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Predicting traffic data on traffic networks is essential to transportation management. It is a challenging task due to the complicated
spatial-temporal dependency. ,e latest studies mainly focus on capturing temporal and spatial dependencies with spatially dense
traffic data. However, when traffic data become spatially sparse, existing methods cannot capture sufficient spatial correlation in-
formation and thus fail to learn the temporal periodicity sufficiently. To address these issues, we propose a novel deep learning
framework, Multi-component Spatial-Temporal Graph Attention Convolutional Networks (MSTGACN), for traffic prediction, and
we successfully apply it to predicting traffic flow and speed with spatially sparse data. MSTGACNmainly consists of three independent
components tomodel three types of periodic information. Each component inMSTGACNcombines dilated causal convolution, graph
convolution layer, and the weight-shared graph attention layer. Experimental results on three real-world traffic datasets, METR-LA,
PeMS-BAY, and PeMSD7-sparse, demonstrate the superior performance of our method in the case of spatially sparse data.

1. Introduction

Traffic prediction is one of the most essential tasks in the
Intelligent Transportation System [1]. ,e goal of this task is
to predict the future traffic conditions (e.g., traffic speed and
traffic volume) by analyzing the historical traffic data. Ac-
curate and timely traffic prediction is essential to many real-
world applications. For example, if traffic data could be
predicted accurately in advance, the transportation de-
partment can dynamically adjust the time of traffic lights;
moreover, the navigation system can change the route in
time to reduce congestion. However, traffic prediction is
very challenging because of the dynamic spatial correlations
and nonlinear temporal correlations. Early traffic prediction
methods [2, 3] can be divided into classic statistical methods
and machine learning models, which are limited by the
stationarity assumption and fail to capture the spatial
correlations.

Recently, many deep learning models have been proposed
for traffic prediction. For spatial modeling, graph convolutional
neural networks (GCN) [4–6] are widely used in graph-based
data. Diffusion convolutions [7] and attention mechanism
[8–13] are also adopted by researchers to capture spatial de-
pendencies. From the perspective of periodicity, somemethods
use time information of sample data as additional input fea-
tures [5, 7] to learn periodic information, and some attempts
[8, 14, 15] divide the data andmodel intomultiple components
to capture the correlations under different periods. However,
existing methods have the following shortcoming.

Existing approaches mainly focus on capturing the
temporal and spatial dependencies based on dense spatial
data. In the real world, there are not enough available de-
tectors in some regions due to underdeveloped trans-
portation or abnormal conditions (equipment maintenance,
extreme weather, etc.) [16]. As the experiment shown in
Figure 1, with the decrease of detector numbers, the
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prediction results of existing models turn to be worse. ,e
reason is that most existing methods [5, 7, 17] only calculate
the spatial dependence once in each module, and the at-
tention mechanism is not fully utilized. ,erefore, when the
detectors are insufficient or the adjacent detectors are far
away, the spatial correlation features cannot be fully cap-
tured by existing methods. In this article, we propose a novel
deep learning architecture to address this problem. To the
best of our knowledge, this work is the first to bring out the
spatially sparse data problem.

To address the problem, we propose a novel framework
called Multicomponent Spatial-Temporal Graph Attention
Convolutional Network (MSTGACN), which consists of
three relatively independent modules; each module is
composed of multiple spatial-temporal graph attention
convolution blocks to capture spatial correlations efficiently
in the case of spatially sparse data. We sample a part of
detector data from two public datasets, METR-LA and
PeMS-BAY [7], and we construct a sparse dataset by
sampling detectors in district-7 of Caltrans Performance
Measurement System (PeMS). We evaluate MSTGACN on
three sparse datasets, and experimental results demonstrate
that MSTGACN outperforms existing methods.

Overall, the contributions of our work can be summa-
rized as follows:

(1) We propose a spatial-temporal graph attention
convolution block consisting of dilated causal con-
volution, graph convolution layer, and graph at-
tention layer. ,e parameters of two GAT layers are
shared in one block. MSTGACN canmore effectively

capture the spatial-temporal features in the case of
spatially sparse data.

(2) We adopt two strategies to capture multiple periodic
information effectively. First, day-of-week infor-
mation and time-of-day information are extracted as
additional features. Second, the input data and the
model are divided into three components, which are
used to capture the weekly, daily, and recent periodic
features of data.

(3) We bring out the problem of spatially sparse data in
traffic prediction. Moreover, we evaluate our model
MSTGACN on three real-world sparse datasets.
Experimental results validate that the proposed
model is superior to existing methods in the case of
spatially sparse data.

To better present our work, the rest of this article is
arranged as follows. We describe related works and the task
definition in Section 2 and Section 3. ,en, our method will
be detailed and introduced in Section 4. We present our
experimental results in Section 5. Finally, we conclude the
article in Section 6.

2. Related Work

2.1. Temporal Modeling. Traffic prediction is a typical
spatial-temporal sequence forecasting problem. Existing
methods can roughly be categorized into two classes,
namely, temporal modeling and spatial modeling. From
the time series perspective, RNN and its variants have
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Figure 1: ,e performance of various existing methods on PeMS-BAY with different sparseness.
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been proven to be able to extract temporal information.
Recently, people have proposed many RNN-based models
[18–22] in traffic prediction whose performance is superior
to traditional statistical methods [23–25] and machine
learning models [26, 27]. However, when the sequence
length is long, the RNN-based model becomes inefficient
and its gradients may explode. On the contrary, CNN has
advantages of parallel calculation and stable gradient.
,erefore, a CNN-based model [17] has been proposed to
capture temporal dependencies. Besides, some methods
[5, 28, 29] borrowed dilated causal convolution from the
speech processing field to expand the receptive field. To
capture periodic information of the time series, the authors
of [8] constructed three different time series segments as the
input to capture the periodic features in traffic data, but they
did not utilize the time period information of each sample
data, such as “time of day” and “day of week.”

2.2. SpatialModeling. For spatial modeling, some previous
methods [30–32] converted the road network at different
times to a regular 2D grid and utilized traditional con-
volution to capture spatial correlations, while the non-
Euclidean correlations in road networks have been ig-
nored. Recent studies further explored the effectiveness of
GCN in modeling non-Euclidean spatial structure; this is
more in line with the structure of the road network in the
real world. Many researchers proposed new approaches
for effective spatial modeling based on GCN. Yu et al. [17]
proposed Spatial-Temporal GCN, which was entirely
composed of convolution structure in spatial and tem-
poral dimensions. Li et al. [7] proposed Diffusion Con-
volutional Recurrent Neural Network and applied
bidirectional random walks on graphs to capture the
spatial dependency. Wu et al. [5] also adapted diffusion
convolution, but they developed a novel adaptive de-
pendency matrix to capture the hidden spatial depen-
dency, which did not depend on prior knowledge. In these
methods, the adjacency matrix represents the relationship
between the nodes, but edges are much more complicated
and interact with each other. Chen et al. [33] constructed
the edgewise graph according to various edge interaction
patterns and implemented the interactions between nodes
and edges using bicomponent graph convolution. How-
ever, we found that the datasets used by the existing
methods have a commonality. ,e nodes are relatively
dense in space, and the adjacent nodes belong to the same
road and are close to each other, so there is an obvious
upstream and downstream relationship. For secondary
roads in cities or roads in villages, the collection equip-
ment is not as dense as the main roads in big cities. ,e
abnormal equipment will also cause the problem of sparse
node distribution. To study the traffic flow prediction
problem in the sparse scenario, we sampled the existing
datasets and constructed a new dataset with sparse points.

2.3. Attention Mechanism. ,e core idea of the attention
mechanism is to dynamically focus on the most crucial
information based on the input data. A large number of

people have proposed attention-based models to solve traffic
forecasting problems. Yin et al. [34] applied an internal
attention mechanism to capture the interactions among
multiple time series and a dynamic neighborhood-based
attention mechanism to model the complex spatial corre-
lations. Guo et al. [8, 35] applied temporal attention and
spatial attention to capture dynamic spatial-temporal cor-
relations. To stabilize the learning process, the researchers
[36] replaced the traditional attention mechanism with a
multi-head attention mechanism. Velickovic et al. [13]
employed an attention mechanism into graph structure to
dynamically adjust the importance of adjacent nodes. Guo
et al. [28, 37] replaced GCN with graph attention networks
(GAT) and [37] used meta knowledge to generate weights of
GAT. GAT has achieved or matched state-of-the-art results
across several benchmarks for graph-related tasks [38].
Considering that the spatial correlations are difficult to
capture in the case of spatially sparse data, we employ
multiple-stacked GAC blocks for better relation exploitation
and prediction, which contains one GCN layer and one GAT
layer in each block. ,e application of GAT with shared
parameters in the block may also help alleviate the over-
smoothing of GCN.

3. Preliminaries

,e task of traffic prediction is to predict future traffic
conditions (e.g., speed and volume) based on the historical
traffic measurements of sensors in the road network. We
define the road network as a weighted graph G � (V, E, A)

with N nodes, where V is the set of nodes, E is the set of
edges indicating the connectivity between the nodes,
A ∈ RN×N is the weighted adjacency matrix of graph G.
Suppose V is the subset of V, indicating some nodes in the
graph could not be used as input data when corresponding
sensors are abnormal in the road network.

Problem. Given traffic data over past P time slices, the
traffic data observed on G could be denoted as
X ∈ RN′×M×P(N′ ≤N), where M is the number of traffic
interests (e.g., traffic volume and traffic speed). When
N′ ≪N represents that the data are sparse, the goal of this
task is to predict the traffic data (speed or flow) of the next
TP time steps, denoted as Y � (Y1, Y2, . . . , YTP

) ∈ RN′×TP .

4. Materials and Methods

In this section, we first present the overall framework of the
MSTGACN and the method to capture periodic temporal
information; then, we describe the spatial-temporal graph
attention convolution (ST-GAC) block of our framework.
Finally, we present the multicomponent fusion method.

4.1. 0e Architecture of MSTGACN. As shown in Figure 2,
MSTGACN proposed in this article consists of three in-
dependent components with the same structure, which are
designed to model the recent, daily-periodic, and weekly-
periodic dependencies of the data. Each component is
composed of a convolution layer, several stacked ST-GAC
blocks, and an output block. ,e headmost convolution
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layer captures the correlations between input features and
generates multiple feature maps. ,e ST-GAC block models
the spatial-temporal dependencies and each ST-GAC block
is skip-connected to avoid oversmoothing. ,e outputs of
the three components YR, YD,and YW are fused into the final
output Y by the multicomponent fusion module.

4.2. Details about 0ree Time Series Segments. ,e spatial-
temporal correlations vary with different periods. We adopt
two strategies to capture multiple types of periodic infor-
mation effectively. Firstly, we construct two metafeatures:
“time of day” and “day of week” as external attributes. ,ese
additional features will be concatenated with original input
data along the feature axis. Secondly, We intercept three
time series segments (TR, TD, and TW) along the temporal
dimension to construct the input of recent, daily-period, and
weekly-period components, respectively. Suppose the
sampling frequency is q times per day. ,e current time is
denoted as t0; TP is the length of the sequence to be pre-
dicted. TR, TD, and TW represent the length of input data for
different components, and they are all integer multiples of
TP. ,e details of the three segments are as follows.

TR � (Xt0− TR+1, Xt0− TR+2, . . . , Xt0
) ∈ RN′×M×TR . ,e ad-

jacent sequence is closest to the period to be predicted. ,e
traffic data (speed, flow) at a specific location change con-
tinuously with time. ,us, the data to be predicted will be
affected by the data of the previous period.

TD �(Xt0− (TD/TP)∗q+1,...,Xt0− (TD/TP)∗q+TP
,...,Xt0− q+1, ... ,

Xt0− q+TP
)∈RN′×M×TD . It consists of the segments in the past

few days at the same time period. ,is segment is used to
provide information to model daily periodicity.

TW � (Xt0− 7∗(TW/TP)∗q+1, . . . , Xt0− 7∗(TW/TP)∗q+TP
, . . . ,

Xt0− 7∗q+1, . . . , Xt0− 7∗q+TP
) ∈ RN′×M×TW . It is composed of the

segments in the last few weeks, which have the same week
attributes and the time intervals as the predicting period.
,is segment is constructed for modeling the weekly
periodicity.

,e three components share the same network structure
described in the next section.,e output of each component
is denoted as YR, YD and YW respectively. ,ese three
outputs are merged by the multicomponent fusion module
to obtain the final prediction result.

4.3. ST-GAC Block. We first construct a GAC block, which
contains a GAT layer and a GCN layer.,e ST-GAC block is
composed of two G-TCN blocks and two GAC blocks, as
shown in Figure 3. Moreover, the two GAT layers in the
same ST-GAC block share the same weights. ,e G-TCN
block is used for capturing the temporal dependencies. ,e
GAC layer is used to learn the correlations between nodes in
the case of spatially sparse data. To make Figure 2 more
concise, we combine a G-TCN layer and a GAC layer as a
T-GAC module.

4.3.1. Gated Temporal Convolution Layer. Inspired by
Graph WaveNet [5], we adopt dilated causal convolution
(TCN) to capture the temporal dependencies. Compared
with the traditional 1D convolution, the dilated casual
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convolution skipped a fixed step to perform the convolution
operation. ,rough stacking multiple dilated casual con-
volution layers, it is possible to make the receptive field
increase exponentially. Meanwhile, when processing input
sequences of the same length, the number of parameters in
dilated convolution is less, and the training speed is faster
than RNN. Because the spatial distribution of observation
points is scattered and far apart, we believe that the rela-
tionship between observation points has a delay effect of one
hour or even longer, and dilated convolution has better
expansibility.

To learn the temporal information better, we utilize a
gated mechanism based on the dilated casual convolution
(G-TCN) to control information flow. Suppose
X ∈ RN′×M×P is the input data; the output of a gated con-
volution is as follows:

h � tanh Θ1⋆X + b( ⊙ σ Θ2⋆X + c( , (1)

where Θ, b, and c are learning parameters, ⋆ is the con-
volution operator, ⊙ is the elementwise product, and σ is an
activation function, which controls the ratio of information
flow to the next layer.

4.3.2. Graph Attention Convolution Block. Because GAT
allows for aggregating information from other nodes by
assigning different importance and GCN is an efficient
variant of the convolutional neural network, which could be
used in a non-Euclidean spatial structure, we construct a
graph attention convolution block (GAC) with a GAT layer
and a GCN layer to learn the spatial dependencies. In this
work, we adopt the GCN layer proposed in Graph WaveNet
to furthermodel hidden spatial dependencies based onGAT,
and the GCN formulation is as follows:

Z � 
K

k�0
P

k
fXWk1 + P

k
bXWk2 + A

k

aptXWk3, (2)

where A
k

apt ∈ R
N′×N′ represents the normalized adjacency

matrix with self-loops,X ∈ RN′×D denotes the input data,N′
is the number of available nodes, D represents the char-
acteristic dimension, W ∈ RD×M is the learning parameters,
and Z ∈ RN′×M denotes the output. If the graph is directed,
then the diffusion process has two directions. Let Pk

f rep-
resent the forward direction, Pk

b represent the backward
direction, and k represent the order of diffusion. It is worth

noting that when the road network is denoted as an un-
directed graph, equation (2) will be changed into the
following:

Z � 
K

k�0
P

kXWk1 + A
k

aptXWk2. (3)

4.4.Multicomponent Fusion. In this section, we discuss how
to integrate the outputs of the three components, YR, YD,
and YW. In the multicomponent fusion block, YR, YD, and
YW are concatenated along the feature axis and regarded as
feature vectors of different spatial-temporal dependencies.
,en, we use two convolution layers with the ELU activation
function to learn correlations of three components and the
characteristics of each prediction time step. ,e outputs of
the three components are fused as follows:

Y � W2∗ELU W1∗ YR
YD

����
���� YW  , (4)

where ‖ means concatenation operation and ∗ is the con-
volution operation.

5. Experiments and Results

5.1.Datasets. We verify MSTGACN on three traffic datasets,
METR-LA, PeMS-BAY, and PeMSD7-sparse. To test the
performance of various models in the case of sparse data
points, we reconstruct datasets with different degrees of
sparsity by selecting sensors. ForMETR-LA, we select 24, 32,
40, 48, 56, 64, 72, 80, 88, 96, 104, 136, 168, and 200 nodes to
reconstruct 14 datasets with different spatial densities. For
PeMS-BAY, besides the amounts of sensors used in METR-
LA, we also selected 232, 264, and 296 nodes to reconstruct
17 datasets. We adopt the same data preprocessing proce-
dures as in [7]. In both datasets, a time step denotes
5minutes and the data are normalized via the Z-Score
method.

METR-LA: ,is dataset records four months of traffic
speed data ranging from Mar 1st, 2012, to June 30th,
2012, including 207 sensors on the highways of Los
Angeles County.
PeMS-BAY: ,is dataset is collected from the Cal-
ifornia Transportation Agencies (CalTrans) Perfor-
mance Measurement System (PeMS). It records six

G-TCN GAT GCN + BN G-TCN GAT GCN + BN

Skip
Connection

weight sharing

Figure 3: ,e architecture of ST-GAC block.
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months of statistics on traffic speed ranging from Jan
1st, 2017, to May 31st, 2017, including 325 sensors in
the Bay Area [39].
PeMSD7-sparse: We selected 42 sensors in Los Angeles
and collected twomonths of data ranging fromMar 1st,
2012, to July 2nd.,e selected 42 sensors can be divided
into 21 pairs; the two sensors in a pair are very close but
face opposite directions. It can be considered that there
are 21 nodes in the undirected graph, and each node
contains traffic data in two directions. We use the
Euclidean distance to calculate the distance between
two nodes. ,e sensor distributions are visualized in
Figure 4.

In all of these datasets, we aggregate traffic data into 5
minutes and apply Z-Score normalization. ,e datasets are
split in chronological order with 70% for training, 10% for
validation, and 20% for testing.

5.2. Baselines. We compare MSTGACN with the following
models.

HA: Historical Average that models the traffic flow as a
seasonal process and uses a weighted average of pre-
vious seasons as the prediction.
VAR [40]: Vector Auto-Regression, a more advanced
time series model that captures the pairwise relation-
ships among all traffic flow series.
DCRNN [7]: Diffusion Convolutional Recurrent
Neural Network that integrates diffusion convolution
with recurrent neural networks.
Graph WaveNet [5]: a convolution network archi-
tecture that combines graph convolution with dilated
casual convolution and introduces a self-adaptive ad-
jacency matrix.
STGCN [17]: A spatial-temporal graph convolution
model to predict traffic speed.
ASTGCN [8]: Attention-Based Spatial-Temporal
Graph Convolutional Networks, which combines the
spatial-temporal attention mechanism and the spatial-
temporal convolution.
ST-MetaNet [37]: a model with graph attention net-
works (GAT), using metaknowledge to generate
weights of GAT.

5.3. Experimental Settings. Our experiments are conducted
on a 64-bit Linux Server with one Intel(R) Core(TM) i7-
7800X CPU @ 3.50GHz and one NVIDIA Titan Xp GPU
card. All the tests use 60minutes as the historical time
window. In other words, 12 data points are used to predict
the traffic data in the next 5, 15, and 30 minutes. To cover the
input sequence length, we use four ST-GAC blocks, and
dilated factors of the two T-GAC blocks are set as 1 and 2,
respectively. We adopt Adam optimizer to train our model.
,e initial learning rate is set as 0.001.,e dropout rate is 0.5
and 0.3 in GCN and GAT; we set the output dimensions of
the GAT layer and GCN layer to be 32, respectively. We use

equation (2) as our graph convolution layer and the diffusion
steps K is set as 2. ,e adjacency matrix is constructed by
road network distance with a thresholded Gaussian kernel.

Avi,vj
�

exp −
d
2
vi,vj

σ2
⎛⎝ ⎞⎠, if exp −

d
2
vi,vj

σ2
⎛⎝ ⎞⎠≥ ε,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where dvi,vj
is the distance between point i and point j, σ is

the standard deviation, andϵ is a threshold value to control
the matrix sparse degree, and we set ε � 0.1 in our model.

To evaluate the performance of different methods, we
evaluate MSTGACN, HA, VAR, DCRNN, STGCN, ST-
MetaNet. and Graph WaveNet. For these seven models on
METR-LA, PeMS-BAY, and PeMSD7-sparse, we adopt
Mean Absolute Errors (MAE) and Root Mean Squared
Errors (RMSE) as the evaluation metrics.

6. Quantitative Experimental Results

Tables 1 and 2 demonstrate the average results of
MSTGACN and the baseline methods on PeMS-BAY and
METR-LA with a different number of nodes. It can be seen
that although MSTGACN is second only to Graph
WaveNet on the complete dataset, as the number of nodes
decreases, the performance of our model gradually ex-
ceeds other methods. Tables 1 and 2 show that the per-
formances of STGCN are the worst among models based
on deep learning. It may be because STGCN defines the
road network as an undirected graph, and these two
datasets are defined as directed graphs in DCRNN [7]. ,e
lack of direction leads to a decrease in STGCN perfor-
mance. To verify this view and further test the validity of
MSTGACN, we evaluate these models on the PeMSD7-
sparse dataset.

Table 3 gives the results of MSTGACN and the baseline
methods for 5 minutes, 15 minutes, and 30 minutes ahead
prediction on the PeMSD7-sparse dataset. We observe the
following:

Figure 4: ,e distribution of selected sensors in PeMSD7-sparse.
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(1) On the traffic dataset with scattered location dis-
tribution, whether short-term prediction within
5minutes or a mid-term prediction of 30minutes,
the prediction effects of HA and VAR are bad. It is
because HA does not mine the spatial or temporal
features of data. Because of VAR’s limited modeling
ability and the inability to learn mid- and long-term
changes, it does not perform well in mid- and long-
term prediction.

(2) ,e accuracy of STGCN and ASTGCN is lower
than that of Graph WaveNet and the proposed
method. By comparing their original datasets, it
can be found that there are apparent up-down
relationships in the datasets used in the two ar-
ticles. ,erefore, in the case of scattered point
distribution, STGCN and ASTGCN cannot ef-
fectively learn the spatial-temporal dependencies

in the data. ,e method of capturing the spatial-
temporal dependencies based on the attention
mechanism proposed in ASTGCN is conducive to
long-term prediction. ,erefore, under the pre-
diction time of 30minutes, the performance of
STGCN is better than ASTGCN.

(3) Single Recent is a degraded version of MSTGACN,
which only has one recent component. Due to
the designed GAC block, even the single-com-
ponent model, its performance is better than
baselines.

,e proposed model uses the GAC block to learn the
spatial dependencies, and the multicomponent structure
helps capture the correlations under different periods. ,us,
our MSTGACN achieves the best performance in PeMSD7-
sparse in terms of all evaluation metrics. To verify the ef-
fectiveness of the multicomponent division, we investigate

Table 1: Performance comparison of different methods on PeMS-BAY with different number of nodes.

Model
24 nodes 56 nodes 88 nodes 232 nodes 325 nodes

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 3.01 6.15 3.20 6.37 3.11 6.08 2.90 5.67 2.88 5.99
VAR 2.31 4.52 2.44 4.55 2.40 4.44 2.31 4.14 2.33 4.12
DCRNN 1.94 4.46 2.02 4.69 1.90 4.25 1.75 3.87 1.73 3.89
STGCN 2.22 4.84 2.25 4.82 2.18 4.66 1.89 4.15 1.89 4.31
ST-MetaNet 1.79 4.35 1.85 4.32 1.77 4.13 1.78 4.16 1.75 4.09
GraphWaveNet 1.79 4.21 1.79 4.10 1.73 3.87 1.60 3.58 1.58 3.54
MSTGACN (ours) 1.70 3.90 1.72 3.84 1.69 3.77 1.63 3.57 1.63 3.58

Table 2: Performance comparison of different methods on METR-LA with different number of nodes.

Model
24 nodes 56 nodes 80 nodes 136 nodes 207 nodes

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 6.82 11.26 6.47 10.91 6.91 11.34 7.37 11.83 7.50 11.93
VAR 4.58 8.51 4.61 8.44 4.73 8.40 4.74 8.34 4.68 8.37
DCRNN 3.64 7.46 3.32 6.83 4.20 9.99 3.10 6.29 3.17 6.47
STGCN 6.06 9.35 6.03 9.11 6.03 9.12 6.09 9.08 3.65 7.46
ST-MetaNet 3.25 6.82 3.03 6.33 3.10 6.37 3.00 6.20 3.06 6.23
GraphWaveNet 3.22 6.52 3.01 6.14 3.09 6.14 3.02 6.07 3.04 6.09
MSTGACN (ours) 3.22 6.47 3.01 6.09 3.11 6.18 3.06 6.10 3.14 6.16

Table 3: Performance comparison of different methods on PeMSD7-sparse. Single Weekly, Single Daily, Single Recent, and Triple Recent
are the degraded versions of MSTGACN.

Model
5min 15min 30min

MAE RMSE MAE RMSE MAE RMSE
HA 26.25 40.60 26.25 40.60 26.25 40.60
VAR 20.44 30.40 25.56 37.35 30.60 43.86
STGCN 20.14 29.72 23.43 34.54 26.70 39.03
ST-MetaNet 22.27 32.07 24.45 35.58 26.44 38.91
ASTGCN 21.00 30.55 23.61 34.67 25.98 37.96
DCRNN 19.69 29.40 21.83 33.20 23.48 35.87
Graph WaveNet 19.38 28.83 22.39 32.95 23.43 35.61
Single Weekly (ours) 26.79 40.84 26.46 40.68 26.40 40.50
Single Daily (ours) 26.84 40.68 26.59 40.43 26.68 40.46
Single Recent (ours) 19.23 28.74 21.28 32.29 22.85 34.67
Triple Recent (ours) 19.19 28.57 21.12 32.02 22.64 34.45
MSTGACN (ours) 18.88 28.35 20.65 31.42 21.70 33.33
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our model with different component settings. As shown in
Table 3, we find that the performance of the degraded model
with only the weekly component or daily component is not
good. It can be considered that it is difficult to learn the
temporal and spatial features of spatial-temporal data using
only these two periods of data, which indicates that spatial-
temporal features are dynamically changing, so it is hard to
make accurate predictions for future data using historical
data that are far apart. ,e single recent model performs
much better than the single weekly and single daily model,
and the triple recent model gets better performance than the
single recent model. It could be considered that the com-
ponents in the triple recent model are combined according
to the bagging method, which can effectively improve the
performance of ensemble models. ,e proposed model,
which consists of recent, daily, and weekly components,
achieves the lowest predicting errors.

6.1. Comparative Experiment of GAC Block. In traffic pre-
diction tasks, different spatial nodes are correlated. Accu-
rately capturing the correlations between sensors in road
networks is necessary to predict the traffic data. Because the
PeMS dataset is a highway dataset, there are many adjacent
points on the same road when the points are densely

distributed. ,ese points have an obvious upstream and
downstream relationship. When the number of nodes de-
creases, there are few adjacent points located on the same
road, and there are many intersections between different
nodes. ,erefore, the upstream and downstream relation-
ship between the points is not obvious and the spatial
correlation between different points decreases. Because there
are multiple intersections between different detectors, we
think that the single use of GAT or GCN is insufficient to
capture the spatial relationship.

Before each GCN module, we used an extra GAT
module. Although the original intention was to increase the
model’s ability by extracting features through GAT and
summarizing information through GCN on sparse data, the
application of this attention mechanism with shared pa-
rameters in the block could also help alleviate the over-
smoothing of GCN. We did comparative experiments of
different modules on PeMSD7-sparse. As shown in Table 4,
GAT+GCN shows the best result.

7. Qualitative Experimental Results

7.1. Visual Comparison of MAE. Figure 5 demonstrates the
average results on PeMS-BAY. It can be seen that although
MSTGACN is second only to Graph WaveNet on the

Table 4: Performance comparison of different methods on PeMSD7-sparse. Single Weekly, Single Daily, Single Recent, and Triple Recent
are the degraded versions of MSTGACN.

Module
5min 15min 30min

MAE RMSE MAE RMSE MAE RMSE
GAT 19.86 29.33 21.99 33.01 23.84 35.87
GCN 19.38 28.83 22.39 32.95 23.43 35.61
GCN+GAT 19.43 28.96 21.47 32.64 23.06 35.25
GAT+GCN 19.23 28.74 21.28 32.29 22.85 34.67
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Figure 5: ,e performance of various existing methods. (a) Performance on sparse PeMS-BAY with different node amounts. (b) Per-
formance of different methods in different forecasting duration.
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Figure 6: Input an hour data, the spatial attention matrix coefficients calculated by different GAT layers. (a) ,e first GAT calculation.
(b) ,e second GAT calculation. (c) ,e penultimate GAT calculation. (d) ,e last GAT calculation.
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Figure 7: Continued.
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complete dataset, as the number of nodes decreases, the
performance of our model gradually exceeds other methods.
In order to study the influence of prediction time on model
performance, the prediction time is gradually increased from
5minutes to 1 hour at an interval of 5minutes. As shown in
the figure, the model proposed in this article has achieved
good results in both short-term prediction and long-term
prediction.

7.2. Visualization of Attention Matrix. To test the perfor-
mance of stacked GAC blocks, we show different spatial
attention matrices among detectors in the PeMS-BAY with 8
nodes. As shown in Figure 6, as the number of GAT
computations increases, the spatial attention matrix coef-
ficients also increase. ,is is reasonable since the stacked
GAC blocks increase the receptive field and the distant
points also could be highly correlated.

7.3. Visualization of Traffic Flow. As shown in Figure 7, we
selected four days of data for visual comparison and found
that our model could predict the same data trends as the real
data.

8. Conclusions

In this article, we propose a deep learning framework for
traffic prediction in the case of spatially sparse data. ,e
model combines dilated causal convolution, graph convo-
lution layer, and the weight-shared graph attention layer.
,e parameters of two GAT layers are shared in one block to
capture the spatial-temporal dependencies of traffic data in
the case of sparse points. To capture the multiple periodic
information, we extract the day-of-week and time-of-day
information as additional features. Moreover, we divide the
input data and model structure into three components.

Experiments on three real-world datasets show that the
predicting accuracy of our model is superior to baselines. In
general, traffic data are affected bymany external factors, like
weather, events, and holidays. In the future, these external
factors should be taken into consideration to improve the
predicting performance in the case of spatially sparse data.
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Figure 7: Comparison of the predicted traffic flow with the real data.
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