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Object detection is an important part of autonomous driving technology. To ensure the safe running of vehicles at high speed, real-
time and accurate detection of all the objects on the road is required. How to balance the speed and accuracy of detection is a hot
research topic in recent years. ,is paper puts forward a one-stage object detection algorithm based on YOLOv4, which improves
the detection accuracy and supports real-time operation. ,e backbone of the algorithm doubles the stacking times of the last
residual block of CSPDarkNet53. ,e neck of the algorithm replaces the SPP with the RFB structure, improves the PAN structure
of the feature fusion module, adds the attention mechanism CBAM and CA structure to the backbone and neck structure, and
finally reduces the overall width of the network to the original 3/4, so as to reduce the model parameters and improve the inference
speed. Compared with YOLOv4, the algorithm in this paper improves the average accuracy on KITTI dataset by 2.06% and BDD
dataset by 2.95%. When the detection accuracy is almost unchanged, the inference speed of this algorithm is increased by 9.14%,
and it can detect in real time at a speed of more than 58.47 FPS.

1. Introduction

In recent years, deep learning has been widely applied in
various fields, including computer vision [1], social services
[2], and autonomous driving [3]. With the rapid develop-
ment of sensors and GPU, the computing speed of deep
learning algorithm is greatly accelerated, especially in the
past decade, when it has been noticed that the fully au-
tonomous vehicles might become a reality in the foreseeable
future. According to the report, two-thirds of the fatal ac-
cidents every year are related to the urban traffic network [4],
and the variability of autonomous driving scenes (such as
cars and people in different weather, different light, and with
or without occlusion) makes it particularly difficult to detect
them accurately.,erefore, there are still many difficulties in
the detection task.

,e main task of autonomous driving is to accurately
and quickly detect the vehicles, pedestrians, traffic lights,
traffic signs, and other objects around the vehicles, in order

to ensure the safety in driving. Generally, autonomous ve-
hicles use various sensors, such as cameras, lidar, and radar,
to detect objects [5]. Some researchers [6] detect vehicles by
extracting binary images from discrete sensor arrays, and
some researchers [7] have achieved good results in the
detection task in bad weather through the sensing method of
radar and camera information fusion. Compared with other
sensors, the camera is now more accurate and more cost-
effective at detecting objects. Object detection algorithm
based on deep learning becomes an essential method in
autonomous driving because it can achieve high detection
accuracy with less computing resources.

Object detection algorithm of autonomous vehicles
should satisfy the following two conditions: First, high
detection accuracy of road objects is needed. Secondly, a
real-time detection speed is very important for whether the
detector can be used in driving. Object detection algorithms
based on deep learning can be roughly divided into two
categories: two-stage and one-stage. Two-stage algorithm
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generates region proposal in the first stage and goes on bbox
regression and object classification prediction in these re-
gions in the second stage, e.g., R-CNN [8], Fast R-CNN [9],
Faster R-CNN [10], and R-FCN [11]. Two-stage algorithms
usually have a high accuracy but have a relatively slow
detection speed. One-stage algorithms, such as SSD [12] and
YOLO [13], perform classification and regression in just one
stage. ,ese methods generally have a low accuracy but a
high detection speed. In recent years, object detectors
combining various optimization methods have been widely
studied [14–18] in order to take advantage of both types of
method. MS-CNN [14], a two-stage object detection algo-
rithm, improves detection speed by a series of intermediate
layers. RFBNet [18], a one-stage algorithm, proposes re-
ceptive filed blocks to expand the receptive field to improve
accuracy. However, previous studies [14–17] can no longer
satisfy the detector speed above 30 fps, one of the prereq-
uisites for autonomous driving, when the input resolution
reaches 512× 512 or higher. ,is indicates that the previous
schemes are incomplete in terms of the trade-off between
accuracy and speed and therefore difficult to apply in the
field of autonomous driving.

,e problem of most object detection algorithms is that
large objects are easily detected, while small objects are often
ignored by the detector. It is extremely dangerous to miss
pedestrians, traffic lights, and traffic signs in autonomous
driving. In recent years, there are many feature fusion al-
gorithms for small object detection [19–22]. Kaiming He
proposed SPPNet [19] in 2014 to extract features of any
aspect ratio region, which provides an idea for the detection
algorithms such as YOLOv3 [23] and YOLOv4 [24]. FPN
[20] is a multiscale feature fusion network structure. FPN
combines high-level semantic features and low-level location
features to effectively improve the detection accuracy of
small targets. PANet [21] is an improved version of FPN,
which adopts the top-down and bottom-up transmission
mode to eliminate the problem of information loss from the
bottom features to the high features. ASFF [22] is a novel
feature fusion strategy, which reduces the conflict and in-
consistency between different feature layers through adap-
tive spatial feature fusion and improves the effectiveness of
feature pyramid.

In addition, some researchers [25, 26] try to add P6 and
P7 detection layers after P5 with 32 times downsampling rate
to improve the detection accuracy of small objects, but it
brings huge computational cost and speed loss. YOLO series
algorithm [13, 23, 24, 27] is one of the faster one-stage al-
gorithms, especially the YOLOv4. It improves the low ac-
curacy of YOLO [13], YOLOv2 [27], and YOLOv3 by
combining the advantages of a large number of excellent
models and adding a large number of training tricks.
However, both YOLOv4 and previous algorithms are trained
and optimized for MS-COCO [28], which requires a large
number of categories to be detected and its context is highly
variable. So these models are suboptimal when applied to the
field of autonomous driving. ,erefore, this paper proposes
a new method to improve the accuracy of the model by
embedding the RFBmodule [18] into the backbone network,
optimizing the PAN, adding attention module CBAM [29]

and CA [30], and reducing the computation, improving the
real-time performance by scaling the width of the network.

2. Related Work

YOLO [13] is different from the two-stage algorithm using
region proposal to get regions of interest. Instead, it detects
objects by segmenting the image into grid cells. Its output
layer information includes bbox coordinates, confidence,
and classification score. ,erefore, it can detect multiple
objects through a single stage, and the speed is much faster
than two-stage algorithm. However, due to the fact that it
predicts coordinates directly and not based on anchor, it is
difficult to detect small objects. YOLOv2 [27] adds BN layer
after convolution layer, applies the idea of bbox based on
anchor, multiscale training, and uses passthrough layer to
fuse fine-grained features, which improves the accuracy
compared with YOLO and YOLOv3 [23]; its backbone
DarkNet53 applies residual connection to solve the problem
of deep network gradient disappear; FPN feature fusion
retains small object fine-grained features; multiscale pre-
diction makes the network detect objects of different sizes. It
has a more obvious improvement compared with YOLO and
YOLOv2. ,e structure of YOLOv4 [24] is shown in Fig-
ure 1. On the basis of YOLOv3, a large number of excellent
methods and training tricks in recent years are tried.
Backbone CSPDarkNet53 is DarkNet53 integrated into CSP
structure [31]. ,e SPP module [19] after the backbone
significantly increases the receptive field but hardly affects
the inference speed. ,e repeated extraction process of PAN
[21] structural features alleviates the problem of serious
information loss when the bottom information is transferred
to the top in FPN. As with YOLOv3, the prediction layer is
carried out on three different scales to detect objects of
different sizes. ,e inference speed of YOLOv4 is faster than
that of YOLO and YOLOv2 because it only consists of 1× 1
and 3× 3 small convolution layers. ,e parameters of the
backbone with CSP structure are greatly reduced, and the
information exchange between layers is greatly improved.
,erefore, the inference speed and accuracy are better than
those of YOLOv3. It can also satisfy the high real-time
requirement of autonomous driving system. However,
generally speaking, its accuracy is still lower than that of the
two-stage algorithm, and it does not optimize for the sit-
uation of many small objects in the autonomous driving
scene. To make up for this, we use YOLOv4, which has a
lower complexity than the two-stage algorithm, and improve
the accuracy and speed of YOLOv4 through additional
methods, so as to design a more efficient detector for au-
tonomous driving.

Since SENet [32] shined in the last ImageNet classifi-
cation competition in 2016, the attention module of plug-
and-play can be directly applied to the existing neural
network because of its flexibility, which is popular in
computer vision tasks. CBAM [29] considers the location
information ignored by SE module and uses large-scale
convolution to utilize the location information by reducing
the number of channels, which has better interpretability
than SE module. CA [33] is a newly proposed attention
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module. In order to alleviate the loss of location information
caused by 2D global pooling, channel attention is decom-
posed into two parallel 1D feature decoding processes, and
the location information is effectively embedded into
channel attention.

Traditional object detection algorithm usually uses mean
square error (MSE, L2) or smooth L1 [9] to regress the center
point coordinates and the width and height of bbox directly,
i.e., {xcenter, ycenter, w, h}, or the upper left corner and lower
right corner, i.e., {xtop left, ytop left, xbottom right, ybottom right}.
For the anchor-based object detection algorithm, it is to
regress the offset, that is, {xoffset, yoffset, woffset, hoffset}. But
regression of bbox directly is to take the four bbox points as
independent variables, without considering the correlation
between them, and in the process of training, it is more
inclined to large objects, because the loss of small objects is
originally small. ,erefore, in order to better deal with this
problem, IoU loss [34] was proposed to treat bbox as a whole
regression and take GT into account. IoU has scale in-
variance; it can solve the problem that loss increases with
scale in regression. Recently, with the continuous im-
provement of researchers, GIoU loss [30] was proposed. In
addition to IoU, GIoU loss also considers the shape and
direction of the object to solve the problem that IoU loss can
not reflect the size of coincidence degree and return gradient
when IoU is zero. DIoU loss [35] is to replace the penalty
term of GIoU to maximize the overlap area with the min-
imum circumscribed rectangle by minimizing the Euclidean
distance of bbox and GTcenter points, so as to accelerate the
convergence. As for CIoU loss [35], the aspect ratio is
considered on the basis of DIoU.,is year, some researchers
put forward EIoU loss [36], thinking about that the relative

aspect ratio in CIoU loss cannot reflect the real difference
with its confidence, so the real width loss and high loss are
calculated, respectively, and then added up.

,e autonomous driving scene is different from the daily
life scene, which does not need to pay attention to those
unimportant classes. ,erefore, most of the advanced
models optimized for MS-COCO [28] are suboptimal.
KITTI [37] is a common dataset in autonomous driving
scenes. It is collected in urban areas, rural areas, and ex-
pressways. Each image has up to 15 cars and more than 30
pedestrians, and there are various degrees of occlusion and
truncation. BDD100k [38] is a large and diverse public
driving dataset released by the Berkeley AI Research (BAIR)
in recent years, including different weather conditions, day
and night, as well as different lighting conditions and oc-
clusion. ,is paper proposes two algorithms based on
YOLOv4. ,e first algorithm improves the accuracy by
adding CSP [31] structure into feature fusion, inserting
attention mechanism, and using EIoU regression loss
function to accelerate model convergence. ,e second al-
gorithm improves the detection accuracy of dense small
objects by inserting RFB [18] module. Finally, the width is
reduced to 3/4 of the original to improve the inference speed,
as shown in Figure 2.

3. Proposed Work

According to YOLOv4 [24], the anchor-based one-stage
detection algorithm is generally composed of backbone,
neck, and predictor head. ,e first model proposed in this
paper inserts the attention mechanism into the bottleneck of
the residual structure and adds the CSP structure into the
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neck as the baseline of this paper. In addition, in model 2,
slightly adjust the number of iterations of the backbone,
adjust the insertion position of the attention mechanism,
replace the SPP structure, and scale the overall network
structure in the width direction. ,e improved algorithm
meets the needs of real-time detection. It is a multiscale real-
time detection algorithm specially designed for autonomous
driving scene.

3.1. Backbone. CSPDarkNet53 of YOLOv4 is an excellent
backbone, which can solve the task of feature extraction in
most detection scenes. ,e first model proposed in this
paper continues to use CSPDarkNet53 and only adds CA
attention module into bottleneck (see Figure 3). ,e ef-
fectiveness of attention mechanism has been fully verified in
many detection models. It can greatly increase the ability of
feature extraction by adding only a small number of pa-
rameters. In order to more fully enhance the feature ex-
traction ability of backbone in complex traffic scenes, the
second model doubled the number of iterations of the last
layer of its residual structure (i.e., increased to 8). In the
experiment, it was found that it is better to modify the
attention mechanism to CBAM and the insertion position to
be outside the residual structure and inside the CSP
structure, as shown in Figure 4(b).

CBAM [29] and CA [30] modules are shown in Figure 5.
Both CBAM and CA are attention mechanisms of mixed
channel and space. Compared with the single channel at-
tention mechanism SE [32], the neural network will pay
more attention to the object area containing important

information, suppress irrelevant information, and improve
the overall accuracy of object detection. Figure 3 is the CA
attention mechanism insertion position of model 1.

3.2. Neck. For CNN, the more backward layers are rich in
semantic information. YOLOv4 uses SPP [19] after back-
bone to increase the receptive field of the network. Com-
pared with the pure pooling of SPP, RFB [18] draws lessons
from Inception in structure, adopts the horizontal con-
nection fusion network layer, and increases the receptive
field and reduces the amount of calculation through dilated
convolution, which is more robust. As shown in Figure 6,
RFB block is composed of 3× 3 convolution and three di-
lated convolution layers.

PAN [21] is a feature enhancement structure for feature
fusion. It adopts a top-down and bottom-up transmission
mode to eliminate the loss of feature information from the
bottom feature to the high feature. However, the layer
structure between PAN is connected in the form of ordinary
convolution. CSP [31] structure has shown its advantages in
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backbone: strengthening information exchange between
channels and reducing the amount of calculation. ,erefore,
adding CSP structure to the layer structure between PAN is
more refined and has less parameters than CSP structure in
CSPDarkNet53 (see Figure 4).

3.3. PredictorHead. In object detection, the conflict between
classification and regression tasks is a well-known problem,
so the prediction head for classification and regression is
widely used in most detectors. YOLOv4 follows the pre-
dictor head of YOLOv3, which consists of one 3× 3 and one

1× 1 convolution layer.,e final predicted output channel is
na × (4 + 1 + nc), where na is the number of anchors in each
detection layer and nc is the number of classes. Proposed
work follows this structure.

3.4. Loss Function. For the object detection model, the loss
function is generally the sum of confidence loss, classifi-
cation loss, and bbox regression loss. Binary cross entropy
(BCE) was used for confidence loss and classification loss,
and EIoU loss was used for bbox regression loss.

L � λ1Lobj + λ2Lcls + λ3Lbox, (1)

Lobj � −
1
N


i

Oi ln Ci) + 1 − Oi( ln 1 − Ci)), (2)

Lcls � −
1

Npos
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In formula (1), λ1, λ2, λ3 are the coefficient of each loss,
which are hyperparameters. In formula (2) Oiε[0, 1] rep-
resents the IoU of the predicted bounding box and the groud
truth, Ci � sigmoid(Ci), Ci is the predicted value, and N is
the number of positive and negative samples. In formula (3),
Oijε 0, 1{ } indicates whether there is a jth class in the ith
prediction bounding box, Cij � sigmoid(Cij), Cij is the
predicted value, and Npos is the number of positive samples.
In formula (4), ρ2(b, bgt) denotes the Euclidean distance
between the center points of bbox and GT, C is the diagonal
of the smallest circumscribed rectangle of the two boxes, and
Cw, Ch are the width and height of the minimum circum-
scribed rectangle.

3.5. 3e Performance of Different Models. ,e parameter
quantity and calculation quantity of different networkmodel
weights are shown in Table 1. All models are tested at
512× 512 resolution, with FP16-precision.

It can be seen that the parameters of proposed work (1)
are 11.61M less than YOLOv4 and 6.35M less than YOLOv3.
,e parameters of proposed work (2) are reduced by 41.3%

and 36.1%, respectively, compared with YOLOv4 and
YOLOv3. In addition, from the perspective of FLOPs,
proposed work greatly reduces the complexity. At the same
time, in terms of model size, proposed work (2) only oc-
cupies 72.1MB, which is 40.9% less than that of YOLOv4,
which largely depends on the impact of CSP structure in-
troduced in neck and 3/4 reduction in overall width. It is
suitable for carrying and using in autonomous driving.

4. Experiment

4.1. Dataset. In the experiment, we used KITTI [37] and
BDD100k [38], which are commonly used in autonomous
driving research. KITTI dataset consists of 7481 training sets
and 7518 test sets, including three classes: Car, Cyclist, and
Pedestrian. Since the test set has no label, the training set and the
validation set are split by randomly dividing the training set into
two halves [39, 40]. BDD100k dataset is composed of 70,000
training sets, 10,000 validation sets, and 20,000 test sets, in-
cluding ten classes: person, rider, car, bus, truck, bike, motor,
traffic light, traffic sign, and train. ,e ratio of training set and

CSPN =

Conv Bottle
Neck Conv2D

Conv2D
Concat BN LeakyReLU Conv×N

(a)

Conv
Bottle
Neck

CBAM

Conv

Concat Conv
CSPN
CBAM = ×N

(b)

Figure 4: (a) CSP in YOLOv4. (b) CSP in proposed work (2).
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verification set is 7 :1. ,ere are about 1.46 million object in-
stances in training set and validation set, of which about 0.8
million are car instances, while only 151 are train instances.,is
kind of unbalanced distribution among categories will lead to
the decline of network feature extraction ability, so train, rider,
and motor are ignored in the final evaluation. ,e final BDD
dataset includes seven classes: person, car, bus, truck, bike,

traffic light, and traffic sign. Since we only studied the differ-
ences between models, 1/5 of the training set and validation set
are randomly sampled as the final dataset. ,e experiment was
carried out on Ubuntu 18.04, NVIDIA Quadro M4000, CUDA
10.1, and cuDNN v7.6.5. ,e inference speed is related to the
hardware equipment. ,e inference test FPS in this paper is
carried out on NVIDIA RTX 2080Ti.
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4.2.AnchorDesign. For the KITTI and BDD datasets used in
this paper, we set the anchor box size to obtain accurate
prediction results. ,e results obtained by k-means clus-
tering algorithm are shown in Table 2.

4.3. Performance Evaluation of Proposed Work. In order to
check the effectiveness of the improved YOLOv4 network, a
comparative experiment is carried out between the original
YOLOv4 model and the improved YOLOv4 model. Gen-
erally speaking, the test results can be divided into four
categories: TP (True Positive) is the positive sample of
correct prediction; FP (False Positive) is the positive sample
of false prediction; TN (True Negative) is the negative
sample of correct prediction; FN (False Negative) is the
negative sample of false prediction. ,e confusion matrix is
shown in Table 3.

,e number of all positive samples predicted by the
model is TP + FP, and the proportion of correct positive
samples is called precision, as shown in formula (5). ,e
number of all positive samples in the validation set is
TP + FN, and the proportion of predicted positive sam-
ples is called recall, as shown in formula (6).

Precision �
TP

TP + FP
, (5)

Recall �
TP

TP + FN
. (6)

AP value is usually used as a criterion to evaluate the
performance of object detection model. AP value is the area
enclosed by P-R curve (with recall as x axis and accuracy as y
axis). AP represents the accuracy of the model in a certain
category; mAP represents the average accuracy of all cate-
gories, which can measure the performance of the model in
all categories. mAP50 represents all mAP values with IoU of
prediction box and GT greater than 0.5. As shown in for-
mulas (7) and (8).

AP � 
1

0
P(R)dR, (7)

mAP �


N
i�1 APi

N
. (8)

For KITTI [37] dataset, the IoU of Car is usually set to
0.7, and Cyclist and Pedestrian are set to 0.5, while for BDD
dataset [38], the IoU of all classes is set to 0.5. In the training
of YOLOv4 and proposed model 1, the batch size is set to 16,
while in model 2, the batch size is set to 32, the learning rate
is set to 0.003, and 300 epochs are trained.

In order to reflect the performance of the improved
model entirely, the evaluation results are compared with
other researches [14, 18, 39]. ,ese experimental results are
from [39], as shown in Table 4. ,ese researches are not
included in Table 5 as AP50 evaluation results of BDD
dataset.

As shown in Table 4, the mAP of YOLOv4 in KITTI
validation set is 86.43%, while the mAP of model 1 is 88.49%,
and the detection accuracy is improved by 2.06%. ,e mAP
of model 2 is 86.35%, which is 0.08% lower than that of
YOLOv4, but its parameters and calculation are much less,
and the inference speed is 6.33FPS higher. Table 5 shows the
performance of each model in each class of BDD validation
set. Compared with YOLOv4, the mAP of model 1 is in-
creased by 2.95% and that of model 2 is increased by 1.73%.
In addition, it can be seen that model 1 and model 2 sig-
nificantly improve the detection accuracy of small objects
such as traffic lights and traffic signs. For large objects such
as cars and trucks, the detection accuracy of the improved
model is almost the same as that of the original YOLOv4.
From these results, it can be concluded that model 1 and
model 2 can fully improve the detection accuracy of small
objects without sacrificing the detection accuracy of large
objects. It is worth mentioning that when the input size is
increased to 704× 704, the mAP reaches 61.34%, but it is the
high precision obtained at the expense of speed.

In addition, the PR curves of the three common objects
of the BDD dataset, cars, people, and traffic lights, are shown
in Figure 7. PR curve is an important index for evaluating the
output of object detection algorithm, and its area is the AP
value of this class. It can be seen from Figure 7 that the PR
curves of model 1 and model 2 completely surround the
YOLOv4, which also shows the effectiveness of the proposed
work.

4.4. Visual Evaluation. Figure 8 shows the visual compar-
ison of YOLOv4 and proposed work. It can be seen from the
third row that, in the night environment, model 1 andmodel
2 can detect traffic light object missed by YOLOv4. In the

Table 2: K-means cluster.

Anchor 1 Anchor 2 Anchor 3
KITTI
Small object (10,29) (16,39) (10,90)
Medium object (24,53) (37,71) (27,197)
Large object (57,101) (79,163) (129,246)
BDD
Small object (5,6) (4,12) (7,11)
Medium object (6,20) (13,17) (10,37)
Large object (22,30) (41,57) (99,136)

Table 3: Confusion matrix.

Prediction
Real Positive Negative
True TP TN
False FP FN

Table 1: Comparison of proposed work and YOLOv4.

Models Parameters (M) GFLOPs Model size (MB)
YOLOv3 58.70 100.1 117
YOLOv4 63.96 87.9 122
Proposed work (1) 52.35 71.3 100
Proposed work (2) 37.53 46.2 72.1

Computational Intelligence and Neuroscience 7



Table 4: Evaluation in KITTI.

Detection algorithm Car AP70 Pedestrian AP50 Cyclist AP50 mAP (%) FPS Input size
MS-CNN [14] 87.42 80.43 86.28 84.71 8.13 1920× 576
SINet [15] 89.82 79.20 87.23 85.42 23.98 1920× 576
SSD [12] 85.12 48.06 50.68 61.28 28.93 512× 512
RefineDet [17] 92.74 78.45 81.90 84.36 27.81 512× 512
CFENet [16] 88.47 — — — — 512× 512
RFBNet [18] 86.39 61.62 72.31 73.44 39.20 512× 512
YOLOv3 [23] 79.49 79.01 83.07 80.52 43.57 512× 512
Gaussian YOLOv3 [39] 87.33 79.90 83.60 83.61 43.13 512× 512
YOLOv4 [24] 90.50 80.10 88.70 86.43 52.14 512× 512
Proposed work (1) 92.38 83.60 89.50 88.49 48.37 512× 512
Proposed work (2) 90.05 81.10 87.90 86.35 58.47 512× 512

Table 5: Evaluation in BDD.

Detection algorithm Person Car Bus Truck Bike Traffic light Traffic sign mAP50 (%) FPS Input size
YOLOv4 51.70 69.20 49.30 55.70 43.00 52.30 55.00 53.74 52.84 512× 512
Proposed work (1) 57.30 73.00 50.20 54.00 43.50 58.90 59.90 56.69 48.56 512× 512
Proposed work (2) 55.70 72.00 47.50 53.50 44.80 56.80 58.00 55.47 57.67 512× 512
Proposed work (1) 54.90 77.60 54.90 59.40 50.40 65.30 66.90 61.34 41.20 704× 704
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Figure 7: P-R curve.
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(a) (b) (c)

Figure 8: (a) YOLOv4 inference results. (b) Proposed work (1) inference. (c) Proposed work (2) inference.
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fourth row, model 1 can supplement the detection of in-
correct traffic sign in YOLOv4. In rows 5 and 6, model 1 and
model 2 can find more small objects than YOLOv4. ,e
weather in the first row and the last row is better, and the
detection frame of the improved algorithm is more accurate.

Based on these results, model 1 and model 2 can sig-
nificantly improve the detection accuracy, so as to improve
driving stability and efficiency, prevent fatal accidents, meet
the needs of autonomous driving real-time object detection
task, and have practical application value.

5. Conclusions

Real-time object detection technology is of great significance
in the field of autonomous driving. Aimed at the problem of
insufficient accuracy of one-stage detector in autonomous
driving scene, based on YOLOv4, this paper replaces SPP
with RFB structure after backbone, integrates CSP structure
with less computation into neck structure, and finally adds
CBAM and CA attention mechanism to make the neural
network pay more attention to the object area containing
important information, suppress irrelevant information, and
improve detection accuracy. ,e experimental results show
that the improved model 1 has higher accuracy than the
original YOLOv4 in object detection task. ,e mAP is
improved by 2.06% in KITTI validation set and 2.95% in
BDD validation set. ,e mAP50 of model 2 is increased by
1.73%, and the inference speed is increased by 4.83 fps,
which verifies the effectiveness of the improved algorithm. It
provides a theoretical reference for further practical appli-
cation. In the follow-up work, some researchers are con-
cerned about how to improve the detection accuracy of
[7, 41, 42] at night and under bad weather conditions, and
further improvement of the detection accuracy will also be
our next research direction.
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