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With the rapid growth of video surveillance data, there is an increasing demand for big data automatic anomaly detection of large-
scale video data. (e detection methods using reconstruction errors based on deep autoencoders have been widely discussed.
However, sometimes the autoencoder could reconstruct the anomaly well and lead to missing detections. In order to solve this
problem, this paper uses a memory module to enhance the autoencoder, which is called the memory-augmented autoencoder
(Memory AE) method. Given the input, Memory AE first obtains the code from the encoder and then uses it as a query to retrieve
the most relevant memory items for reconstruction. In the training phase, the memory content is updated and encouraged to
represent prototype elements of normal data. In the test phase, the learned memory elements are fixed, and reconstruction is
obtained from several selected memory records of normal data. So, the reconstruction will tend to be close to normal samples.
(erefore, the reconstruction of abnormal errors will be strengthened for abnormal detection. (e experimental results on two
public video anomaly detection datasets, i.e., Avenue dataset and ShanghaiTech dataset, prove the effectiveness of the
proposed method.

1. Introduction

As a high-level computer vision task, video anomaly de-
tection refers to the automatic detection of abnormal events
in a given video sequence, which can effectively distinguish
abnormal and normal activities and abnormal categories in
the video. In the past few years, researchers have carried out
many research related to anomaly detection [1–9]. Com-
pared with normal events, events that rarely occur or have a
low probability of occurrence are usually considered as
abnormal ones. However, in practice, it is difficult to es-
tablish an effective anomaly detection model due to un-
known event types and unclear definitions of anomalies.
Most existing anomaly detection methods are designed
based on the assumption that any pattern different from the
learned normal pattern is regarded as anomalies. Based on
such assumptions, the same activity in different scenarios
may be represented as normal or abnormal events. For

example, a fight scene where two people fight on the street
may be considered abnormal, while the two people are
normal when they are boxing. In addition, there is a large
amount of redundant visual information in high-dimen-
sional video data, which increase the difficulty of event
representation in the video sequence.

According to the previous works, the anomaly detection
methods can be generally divided into two types. Some
anomaly detection methods are designed through recon-
struction errors, which focus on modeling normal patterns
in video sequences [3–5, 7, 8, 10, 11]. (ese methods learn
the feature representationmodel of the normal pattern in the
training phase and use the differences between the abnormal
and normal samples to determine the final abnormal score of
the test data during the testing phase, such as reconstruction
errors or specific thresholds [7–14]. Although the recon-
struction-based anomaly detection methods are good at
reconstructing normal patterns in video sequences, the key
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problem with these methods is that they rely heavily on the
training data. Another type of the method regards anomaly
detection as a classification problem [15, 16]. For these
methods, the anomaly score of a video sequence is predicted
by using a trained classifier to extract features such as
histogram of optical flow (HOF) or dynamic texture (DT).
(e performance of these methods is highly dependent on
the training samples. In order to obtain satisfactory per-
formance, extracting effective and discriminative features is
essential for such anomaly detection methods [17–20].
However, the two types of methods usually model the in-
terrelationships between events in a relatively simple way
[7, 10, 21–23]. For example, only the linear relationship is
considered, which is not enough for complex, highly non-
linear relationships in many real-world cases.

In recent years, methods based on deep learning were
applied to the field of video detection and made great
progress [24–26]. For example, the autoencoders (AE) use
reconstruction errors to detect anomalies, and a series of
methods have been improved on this basis. In addition, the
generative adversarial networks (GAN) and long short-term
memory (LSTM) have also been applied to solve the
anomaly detection problem. However, the AE may have a
strong generalization ability, resulting in the ability to re-
construct abnormal events. In [14], the researchers pointed
out that because there are no abnormal training samples, the
reconstruction of abnormal samples should be unpredict-
able, which may lead to larger reconstruction errors for
abnormal samples. If some anomalies share a common
composition pattern with normal training data or the de-
coder is “too strong” and cannot decode some anomaly
codes well, then the AE can reconstruct the anomaly well.

In order to overcome the shortcomings of the AE, this
paper uses a memory module to enhance the deep AE and
develops a memory-augmented AE (Memory AE) method.
When a new test sample is input, Memory AE will not
directly encode it and input it into the decoder, but use it as a
query to retrieve the relevant content in the memory
module. (en, the content is aggregated and passed into the
decoder. (is process is realized by attention addressing.
Furthermore, this paper uses differentiable shrinkage op-
erators to induce the sparsity of memory addressing weights,
which can encourage memory content to approach queries
in the feature space. During the training phase, the encoder
and decoder update the memory module at the same time to
obtain a lower average reconstruction error. In the test
phase, the learned memory content is fixed, and a small
amount of normal memory items will be used for recon-
struction. If these are selected as the neighborhood of the
input code, the reconstruction error will be very obvious.
Experiments on several public benchmark datasets show that
the detection performance of Memory AE has reached the
state of the art.

2. Principle of the Algorithm

Figure 1 shows the overall network structure of Memory
AE, which is divided into three substructures: encoder
(used for encoding input and generating queries), decoder

(used for reconstruction), and memory module (with
memory and related addressing operations). As shown in
Figure 1, given the event to be tested, the encoder first
obtains its coded value. By using the coded value as a query,
the memory module retrieves the most relevant content in
the memory module through an attention-based addressing
operator and then passes it to the decoder for recon-
struction. During the training, the encoder and decoder
optimize the parameters to minimize the reconstruction
error and, at the same time, update the memory module to
record the prototype elements of the encoded normal data.
Given a test sample, the model uses only the limited normal
patterns recorded in the memory module to perform re-
construction. In this way, the reconstruction tends to be
close to the normal sample. Hence, the reconstruction error
of the normal sample is small, and the abnormal error is
large.

2.1. Encoders andDecoders. (e encoder and the decoder are
two parts of the AE. (e former maps the input data to the
feature space to obtain its coded value, and the latter re-
constructs the coded value into the input data. (e AE is
composed of an encoder fw1

(·) and a decoder gw2
(·), which

can be expressed as

z � fw1
(x), (1)

x′ � gw2
(z), (2)

where x and x′ are the input of the AE and the reconstructed
input, respectively, z is the encoding results of x, and W1 and
W2 denote the parameters of the encoder and the decoder,
which can be obtained by minimizing the reconstruction
error between x and x′:

min
W1 ,W2

x − x′
����

����
2
2. (3)

By reconstructing the error of the normal sample [19, 20]
to determine whether it is abnormal, the AE has been
successfully used to solve the abnormal detection task.
However, the reconstruction of abnormal samples should be
unpredictable, which may result in larger reconstruction
errors for abnormal samples. In order to solve this problem,
a memorymodule is introduced to the AE in Section 2.2, and
a Memory AE is proposed.

2.2. Memory Module. (e proposed method includes a
memorymodule to record the prototype encodingmode and
an addressing operation for accessing the memory module.

z

… …

Encoderx
Memory
module Decoder x′

z′

Figure 1: (e flowchart of the proposed memory AE.
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2.2.1. Attention-Based Representation. (e attention
module is designed as a matrix M ∈ RN×C containing N

real-time vector. For simplicity, assume that is C is the
dimension of z; then, let Ζ � RC. Given a row vector mi,
∀i ∈ [N], where [N] is an integer from 1 to N. Each
represents mi a memory item; given a set of queries z ∈ RC,
the memory network obtains z and replies with a soft
address vector w ∈ R1×N as follows:

z
⌢

� wM � 
N

i�1
wimi, (4)

where w is a row vector, and the sum of all items is 1, which
represents wi, the item w of i. (e weight vector can w be
obtained by z calculation. As shown in equation (4), the
address weight needs to be close w to the memory module.
(emixed parameter is defined as N, the maximum capacity
of the memory module. Although it is N, it is not easy to find
the best for different datasets; fortunately, Memory AE is not
sensitive to the setting of N. Sufficiently, large N can be well
applied to each dataset.

2.2.2. Attention for Memory Addressing. In Memory AE, the
memory module is designed to record in detail the original
normal mode M of the training phase. (e memory module
is defined as content addressable memory, z⌢ , and its
addressing scheme calculates w, the attention weight, based
on the similarity between the query and the memory item.
As shown in Figure 1, each weight can be calculated through
the softmax operation wi:

wi �
exp d z,mi( ( 


N
j�1 exp d z,mj  

, (5)

where d(·, ·) represents the similarity measure. (is paper
defines it as a cosine similarity:

d z,mi(  �
zmT

i

‖z‖ mi

����
����
. (6)

Just like equations (4)–(6), the memory module re-
trieves the most similar memory item to obtain a rep-
resentation z. Due to the limitation of memory size and
sparse addressing technology, only a small number of
internal memory items can be addressed at a time.
(erefore, the effective behavior of the memory module
can be explained as follows. In the training phase, the
decoder in Memory AE is limited to using very few ad-
dressable memory items for reconstruction, which re-
quires effective use of memory items. (erefore, during
the reconstruction, the memory module needs to be
forced to record the most representative prototype mode
in the input normal mode. In the test phase, given the
trained memory, only the normal mode in the memory
can be retrieved for reconstruction. (erefore, normal
samples can be better reconstructed. Conversely, the
coded value of the abnormal input can be replaced by the
retrieved normal pattern, resulting in a large recon-
struction error in the abnormal sample.

2.3. Training. Given a dataset containing samples xi 
T

i�1, let
xi′ denote the reconstruction samples of xi in the training
samples; the minimal refactoring is performed as follows:

R xi
, xi′

  � xi
− xi′

�����

�����
2

2
. (7)

(e l2 norm is used to measure the reconstruction error;
wi′ represents the memory addressing weight of each sample
xi. In order to further promote the sparsity of w′, the sparse
regularization is minimized during training. Considering
that all w′ are nonnegative and ‖w′‖1 � 1, an optimization
problem is formed as follows:

E wi′
  � 

T

j�1
− wj · log wj . (8)

By combining the loss function of equation (7) and
equation (8), the objective function of Memory AE is as
follows:

L θe, θd,Μ(  �
1
T



T

i�1
R xi

, xi′
  + αE wi′

 , (9)

where α is the hyperparameter in the training process. In
practice, α is set to 0.0002. In the training process, the
memory is updated through backpropagation and gradient
descent. In backpropagation, only the gradient of the
memory item with nonzero addressing weight can be
nonzero.

2.4. Test. After the model is trained, the reconstruction error
of the pixel at the position (x, y) of the tth frame t can be
calculated by the following equation:

e(x, y, t) � ‖I(x, y, t) − h(I(x, y, t))‖2, (10)

where h(·) represents the entire model. Given the pixel-level
reconstruction error of the tth frame, the reconstruction
error of the entire frame of image can be obtained by
summing e(t) � (x,y)e(x, y, t). (en, the anomaly score of
the frame can be calculated as follows:

s(t) � 1 −
e(t) − minte(t)

maxte(t)
. (11)

Finally, a threshold can be set to determine whether it is
abnormal as s(t)> θ.

3. Experiment

In this section, the effectiveness of the proposed method is
verified and compared with other existing methods. At
present, two public datasets are used for experiments, i.e.,
the Avenue dataset and ShanghaiTech dataset. (e frame-
level area under the curve (AUC) and EER are used as
quantitative evaluation indicators.

3.1. Preparation. (eAvenue dataset uses a fixed camera with
a resolution of 640× 360 pixels to capture and record the street
activities of the City University of Hong Kong. (e dataset
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includes 16 training video clips containing normal human
behavior and 21 test video clips containing abnormal events
and human behavior. It has a total of 30652 frames, and all test
videos have target-level annotations, that is, a rectangular area
is used tomark anomalies in spatial locations. Normal behavior
is people walking on the sidewalk, while abnormal events are
people littering/discarding items, wandering, walking towards
the camera, walking on the grass, and discarding objects.

(e ShanghaiTech dataset is a very challenging collection
for abnormal event detection. Unlike other datasets, it con-
tains 13 different scenes with different lighting conditions and
camera angles, including a total of 330 training videos and 107
test videos.(e test set contains a total of 130 abnormal events
with pixel-level annotations. (e entire dataset has a total of
316154 frames, including 274515 frames in the training set,
42883 frames in the test set, and 17090 frames in the abnormal
frame. (e resolution of each video frame is 480× 856.

(e model is tested on a platform with NVIDIA
GTX1080TI hardware platform and 8GB video memory,
and the software environment is PyTorch and Python 3.6. In
order to measure the effectiveness of the method for video
anomaly detection proposed in this paper, the AUC of the
frame-level receiver operating characteristic curve (ROC) is
used as the evaluation index. For frame-level evaluation
indicators, if at least one pixel of a frame is marked as
abnormal, the frame is considered abnormal. And the frame-
level AUC is calculated by comparing the frame-level de-
tection result with the frame-level of the real label.

3.2. Experimental Setup. All video frames are adjusted to
227× 227 and then converted to grayscale images. (e input
of themodel is 227× 227× 5, that is, 5 consecutive frames are
used as the input of the model. After each convolutional
layer, there is a batch normalization layer and a ReLU ex-
citation layer. (e decoder includes 4 deconvolution layers.
(e attention module is set to let each memory segment
record a feature on a pixel in the feature map, corresponding
to a subregion of the video segment. (erefore, the memory
module is a 1000× 64 matrix. (e Adam optimizer is se-
lected for the optimization of the entire model parameters.
(e initial learning rate is 0.0001, and the number of iter-
ations is 1000. (e momentum parameter is
ρ1 � 0.9 and ρ2 � 0.999, and the batch size is 128.

3.3. Experimental Results. In order to prove the effectiveness
of the proposed method in video anomaly detection, this
paper compares it with 12 different existing methods.
Among them, MPPCA (hybrid of probabilistic principal
component analyzer) + SF (social power) [17] and MDT
(hybrid of dynamic texture) [18] are methods based on
manual features; Conv-AE [8], 3D Conv [19], Stacked RNN
[20] and ConvLSTM-AE [21], MemNormality [10], and
ClusterAE [22] are all methods based on autoencoders;
AbnormalGAN [7] and Pred +Recon [23] are based on
generating the adversarial networks’ method.

Table 1 shows the frame-level video anomaly detection
results of various methods. It can be observed that, in the
results of the two datasets, the method based on AE is usually

better than the method based on handmade features, and
higher frame-level AUCs are obtained. (is is because
handmade features are usually extracted based on other tasks,
and therefore may be suboptimal. In the AE-based methods,
ConvLSTM-AE is better than Conv-AE because the former
can better capture time information. In addition, it can also be
noted that methods based on GAN perform better than most
baseline methods. Finally, the Memory AE method proposed
in this paper achieves 85.7% frame-level AUC on the Avenue
data set, which is 0.6% ahead of the best-performing Pre-
d +Recon [23] method; while the method proposed in this
paper achieved 75.3% frame-level AUC on the ShanghaiTech
dataset, which is 2% ahead of other methods in frame-level
AUC, and the effect is very obvious.(is is mainly because the
proposed method based on Memory AE uses memory
fragments, which can reconstruct anomalies well and in-
troduce some random errors. In addition, compared with the
Avenue dataset, the ShanghaiTech dataset has achieved a
higher frame-level AUC. (is is mainly because the Shang-
haiTech dataset contains multiple scenes and abnormal events
that have not appeared in other datasets before, which is more
complicated. In order to verify the detection results of a single
scene on the ShanghaiTech dataset, a single scene video
segment is used for training and testing. 83 segments (25%)
are used for training and 34 segments (32%) are used for
testing, achieving 86.3% frame-level AUC, which has reached
a level similar to that in the Avenue dataset. In summary, the
proposed Memory AE method can be flexibly applied to
different types of data. Only by using reconstruction errors,
the proposed method can obtain better results with the least
specific knowledge.

In order to evaluate the performance of the predefined
memory module in detecting abnormal video events, the
next step is to change the size of the memory module and
perform experiments on the Avenue dataset, and the frame-
level AUC values are given in Table 2. It can be found that
given a sufficiently large memory module size, the Memory
AE method can produce the best results robustly. When the
size of the memory module is greater than 1000, the impact
on the detection result is small, but the use of a larger
memory module size will result in a greater amount of
calculation, so the memory module size is selected as 1000.

Figures 2(a) and 2(b), respectively, show some detection
results in the Avenue dataset and ShanghaiTech dataset. (e

Table 1: Comparison with the state-of-the-art methods in terms of
AUC.

Method Avenue ShanghaiTech
MPPCA+ SF 56.2% —
MDT 77.4% —
Conv-AE 80.0% 60.9%
Conv3D-AE 80.9% —
Stacked RNN 81.7% 68.0%
ConvLSTM-AE 77.0% —
MemNormality 88.5% 70.5%
ClusterAE 86.0% 73.3%
AbnormalGAN — 72.4%
Pred +Recon 85.1% 73.0%
(e proposed method 85.9% 75.4%
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frames in the green box are normal frames from regular
video clips, and the frames in the red box are abnormal
frames from abnormal video clips. Some abnormal events
such as dropping confetti, riding a bicycle on the sidewalk,
beatings, etc., can be detected.

4. Conclusion

(is paper proposes a Memory AE to improve the per-
formance of big data anomaly detection in videos. Given
input, the proposed Memory AE method first uses an
encoder to obtain a coded representation and then uses
the code as a query to retrieve the most relevant patterns in
the memory module for reconstruction. Since the memory
module is trained to record typical normal patterns, the
proposed Memory AE can reconstruct normal samples
well and enlarge the reconstruction error of abnormalities,
which strengthens the role of reconstruction error as an
abnormality detection standard. Experiments on two
datasets prove the versatility and effectiveness of the
proposed method. In the future, we will study the use of
addressing weights for anomaly detection. Considering
that the proposed memory module is universal and has
nothing to do with the structure of the encoder and de-
coder, it will be integrated into a more complex basic
model and used in experiments on more challenging
datasets.
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