity is the
most obvious. As a result, from the results in Tables 10 and 11,
the measures introduced into the proposed 3DCNNmodel are
helpful in improving the performance of the model.

4. Summary and Further Working Direction

In this paper, we proposed a new classification system for
early automatic diagnosis of AD symptoms based on
3DCNN and SVM, in which the original 3-category clas-
sification problem is divided into three binary classification
problems; each binary classification is realized with a
3DCNN+SVM model. Furthermore, an end-to-end learn-
ing algorithm is developed for training the 3DCNN+ SVM
networks, and an optimal decision fusion scheme is pro-
posed to fuse the outputs of three 3DCNN+SVM classifiers
based on the criteria of majority voting. By using these
methods, the advantages of both CNN and SVMmodels can
be fully utilized; thus, the overall performance of the system
can be significantly improved. Experimental results obtained
in the paper confirm the effectiveness of the proposed ap-
proach that outperforms the existing start-of-the-art
methods in terms of the class accuracy, sensitivity, speci-
ficity, and area under ROC.

It is noticed that, from the experimental results obtained
in the paper, the classification performance of MCI samples
still leaves some room for further improvement, and the
correct identification of this category samples is crucial for
the early diagnosis of AD. (erefore, a more effective
method is needed to be developed to overcome this shortage,
which will be the future research direction of the paper.
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