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)is paper introduced a relatively new mixture distribution that results from a mixture of Fréchet–Weibull and Pareto dis-
tributions. Some properties of the new statistical model were derived, such as moments with their related measures, moment
generating function, mean residual life function, and mean deviation. Furthermore , different estimation methods were in-
troduced for determining the unknown parameters of the proposed model. Finally, we introduced three real data sets which were
applied to our distribution and compared them with other well-known statistical competitive models to show the superiority of
our model for fitting the three real data sets, and we can clearly see that our distribution outperforms its competitors. Also, to
verify our results, we carried out the existence and uniqueness test to the log-likelihood to determine whether the roots are global
maximum or not.

1. Introduction

Modeling new phenomena is very important in the field of
big data and data science.)ere are many ways for modeling
and representing data. One of these ways is the statistical
modeling for real data sets. Statistical modeling is very
important in real-life sciences, as many applications and
phenomena appear every era of time, so the continuous need
for new distribution grows larger. As we know, many of the
phenomena that arise nowadays need modeling, but, un-
fortunately, the traditional distribution could not model
them. So, sometimes researchers turn to add new param-
eters, may be two parameters, to overcome these deficiencies
in modeling new phonemes. But there is a new way to
overcome all the deficiencies in the traditional distribution.

)is method is formulated by making a mixture from
two or three distributions to formulate a new superior that
can model all the data that the traditional ones failed to

model. Many authors worked on the Pareto distribution; see
[1], where the authors worked on the Pareto-IV distribution
and estimated its parameters under accelerated life test,
when the items were under type-II censored sample. Also, as
an example for authors that worked on the Fréchet distri-
bution, see [2], where the authors estimated the parameters
of the Fréchet distribution under type -II censoring scheme
using classical and Bayesian estimation methods.

Mixture distribution may appropriately be utilized for
specific data set where various subsets of the entire data set
have various properties that can best be demonstrated in-
dependently. )ey can be more mathematically manageable
because the individual mixture components deal with that
more nicely compared to the overall mixture density. Ap-
plications of the mixture of distributions play an important
role in reliability theory, insurance risk theory, and the oil
industry. Willmot [3] presented the asymptotic tail behavior
of Poissonmixtures with applications. Giudici et al. [4] made
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a novel methodology, dependent on mixtures of the product
of Dirichlet process priors, which gave a formal inferential
device to think about the logical influence of each covariate.

Without characterizing the system, Bucar et al. [5]
demonstrated that the reliability of this system could be
approximated by utilizing a finite Weibull mixture distri-
bution. Nakhi and Kalla [6] discussed the mixture of hyper-
Poisson distribution with mixing a generalized gamma
distribution and hyper-Poisson distribution generalized
gamma mixtures.

Panjer and Willmot [7] discover the estimator of the
scale parameter in mixture models and the inadmissibility of

the unusual estimator set up by displaying better estimators.
)ey used these outcomes in mixtures of normal distribu-
tions and mixtures of exponential distributions. Karim et al.
[8] introduced Rayleigh mixture distribution with various
weight functions, and two correlated Rayleigh random
variables have been determined.

By presuming that the random variable X has a mixture
of distributions if at least one parameter of the distribution
of X is also a random variable. Let g(x; θ) be probability
density function (PDF) of X, where θ is a parameter of the
distribution of X. If θ is a random variable, then X has a
mixture of distributions. )e PDF of X is defined as

f(x) �



θ

g(x; θ)h(θ)dθ, θ is a continuous randomvariable,


θ

g(x; θ)h(θ), θ is a discrete randomvariable.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Extreme point distributions have developed as one of the
most important statistical fields for the applied sciences.
Techniques of extreme point are also becoming heavily utilized
in many other fields. Extreme point analyses often involve
estimate of the likelihood of occurrences which are more
extreme than any previously recorded event. Fréchet and
Weibull distributions are the most important models for ex-
treme values, and many statisticians have studied these models
in many published papers according to their importance in
many fields such as earthquakes, floods, engineering, physics,
quality control, and medicine. For more information about
Fréchet and Weibull distributions, see [1, 2, 9, 10].

So, the main concern of this research is that we derive a
mixture distribution called Fréchet–Weibull mixture Pareto
distribution (FWMPD) from mixing Fréchet–Weibull dis-
tribution with Pareto distribution.)is newmixture has a lot
of significant advantages, which are very flexible and ver-
satile. )is distribution can model skewed and symmetric as
well as asymmetric data. Now we will introduce the concept
that we based our proposed distribution on.

In order to make the paper easier for the reader, we
sectioned and written the paper as follows: In Section 2, we
introduce the proposed distribution and the steps to for-
mulate it. In Section 3, we deduce some of the statistical
properties of the proposed distribution mathematically. In
Section 4, we introduce eight different classical methods for
estimating unknown parameters of the proposed model. For
more about different kinds of classical methods of estima-
tion, see [11–14] and [15]. In Section 5, we introduce three
real data sets as an application to assess the performance of
the distribution and to show its efficiency for fitting different
real data sets. In Section 6, we introduce the conclusions
illustrated from the paper along with the major findings.

2. The Mixture of Fréchet–Weibull and
Pareto Distributions

)e formulation of the new mixture model is presented in
this part of the paper . )e PDF and the cumulative dis-
tribution function (CDF) of the Fréchet–Weibull distribu-
tion [16] (X> 0) is represented as follows:

f(x) � αkβαλαk
x

− 1− αk exp − βα
λ
x

 

αk

⎛⎝ ⎞⎠,

F(x) � exp − βα
λ
x

 

αk

⎛⎝ ⎞⎠,

(2)

where α and k are shape parameters and λ and β are scale
parameters.

)e PDF and the CDF for the Pareto random variable
X≥ b are, respectively, given by

f(x) �
ab

a

x
a+1,

F(x) � 1 −
b

x
 

a

,

(3)

where b is a scale parameter and a is a shape parameter.
If a random variable X follows Fréchet–Weibull distri-

bution and by taking one of its four parameters (λ) as a
random variable following Pareto distribution, then it is said
to have FWMPD when its PDF and CDF are, respectively,
defined as follows:

2 Computational Intelligence and Neuroscience



f(x) � ab
aβa/k

x
− a− 1Γ 1 −

a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦, x, a, b, α, β, k> 0,

(4)

F(x) � e
− βα(b/x)αk

−
b

x
 

a

βa/kΓ 1 −
a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦, (5)

where a, α, and k are shape parameters, b and β are scale
parameters, and Γ[1 − (a/kα), βα(b/x)kα] is upper incom-
plete gamma function.

2.1. Survival and Hazard Functions. )e characteristics
dependent on the reliability function and its correlated
functions are very useful to study the example of any lifetime
phenomenon. )e survival function [S(x)], hazard function
[h(x)], and reverse hazard function [r(x)] of FWMPD are
defined as follows:

S(x) � 1 − e
− βα(b/x)αk

+
b

x
 

a

βa/kΓ 1 −
a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦,

h(x) �
a(b/x)

aβa/kΓ 1 − (a/kα), βα(b/x)
kα

 

x (b/x)
aβa/kΓ 1 − (a/kα), βα(b/x)

kα
  − e

− βα(b/x)αk

+ 1 
,

r(x) �
a(b/x)

aβa/kΓ 1 − (a/kα), βα(b/x)
kα

 

x e
− βα(b/x)ak

− (b/x)
aβa/kΓ 1 − (a/kα), βα(b/x)

kα
  

,

(6)

where Γ[1 − (a/kα), βα(b/x)kα] is upper incomplete gamma
function.

2.2. Asymptotic Behavior. )is section contains studies on
the behaviors of PDF, CDF, and S(x) of FWMPD at x � 0
and x �∞, respectively, as follows:

lim
x⟶0

f(x) � ab
aβa/k lim

x⟶0
x

− a− 1 lim
x⟶0
Γ 1 −

a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦ � ab

aβa/k
× 0 × 0 � 0,

lim
x⟶∞

f(x) � ab
aβa/k lim

x⟶∞
x

− a− 1 lim
x⟶∞
Γ 1 −

a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦ � ab

aβa/k
× 0 × Γ 1 −

a

kα
  � 0,

lim
x⟶0

F(x) � lim
x⟶0

e
− βα(b/x)αk

− βa/k lim
x⟶0

b

x
 

a

Γ 1 −
a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦ � 0 − βa/k

× 0 � 0,

lim
x⟶∞

F(x) � lim
x⟶∞

e
− βα(b/x)αk

− βa/k lim
x⟶∞

b

x
 

a

Γ 1 −
a

kα
, βα

b

x
 

kα
⎡⎣ ⎤⎦ � 1 − βa/k

× 0 × Γ 1 −
a

kα
  � 1,

(7)

and since F(x) + S(x) � 1, we have

lim
x⟶0

S(x) � 1,

lim
x⟶∞

S(x) � 0.
(8)

2.3. Impact of Changing Parameters Values. In this section,
we display the impact of changing parameters values on
drawing PDF, CDF, S(x), and h(x) of FWMPD, which are
graphed and plotted in Figures 1–4.

Figure 1(a) explains how the behavior of PDF of
FWMPD is affected by increasing the value of parameter k,

where α � 0.5, β � 3, a � 1.5, and b � 0.75, and Figure 1(b)
explains how its behavior is affected by increasing the value
of parameter β, where α � 1, k � 3, a � 1.5, and b � 2.

Figure 2(a) shows how the behavior of CDF is changed
when the significance increasing happened of the parameter
a, as we can see this effect very clearly from the graph, where
α � 2, β � 3, k � 0.75, and b � 0.5, and Figure 2(b) shows
how the behavior of CDF is affected by increasing the value
of parameter b, where α � 0.5, β � 0.75, a � 1.5, and k � 3.

Figure 3(a) shows how the behavior of S(x)is changed
when the significance increasing happened of the parameter
α, as we can see this effect very clearly from the graph, where
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Figure 1: )e effects of parameters k and β on the PDF of FWMPD.

0.0

0.2

0.4

0.6

0.8

1.0

f (
x)

0 5 10 15 20
x

a = 0.5
a = 1.5

a = 3
a = 5

(a)

0.0

0.2

0.4

0.6

0.8

1.0
f (
x)

0 5 10 15 20
x

b = 0.5
b = 1.5

b = 3
b = 5

(b)

Figure 2: )e effects of parameters a and b on the CDF of FWMPD.
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Figure 3: )e effects of parameters α and β on S(x) of FWMPD.
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a � 2, β � 0.5, k � 0.75, and b � 1 are still fixed, and
Figure 3(b) shows how the behavior of S(x) is affected with
changing the value of parameter β, where a � 5, α � 3,
k � 1.5, and b � 0.5.

Figure 4(a) shows how the behavior of h(x) is changed
when the significanceincreasing happened of the parameter
k, as we can see this effect very clearly from the graph, where
a � 4, β � 0.5, α � 1, and b � 0.75, and Figure 4(b) shows
how the behavior of h(x) is affected by the change of pa-
rameter β, where a � 0.75, k � 2, α � 3, and b � 0.5.

3. Statistical Properties

In this part of the paper, we introduce the mathematical
properties for the proposed distribution. )ese properties
are the moments, moment generating function, mean re-
sidual life function, and the mean deviation of the proposed
distribution.

3.1. Moments. In this subsection, we present the rth mo-
ments of the proposed distribution. Now let μr

′ be the rth

about the origin of FWMPD and it is defined as follows:

μr
′ � 
∞

x�0
x

r
f(x)dx �

ab
rβr/kΓ(1 − (r/kα))

a − r
, a> r. (9)

By setting r� 1, 2, 3, and 4, we can get so easily the first
four moments by assigning FWMPD, respectively. )ere-
fore, the mean and variance of FWMPD are given by

μ1′ � μ �
abβ1/kΓ(1 − (1/kα))

a − 1
,

σ2 �
ab

2β2/k (a − 1)
2Γ(1 − (2/kα)) − (a − 2)aΓ(1 − (1/kα))

2
 

(a − 2)(a − 1)
2 ,

(10)

respectively, and, by using the moments about the origin, we
can determine the first four central moments about the mean
of FWMPD, which are given by the following relations:

μ1 � μ1′ − μ � 0,

μ2 � μ2′ − 9 μ1′( 
2

�
ab

2β2/k (a − 1)
2Γ(1 − (2/kα)) − (a − 2)aΓ(1 − (1/kα))

2
 

(a − 2)(a − 1)
2 ,

μ3 � μ3′ − 3 μ2′μ1′ + 2 μ1′( 
3

� ab
3β3/k

aΓ(1 − (1/kα)) 2aΓ(1 − (1/kα))
2

− 3(a − 1)
2Γ(1 − (2/kα))/a − 2  

(a − 1)
3 +

Γ(1 − (3/kα))

a − 3
⎛⎝ ⎞⎠,

μ4 � μ4′ − 4 μ3′μ1′ + 6 μ2′ μ1′( 
2

− 3 μ1′( 
4

� ab
4β4/k

×
aΓ(1 − (1/kα)) − 3a

2Γ(1 − (1/kα))
3

− 4(a − 1)
3Γ(1 − (3/kα))/a − 3 + 6a(a − 1)

2Γ(1 − (1/kα))Γ(1 − (2/kα))/a − 2 

(a − 1)
4 +

Γ(1 − (4/kα))

a − 4
⎛⎝ ⎞⎠,

(11)

respectively, which will be used to determine coefficients of
skewness, kurtosis, and variation, respectively, as follows:

β1 �
μ3( 

2

μ2( 
3 �

a − 2
a

×
(a − 2)(a − 1)

3/(a − 3) Γ(1 − (3/kα)) − aΓ(1 − (1/kα)) 3(a − 1)
2Γ(1 − (2/kα)) − 2(a − 2)aΓ(1 − (1/kα))

2
  

2

a (a − 1)
2Γ(1 − (2/kα)) − (a − 2)aΓ(1 − (1/kα))

2
 

3 ,

β2 �
μ4
μ2( 

2

�
(a − 2)

2
(a − 1)

4
aΓ(1 − (1/kα)) − 3a

2Γ(1 − (1/kα))
3

− 4(a − 1)
3Γ(1 − (3/kα))/a − 3  + 6a(a − 1)

2Γ(1 − (1/kα))Γ(1 − (2/kα))/a − 2   / (a − 1)
4

   +(Γ(1 − (4/kα))/a − 4)

a (a − 1)
2Γ(1 − (2/kα)) − (a − 2)aΓ(1 − (1/kα))

2
 

2 ,

CV �
σ
μ

× 100 �

���������������������������������������������
a (a − 1)

2Γ(1 − (2/kα)) − (a − 2)aΓ(1 − (1/kα))
2

 /a − 2


aΓ(1 − (1/kα))
.

(12)
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3.2. Moment Generating Function. )e moment generating
function of FWMPD is given by

M(t) � ab
aλ− a− 1



∞

m�0

t
mλmβm/kΓ(1 − (m/kα))

m!
, a>m,

(13)

and its characteristic function is given by

ϕ(t) � ab
aλ− a− 1



∞

m�0

(it)mλmβm/kΓ(1 − (m/kα))

m!
, a>m.

(14)

3.3. Mean Residual Life Function. )e mean residual life
function of a continuous random variable X and survival
function S(X) following FWMPD is given by

μ(x) � E(X − x|X>x) �
1

S(x)

∞

x
S(u)du �

1
S(x)


∞

x
uf(u)du − x

�
ab

aβa/k

(a − 1)S(x)
x

(1− a)Γ 1 −
a

kα
, βα

b

x
 

kα
⎛⎝ ⎞⎠ + β1− a/k

b
1− a

c 1 −
1

kα
, βα

b

x
 

kα
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ − x, a> 1,

(15)

where Γ(1 − (a/kα), βα(b/x)kα) and c(1 − (1/kα),

βα(b/x)kα) denote upper and lower in complete gamma
function, respectively. We can notice that

μ(0) �
ab

aβa/k

(a − 1)S(0)
0 + β1− a/k

b
1− aΓ 1 −

1
kα

   �
abβ1/kΓ(1 − (1/kα))

a − 1
� E(x), (16)

which is an important property for μ(x).
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Figure 4: )e effects of parameters k and β on h(x) of FWMPD.
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3.4. Mean Deviation. )e mean deviation about the mean
for FWMPD is given by

MD � 
∞

x�0
|x − μ|f(x)dx � 2 μ(F(μ) − 1) + 2

∞

μ
xf(x)dx

� 2 μ(F(μ) − 1) +
2ab

aβa/k

(a − 1)
μ(1− a)Γ 1 −

a

kα
, βα

b

μ
 

kα
⎛⎝ ⎞⎠ + β1− a/k

b
1− a

c 1 −
1

kα
, βα

b

μ
 

kα
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, a> 1,

(17)

where Γ(1 − (a/kα), βα(b/μ)kα) and c(1 − 1k/α, βα(b/μ)kα)

indicate upper and lower incomplete gamma function, re-
spectively, and, by changing μ with any measure of central
tendency, we can find its mean deviation.

4. Classical Methods of Estimation

)is section discusses the conventional techniques for es-
timating the suggested model parameters θ � (a, b, α, β, k)⊤

by eight different classical estimation methods. Many papers
discussed these methods (for more information, see
[17–21]). Determining the estimated parameters in explicit
form is mathematically complicated, so these estimates will

be obtained numerically by using Wolfram Mathematica
software version 12.0.

4.1. Classical Methods for the Complete Sample. In this
subsection, we introduce eight methods of estimation which
were used for estimating the parameters of the proposed
distribution.

4.1.1. Maximum Likelihood Estimates (MLEs). Let
x1, . . . , xn is a randomized sample having a size n from the
PDF (3). So, the log-likelihood function for θ is as follows:

ℓ � na log b +
na log β

k
+ n log a − (a + 1) 

n

i�1
log xi + 

n

i�1
logΓ 1 −

a

kα
, βα

b

xi

 

kα
⎛⎝ ⎞⎠. (18)

)e MLEs of θ can be obtained by maximizing ℓ.

4.1.2. Ordinary Least-Squares Estimates (OLSEs). Let
x1:n, . . . , xn:n be the corresponding order statistics. )e

OLSEs for the distribution parameters can be easily obtained
by making the following equation at minimum value, by
using any mathematical software, may be MATHEMATICA
12 or any advanced program.

O � 
n

i�1
F xi: n(  −

i

n + 1
 

2
� 

n

i�1
e

− βα b/xi: n( )
αk

−
b

xi:n

 

a

βa/kΓ 1 −
a

kα
, βα

b

xi:n

 

kα
⎡⎣ ⎤⎦ −

i

n + 1
⎡⎣ ⎤⎦

2

. (19)

4.1.3. Weighted Least-Squares Estimates (WLSEs). By min-
imizing the following equation, the WLSEs of proposed
model parameters can be computed:

W � 

n

i�1

(n + 1)
2
(n + 2)

i(n − i + 1)
F xi: n(  −

i

n + 1
 

2

� 
n

i�1

(n + 1)
2
(n + 2)

i(n − i + 1)
e

− βα b/xi: n( )
αk

−
b

xi:n

 

a

βa/kΓ 1 −
a

kα
, βα

b

xi:n

 

kα
⎡⎣ ⎤⎦ −

i

n + 1
⎡⎣ ⎤⎦

2

.

(20)
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4.1.4. Anderson–Darling Estimates (ADEs), Right-Tail
Anderson–Darling Estimates (RTADEs), and Left-Tail
Anderson–Darling Estimates (LTADEs). )e ADEs for the
distribution parameters can be easily obtained bymaking the
following equation at minimum value, by using any
mathematical software, may be MATHEMATICA 12 or any
advanced program.

A � − n −
1
n



n

i�1
(2i − 1) log F xi:n(  + log S xi:n(  . (21)

)e RTADEs for the distribution parameters can be
easily obtained by making the following equation at mini-
mum value, by using any mathematical software, may be
MATHEMATICA 12 or any advanced program.

R �
n

2
− 2

n

i�1
F xi:n(  −

1
n



n

i�1
(2i − 1)log S xi:n( . (22)

)e LTADEs for the distribution parameters can be
easily obtaine bymaking the following equation at minimum
value, by using any mathematical software, may be
MATHEMATICA 12 or any advanced program.

L � −
3
2

n + 2
n

i�1
F xi:n(  −

1
n



n

i�1
(2i − 1)log F xi:n( . (23)

4.1.5. Cramér–von Mises Estimates (CVMEs) and Maximum
Product of Spacing Estimates (MPSEs). )e CVMEs are
determined by minimizing

CV �
1
12n

+ 
n

i�1
F xi:n(  −

2i − 1
2n

 
2

�
1
12n

+ 
n

i�1
e

− βα b/xi:n( )
αk

−
b

xi:n

 

a

βa/kΓ 1 −
a

kα
, βα

b

xi:n

 

kα
⎡⎣ ⎤⎦ −

2i − 1
2n

⎡⎣ ⎤⎦

2

.

(24)

)e MPSEs are determining by maximizing the fol-
lowing equation:

G �
1

n + 1


n+1

i�1
log Di( , (25)

where Di � F(xi) − F(xi− 1), F(x0) � 0, F(xn+1 � 1), and


n+1
i�1 Di � 1.

5. Modeling Real Data Sets

)is section discusses the flexibility of the proposed model
for fitting three real-world data sets and compares it with
other well-known competing models. )e three analyzed
data sets are used to show the flexibility of FWMED as we
used very common distribution for comparison that they are
known by their flexibility such as Fréchet–Weibull mixture
exponential distribution (FWMED) [22], Weibull distri-
bution (WD), exponential distribution (ED), gamma dis-
tribution (GD), and inverse Pareto distribution (IPD) [23].

)e competing distributions are compared using
goodness-of-fit measures, including Anderson–Darling
(AD), Cramér–von Mises (CM), and Kolmogorov–Smirnov
(KS) with its p value (KS-p value).

To evaluate the validity of competing models, the MLEs
method is used for esitimatingthe parameters of the competing
models, and the analytical measurements are generated using
the Wolfram Mathematica version 12 program.

5.1. Data Set I. )is real data set is for the relief times of
twenty patients taking a acertain kind of medecine called
analgesic. )ese data were introduced by Clark and Gross
[24], page 105, and they are given in Table 1.

Table 2 provides the analytical measures along with
MLEs. )e fitted PDF, CDF, SF, and P-P plots of the
FWMPDmodel for the first data set are depicted in Figure 5.
)e results in Table 2 show that the FWMPD distribution is
the best fit one compared to other models that are com-
parable for the first data set. Figure 6 provides profile-
likelihood plots of the FWMPD parameters for the first real
data set. )ese plots illustrate the unimodality of profile-
likelihood functions for all estimated parameters. Table 3
presents the values of estimates, negative log-likelihood
function, CM, AD, KS, and KSP of the proposed model for
the eight different estimation methods. Figure 7 displays P-P
plots for the proposed model by using different estimation
methods along with fitted PDFs by results of these methods.

5.2. Data Set II. )is data set was taken from McCool, and it
represents the fatigue lifetime in hours for 10 bearings of
certain types. It was studied by Wu and Wong [25], and it is
given in Table 4.

Table 5 provides the analytical measures along with ML
estimates. )e fitted PDF, CDF, SF, and P-P plots of the
FWMPD model for the second data set are depicted in
Figure 8. )e results in Table 5 show that the FWMPD
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Table 1: Numerical values of the first data set.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

Table 2: Goodness-of-fit measures and estimates of FWMPD and other fitted models for the first data set.

Model AD CM KS KSP Estimates

FWMPD 0.159942 0.027555 0.101977 0.985411

α � 8.26658
β � 1.9737
k � 0.62992
a � 5.07903
b � 0.45048

FWMED 0.273164 0.034323 0.110737 0.966914

α � 1.35077
a � 3.04669
λ � 2.11748
k � 4.3601

ED 4.6035 0.962967 0.439513 0.00088 α � 0.526317

ExED 0.31046 0.047659 0.134314 0.863396 α � 36.6832
a � 2.23524

WD 1.08354 0.18343 0.18497 0.50057 a � 2.78703
b � 2.12998

GD 0.59902 0.10251 0.173406 0.584477 α � 9.66948
λ � 0.19649

IPD 4.80207 0.98722 0.38723 0.00496 α � 139428
θ � 0.000012

x

D
en

sit
y

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

x

F 
(x

)

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

S 
(x

)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

(d)

Figure 5: )e fitted FWMPD PDF, CDF, SF, and P-P plots for the first data set. (a–d) FWMPD.
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distribution is the best fit compared to other models that are
comparable for the second data set. Figure 9 provides the
profile-likelihood plots of the FWMPD parameters for the
second real data set. )ese plots illustrate the unimodality of
profile-likelihood functions for all estimated parameters.
Table 6 presents the values of estimates, negative log-like-
lihood function, CM, AD, KS, and KSP of the proposed
model for the eight different estimation methods. Figure 10
displays the P-P plots for the proposed model by using
different estimation methods along with fitted PDFs by
results of these methods.

5.3. Data Set III. )is data set indicates the survival times for
head neck cancer of 45 patients; we consider this data set as a
complete one. For more details about the data, see [26]. )is
data set is given in Table 7. Table 8 provides the analytical
measures along with ML estimates. )e fitted PDF, CDF, SF,
and P-P plots of the FWMPD model for the third data set are
depicted in Figure 11. )e results in Table 8 show that the
FWMPD distribution is the best fit compared to other models
that are comparable for the third data set. Figure 12 provides
profile-likelihood plots of the FWMPDparameters for the third
real data set. )ese plots illustrate the unimodality of profile-
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Figure 6: Plots of the profile-likelihood functions for the proposed model’s MLEs of the first data set.

Table 3:)e estimates and log-likelihood function of the proposed distribution parameters along with goodness-of-fit measures for the first
data set by different estimation methods.

α β k a b − L AD CM KS KSP
MLEs 8.26658 1.9737 0.629929 5.07903 0.450483 15.3986 0.159942 0.0275557 0.101977 0.985411
ADEs 3.66431 0.427879 1.43692 4.91413 2.38647 15.4012 0.160271 0.0276845 0.100069 0.988169
CVMEs 3.9903 0.390447 1.40609 5.43643 2.63528 15.543 0.195929 0.0252485 0.0932922 0.99498
MPSEs 2.70565 1.1713 1.56485 4.8245 1.17775 15.543 0.195929 0.0252485 0.0932922 0.99498
OLSEs 2.62302 0.441688 1.96049 4.78627 1.99296 15.4157 0.163091 0.0296234 0.101826 0.985646
RTADEs 2.60132 0.847394 1.52364 3.42267 1.39021 16.896 0.605671 0.109102 0.149826 0.760347
WLSEs 2.47207 0.527218 1.17467 2.86848 2.03735 19.8185 1.3916 0.246237 0.203642 0.378108
LTADEs 3.46508 1.46402 1.45574 5.03363 1.02091 15.4074 0.161581 0.0289918 0.097162 0.991618
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likelihood functions for all estimated parameters. Table 9
presents the values of estimates, negative log-likelihood
function, CM, AD, KS, and KSP of the proposed model for the
eight different estimationmethods. Figure 13 displays P-P plots
for the proposed model by using different estimation methods
along with fitted PDFs by results of these methods.

5.4. Concluding Remarks on the Results of the Real Data Sets

(1) Regarding the data sets in Tables 1, 4, and, 7, we
applied three data sets to the proposed distribution,
and we deduced that the distribution outperforms all
its competitors.
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Figure 7: )e probability-probability (P-P) plot and the fitted PDFs of the proposed model for the first data set.

Table 4: )e second data set's statistical analysis.

152.7 172.0 172.5 173.3 193.0 204.7 216.5 234.9 262.6 422.6

Table 5: Goodness-of-fit measures and estimates of FWMPD and other fitted models for the second data set.

Model AD CM KS KSP Estimates

FWMPD 0.203151 0.0281603 0.142074 0.987635

α � 22.8864
β � 12.5295
k � 0.773245
a � 3.5865
b � 5.87626

FWMED 2.7067 0.550077 0.449194 0.0353535

α � 1.13686
a � 0.000914
λ � 0.107839
k � 0.823594

ED 2.58977 0.550784 0.499695 0.0135584 α � 0.004535

ExED 0.451539 0.052846 0.185038 0.883325 α � 88.952
a � 0.023466

WD 0.948293 0.154708 0.219376 0.721648 a � 2.93592
b � 246.409

GD 0.681532 0.098772 0.185398 0.881913 α � 11.5632
λ � 19.0674

IPD 2.72548 0.565404 0.439931 0.0416838 α � 114313
θ � 0.0017835
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Figure 8: )e fitted FWMPD PDF, CDF, SF, and P-P plots for the second data set. (a–d) FWMPD.
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Figure 9: Plots of the profile-likelihood functions for the proposed model’s MLEs of the second data set.
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Table 6: )e estimates and log-likelihood function of the proposed distribution parameters along with goodness-of-fit measures for the
second data set by different estimation methods.

α β k a b − L AD CM KS KSP
MLEs 22.8901 12.5283 0.773162 3.58645 5.87487 52.7057 0.203153 0.0281606 0.142078 0.987631
ADEs 10.3482 40.9592 1.29155 3.62364 8.67465 52.7803 0.189819 0.0275719 0.144604 0.984983
CVMEs 8.44699 39.0844 1.23963 4.19593 8.09549 52.8688 0.199311 0.0269341 0.146773 0.982409
MPSEs 10.9242 26.4012 1.18944 2.83251 9.41679 52.8688 0.199311 0.0269341 0.146773 0.982409
OLSEs 22.8901 12.5283 0.775023 3.58651 5.8748 52.7226 0.206266 0.0304352 0.1596527 0.960749
RTADEs 12.7429 46.3221 1.39524 3.47163 9.85431 52.7104 0.198978 0.0281769 0.143302 0.986394
WLSEs 8.12391 46.4511 1.44475 3.18893 10.4892 53.1035 0.22902 0.0344934 0.166636 0.944053
LTADEs 20.9614 43.2579 0.4669297 4.49099 0.0491646 52.9121 0.20854 0.027048 0.149197 0.979187

RTADE WLSE LTADE

CVME MPSE OLSE

Sample probability MLE ADE

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Probability points

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(a)

x

D
en

sit
y

150 200 250 300 350 400 450

0.000

0.002

0.004

0.006

0.008

0.010

0.012

MLE

ADE

CVME

MPSE

OLSE

RTADE

WLSE

LTADE

(b)

Figure 10: )e probability-probability (P-P) plot and the fitted PDFs of the proposed model for the second data set.

Table 7: Numerical values of the third data set.

37 84 92 94 110 112 119 127 130 133
140 146 155 159 169 173 179 194 195 209
249 281 319 339 432 469 519 528 547 613
633 725 759 817 1092 1245 1331 1557 1642 1771
1776 1897 2023 2146 2297

Table 8: Goodness-of-fit measures and estimates of FWMPD and other fitted models for the third data set.

Model AD CM KS KSP Estimates

FWMPD 0.639363 0.084663 0.096699 0.794056

α � 10.7787
β � 6.99619
k � 0.123512
a � 1.32604
b � 0.000016

FWMED 1.01488 0.152155 0.131286 0.419929

α � 1.55186
a � 0.00109
λ � 3.91053
k � 0.976671

ED 1.48253 0.241153 0.165597 0.169403 α � 0.001564
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Table 8: Continued.

Model AD CM KS KSP Estimates

ExED 1.58344 0.262442 0.173083 0.134882 α � 1.03827
a � 0.001603

WD 1.38913 0.220213 0.157802 0.212421 a � 0.979504
b � 632.973

GD 1.55782 0.257197 0.171239 0.142806 α � 1.02661
λ � 622.634

IPD 0.65175 0.0869602 0.098414 0.776073 α � 45.269
θ � 4.91826
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Figure 11: )e fitted FWMPD PDF, CDF, SF, and P-P plots for the third data set. (a–d) FWMPD.
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Figure 12: Continued.
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(2) Referring to the values of the KS, AD, and CM, we
can deduce that the proposed distribution has the
least measures, and this assures its superiority.

(3) Referring to the P values of the distribution, we can
deduce that the proposed distribution has the highest
value, and this assures its superiority.

(4) Figures 6, 9, and 12 provide profile-likelihood plots
of the FWMPD parameters for the three real data
sets, respectively. )ese plots illustrate that the

estimated parameters give a maximum value of the
log-likelihood function, and these estimates are
global maximum estimates.

6. Conclusion and Major Findings

In this article, we introduced a new mixture of distribution
FWMPD, and we estimated its parameters by the classical
methods of estimation: the maximum likelihood estimation
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Figure 12: Plots of the profile-likelihood functions for the proposed model MLEs of the third data set.

Table 9: )e estimates and log-likelihood function of the proposed distribution parameters along with goodness-of-fit measures for the
third data set by different estimation methods.

α β k a b − L AD CM KS KSP
MLEs 10.7787 6.99619 0.123512 1.32604 0.00001628 333.508 0.670616 0.09208357 0.0911992 0.848307
ADEs 3.77138 5.37446 0.37446 1.07062 1.14398 333.824 0.635178 0.079101 0.0953321 0.808067
CVMEs 6.3231 4.02213 0.274373 0.82339 0.546817 334.757 0.677278 0.0751701 0.111228 0.633673
MPSEs 3.03965 4.29119 0.412976 1.21881 3.029 334.757 0.677278 0.0751701 0.111228 0.633673
OLSEs 4.87073 4.12184 0.358181 0.784352 1.60477 334.977 0.71475 0.0765975 0.11767 0.561555
RTADEs 4.34644 5.32808 0.29679 1.26154 0.40316 333.589 0.637697 0.0832888 0.0970136 0.790793
WLSEs 3.771387 5.37446 0.37446 1.07062 1.14398 333.824 0.635178 0.07910097 0.0953316 0.808072
LTADEs 2.99381 12.5628 0.57333 0.865617 1.09981 334.578 0.657612 0.0763929 0.105159 0.702176
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Figure 13: )e probability-probability (P-P) plot and the fitted PDFs of the proposed model for the third data set.
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and 7 other methods. We introduced its mathematical
properties and graphed its PDF and CDF to study its behavior
under different values of estimates. Last but not least, wemade
an application on the proposed distribution to assure its
superiority compared to its competitors. We evaluated its KS,
AD, CM, and P value, and we deduced that it has the lowest
values for KS, AD, and CM and the greatest values for P

values which make it a better candidate among all its com-
petitors. Also, to make sure that the roots for theMLEs for the
proposed distribution give a maximum value, we graphed
Figures 6, 9, and 12 for the profile-likelihood function of the
proposed model with its parameters for the three real data
sets, respectively. )ese plots illustrate the unimodality of
profile-likelihood functions for all estimated parameters. We
expect that the presented model will find a broader range of
applications in fields like engineering, survival and lifespan
data, meteorology, hydrology, and economics.

Data Availability

All data are included within the paper.

Conflicts of Interest

)e authors declare no conflicts of interest.

Acknowledgments

)is research was funded by the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University
through the Fast-track Research Funding Program.

References

[1] A. M. Abd El-Raheem, M. H. Abu-Moussa, M. M. M. El-Din,
and E. H. Hafez, “Accelerated life tests under sareto-iv lifetime
distribution: real data application and simulation study,”
Mathematics, vol. 8, no. 10, p. 1786, 2020.

[2] F. H. Riad and E. H. Hafez, “Point and interval estimation for
frechet distribution based on progressive first failure censored
data,” Journal of Statistics Applications & Probability, vol. 9,
no. 1, pp. 181–191, 2020.

[3] G. E. Willmot, “Asymptotic tail behaviour of Poisson mix-
tures by applications,” Advances in Applied Probability,
vol. 22, no. 1, pp. 147–159, 1990.

[4] P. Giudici, M. Mezzetti, and P.Muliere, “Mixtures of products
of dirichlet processes for variable selection in survival anal-
ysis,” Journal of Statistical Planning and Inference, vol. 111,
no. 1-2, pp. 101–115, 2003.
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