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.e penalty decomposition method is an effective and versatile method for sparse optimization and has been successfully applied
to solve compressed sensing, sparse logistic regression, sparse inverse covariance selection, low rank minimization, image
restoration, and so on. With increase in the penalty parameters, a sequence of penalty subproblems required being solved by the
penalty decomposition method may be time consuming. In this paper, an acceleration of the penalty decomposition method is
proposed for the sparse optimization problem. For each penalty parameter, this method just finds some inexact solutions to those
subproblems. Computational experiments on a number of test instances demonstrate the effectiveness and efficiency of the
proposed method in accurately generating sparse and redundant representations of one-dimensional random signals.

1. Introduction

In this paper, we consider solving the following sparse
optimization problem by an inexact penalty decomposition
(iPD) method:

min
x∈X

l(x) + λ‖x‖0,

s.t. g(x)≤ 0, h(x) � 0,
(1)

where λ≥ 0 controls the sparsity of the solution,X ⊂ Rn is a
closed convex set in the n-dimensional Euclidean space Rn,
l: Rn⟶ R, g(x): Rn⟶ Rp are continuously differen-
tiable convex functions, h: Rn⟶ Rm is an affine function,
and ‖x‖0 denotes the number of nonzero components of x.

Sparse optimization is to solve some problems whose
solutions are sparse or compressed. And it has attracted
considerable attention in the past ten years since its broad
applications, such as signal (image) processing [1–3], linear
regression [4], inverse problem [5], model selection [6], and
machine learning [6, 7]. In those applications, most infor-
mation of interest has or can be coded by much low di-
mension though its own dimension is high.

However, problem (1) is NP hard even though for some
simple special cases [8]. Even so, many methods have been
proposed for some special cases of problem (1). .ese
methods can be classified into four categories: (1) greedy
methods: matching pursuit [9, 10] and greedy coordinate
descent [11]; (2) l1-norm relaxation methods: gradient
projection [12, 13], iterative shrinkage-thresholding [5, 14],
iterative reweighted method [15], alternating direction
method [16], and homotopy method [17–20]; (3) lp-norm
(0<p< 1) relaxation methods [1, 2, 21]; and (4) l0-norm
based methods, e.g., penalty decomposition method [22],
block decomposition method [23], iterative hard thresh-
olding method [22, 24–29], and so on. In this paper, we
mainly discuss the PD method.

.e PD method was proposed for solving the general
l0-norm minimization problem (1) by Lu and Zhang in [22].
And it had been successfully applied to solve compressed
sensing [22], sparse logistic regression [22], sparse inverse
covariance selection [22], low rankminimization [30], image
restoration [3] problems, and so on. Moreover, the PD
method is theoretically sound. Lu et al. stated that any
accumulation point of the sequence generated by the PD
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method satisfies the first-order optimality conditions of
problem (1) when the Robinson condition holds. Hence, the
PD method is an effective and versatile method for sparse
optimization. However, since the PD method found exact
solutions of subproblems for each penalty parameter, it may
be time consuming in practice.

In this paper, an inexact penalty decomposition (iPD)
method is proposed for the sparse optimization problem (1).
.e iPD method just finds some inexact solutions to those
subproblems for each penalty parameter. In more detail, for
the first convex subproblem, the iPD method just takes one
gradient step and then goes to solve the second nonconvex
subproblem. .e second subproblem can be solved by the
iterative hard thresholding method [26]. After the two steps,
the penalty parameter is updated. Computational experi-
ments on a number of random instances demonstrate the
effectiveness of the proposed method in accurately gener-
ating sparse and redundant representations of one-dimen-
sional random signals.

.e rest of this paper is organized as follows. Section 2 is
the preliminary, in which some notations and the basic
method are described. Section 3 presents the iPD method.
Computational experiments are presented in Section 4, and
conclusions are drawn in Section 5.

2. Preliminaries

2.1. Notations. In this subsection, some notations are pre-
sented to simplify presentation. .e transpose of a vector
x ∈ Rn is denoted by xT. If without special statement, all
norms used are the Euclidean norm, denoted by ‖ · ‖2.PX(·)

denotes projection on a set X. Given a vector x ∈ Rn, the
nonnegative part of x is denoted by x+, i.e., x+ � max(x, 0).
.e index of nonzero components of a vector x is denoted by
S(x) � i : xi ≠ 0􏼈 􏼉 (called support set) and Sk: � S(xk). .e
size of S(x) is denoted as s � |S(x)|.

Now, let us consider problem (1). It is easy to verify that
problem (1) is equivalent to the following problem:

min
x,y∈X

l(x) + λ‖y‖0,

s.t. g(x)≤ 0, h(x) � 0, x � y.

(2)

And the relative penalty function of problem (2) is
defined as

pρ(x, y) � l(x) + λ‖y‖0

+
ρ
2

[g(x)]
+

����
����
2
2 +‖h(x)‖

2
2 +‖x − y‖

2
2􏼒 􏼓,

(3)

where ρ> 0 is the penalty parameter.
For simplicity, we also denote

Fρ(x) � l(x) + λ‖x‖0 +
ρ
2

[g(x)]
+

����
����
2
2 +‖h(x)‖

2
2􏼒 􏼓,

f(x) �
1
2

[g(x)]
+

����
����
2
2 +‖h(x)‖

2
2􏼒 􏼓,

qρ(x, y) � l(x) +
ρ
2

[g(x)]
+

����
����
2
2 +‖h(x)‖

2
2 +‖x − y‖

2
2􏼒 􏼓.

(4)

2.2. +e PD Method. In this subsection, we show the PD
method proposed in [22]. First, the outline of the PDmethod
is as presented in Algorithm 1. .en, we explain why the PD
method is time consuming by a random example.

Remark 1

(i) .e termination condition in Step 8 of Algorithm 1 is
used to establish the global convergence of the PD method.
In practice, the termination criterion is based on the relative
change of the sequence (xk,i, yk,i)􏼈 􏼉 such as the sequence
satisfying

max
x

k,i
− x

k,i− 1
�����

�����∞

max x
k,i

�����

�����∞
, 1􏼒 􏼓

,
y

k,i
− y

k,i− 1
�����

�����∞

max y
k,i

�����

�����∞
, 1􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
≤ ϵI, (5)

for some ϵI > 0. In addition, the PD method terminates the
outer iterations when

x
k

− y
k

�����

�����∞
≤ ϵO, (6)

holds for some ϵO > 0.
(ii).e second subproblem, i.e., in Step 6 of Algorithm 1,

y
k,i+1 ∈ argmin

y

λ‖y‖0 +
ρk

2
y − x

k,i+1
�����

�����
2

2
, (7)

has a closed-form solution [26].

y
k,i+1
j �

x
k,i+1
j , if x

k,i+1
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>

��
2λ
ρk

􏽳

,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where [·]j denotes the j-th entry of a vector, j ∈ 1, 2, . . . , n{ }.

In Step 5 of Algorithm 1, minimizing the function
pρk

(x, yk) with respect to x is a convex problem. .ere exist
many efficient methods for this purpose if X is simple.
However, for each penalty parameter, the PD method solves
the penalty subproblems a few times until some termination
conditions are reached, which is time consuming.
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Consider a special case—compressed sensing [31]. One
important task of compressed sensing is to find the sparsest
solution to the underdetermined linear system, which is
formulated as

min
x

‖x‖0,

s.t. Ax � b,
(9)

where A ∈ Rm×n is the sensing matrix and b ∈ Rm is the
observation data. For this special problem, f(x) � (1/2)

‖Ax − b‖22 andFρ(x) � ‖x‖0 + (ρ/2)‖Ax − b‖22. .e value of
f(x) is called data fidelity, and it can measure the feasibility
of a solution x. Fρ(x) is the penalty function of problem (9).

Example 1. We generate a sparse vector x∗ with length n �

5000 and s � 100 nonzero components. .ese components
independently follow the standard Gaussian distribution,
and their locations are assigned randomly to x∗. .en, we
create a Gaussian random matrix A with size 1000 × 5000,
and let b � Ax∗. .en, we solve this instance by the PD
method package, and the process data are presented as
Figure 1.

Figure 1 shows that the value of f(x) decreases slowly. It
decreases steep just at the first few steps for each penalty
parameter. .ere are many almost null steps during the
process. And the value of the penalty function Fρ(x) in-
creases too much when updating the penalty parameter.
Hence, we can just take one or a few iterations for each
penalty parameter to save some time. In Section 3, we will
improve the PD method by the above observations.

3. The Proposed Method

In this section, we describe the process of the iPD method.
From the outline of Algorithm 1, we find that, for each
penalty parameter ρk, the block coordinate descent method
needs to alternately solve two minimization subproblems
many times, and an example in Section 2 shows that there
are many almost null step for each penalty parameter.
Hence, the original PD method may be time consuming if
convergence speed of the block coordinate descent is slow.

Motivated by the analysis in Section 2 and the above
demonstration, we accelerate the PD method by alteratively
solving the two penalty subproblems once a time after
updating the penalty parameter. For solving the first penalty
subproblem, a gradient step is taken, and its step-length is
searched by the backtracking line search method.

Now, we present the outline of the accelerated penalty
decomposition method as follows.

Remark 2. A practical termination criterion in Step 11 of
Algorithm 2 can be

x
k

− y
k

�����

�����∞

max x
k

�����

�����∞
, 1􏼒 􏼓

≤ tol, (10)

for some tol> 0.

Theorem 1. If the gradient of the function pρk
(x, yk) with

respect to x is Lipschitz continuous (its Lipschitz constant is
denoted as Lp), then the line search between Steps 3–6 can be
terminated in a finite number of iterations.

Proof. Since pρk
(xk+1, yk) satisfies

pρk
x

k+1
, y

k
􏼐 􏼑≤pρk

y
k
, y

k
􏼐 􏼑 + ∇xpρk

y
k
, y

k
􏼐 􏼑

T
x

k+1
− y

k
􏼐 􏼑 +

Lp

2
x

k+1
− y

k
�����

�����
2

2
, (11)

Input: ρ0 > 0, x0, σ > 1;
Output: 􏽢x;
(1) initialization k⟵ 0, y0,0 � x0;
(2) repeat
(3) i⟵ 0, yk,0 � yk;
(4) repeat
(5) xk,i+1 ∈ argminxpρk

(x, yk,i);
(6) yk,i+1 ∈ argminypρk

(xk,i+1, y);
(7) i⟵ i + 1;
(8) until ‖PX(xk,i − ∇xqρk

(xk,i, yk,i))‖2 ≤ ϵk
(9) yk+1⟵yk,i;
(10) xk+1⟵xk,i;
(11) ρk+1⟵ σρk;
(12) k⟵ k + 1;
(13) until some termination conditions reach
(14) 􏽢x⟵yk;

ALGORITHM 1: .e PD method [22].
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it together with xk+1 � yk − (∇xpρk
(yk, yk)/Lk) implies that

pρk
x

k+1
, y

k
􏼐 􏼑≤pρk

x, y
k

􏼐 􏼑 − Lk −
Lp

2
􏼠 􏼡 x

k+1
− x

k
�����

�����
2

2
. (12)

.en, if Lk ≥ ((Lp + η)/2),

pρk
x

k+1
, y

k
􏼐 􏼑 +

η
2

x
k+1

− y
k

�����

�����
2

2
≤pρk

y
k
, y

k
􏼐 􏼑, (13)

holds, which means that the while loop in Algorithm 2
terminates if Lk ≥ ((Lp + η)/2). Let Lk be the final value of Lk

after the while loop. .en, (Lk/cinc)≤ ((Lp + η)/2) holds,
i.e., Lk ≤ (cinc(Lp + η)/2). Let 􏽢nk be the number of iterations
in the while loop at the k-th iteration. .en, one can get that

Lminc
􏽢nk− 1
inc ≤L

0
kc

􏽢nk− 1
inc ≤ Lk ≤

cinc Lp + η􏼐 􏼑

2
, (14)

where L0
k is the initial value of Lk in the line search.

.erefore,

􏽢nk ≤N ≔ ⌈log Lp + η􏼐 􏼑 − log 2Lmin( 􏼁

log(c)
+ 2⌉. (15)

□

4. Experiments

In this section, we implement the proposed accelerated PD
method to solve the compressed sensing problem. To verify
the efficiency of PD empirically, a large number of com-
putational experiments are performed on one-dimensional
random signals. We mainly compare the performance of our
improved PD method with that of the original PD method
[22]. All experiments were performed on a personal com-
puter with an Intel(R) Core(TM)i7-7700HQ CPU
(2.80GHz) and 8GB memory, using a MATLAB toolbox
(version R2018b).

We compare the performance of the compared methods
by the CPU time (in seconds) required, the size of the
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Figure 1: Iteration process of penalty decomposition for solving compressed sensing with size m � 1000, n � 5000, and s � 100: (a) data
fidelity at each iteration; (b) penalty function value at each iteration.

Input: ρ0 > 0, x0, σ0 > 1, L0 > 0, cinc > 1, cdec > 1;
Output: 􏽢x;

(1) initialization k⟵0, yk � xk;
(2) repeat
(3) while pρk

(xk+1, yk) + (η/2)‖xk+1 − yk‖
2
2 >pρk

(yk, yk) do
(4) Lk � min(cincLk, Lmax)

(5) xk+1 � yk − (∇xpρk
(yk, yk)/Lk);

(6) end while
(7) yk+1 ∈ argminypρk

(xk+1, y);
(8) ρk+1 � σkρk

(9) Lk+1 � min((Lk/cdec), Lmin)

(10) k⟵k + 1;
(11) until some termination conditions reach
(12) 􏽢x⟵yk;

ALGORITHM 2: .e inexact PD method.
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support set of the reconstructed data 􏽢x, and the mean
squared error (MSE) with respect to x∗, which is defined as

MSE �
1
n

􏽢x − x
∗����
����, (16)

and the data fidelity of A􏽢x − y is defined as

DF �
1
2
‖A􏽢x − y‖

2
, (17)

and NS as the number of successfully recovered instances.
We say a signal 􏽢x is successfully recovered if the positions of
the nonzero components of 􏽢x are the same as x∗ and the
corresponding MSE value is less than 10− 4.

4.1. DataGeneration and Parameter Setting. Each instance is
generated randomly with size (m, n, s), where m × n is the
dimension of matrix A and s is the sparsity level, such as
m � 1000, n � 5000, and s � 100. .e elements of matrix A

follow the Gaussian distribution. .e vector x∗ is generated
with the same distribution at s randomly chosen coordi-
nates. Finally, the vector b is generated by b � Ax∗.

Unless otherwise stated, all parameters in the PDmethod
are set as default, and parameters in the IPD package are set
as in Table 1.

4.2. Compare with the Original PD Method. Firstly, we
compare the iteration process of the iPDmethod with that of
the PD method on a random instance. All parameters are set
as before, and the problem size is m � 1000, n �

5000, and s � 100. Figure 2 describes the data fidelity and the
penalty function value over the iteration process. From
Figure 2(a), we find that the iPDmethod does not have many
null steps, and the values of data fidelity generated by the iPD
method decrease much fast than those of the original PD
method. Furthermore, the iPD method just requires about
150 steps while the original PD method requires about 400
steps. And the running time of the iPD method is about 7
seconds, which is less than half of the time required by the
original PD method. Moreover, the penalty function value
generated by the iPD method is much stable than that by the
original PD method.

In the second experiment, we compare the accelerated
PD method with its original PD method at different sam-
pling numbers. We fix the dimension m � 5000 and the
sparsity level s � 100. For each sampling number m, 100
instances are generated, and the averaged performance of
the two methods is presented in Figure 3.

From Figure 3(a), we see that the accelerated PDmethod
requires not more than 10 seconds while the original PD
method requires much more time. And the time required by

Table 1: Parameter settings in the acceleration of the PD method.

Parameter Value
x0 0
ρ ρ0 � 10, ρk+1 � min(1.1ρk, 1015)
tol 10− 6

η 1

L
L0 � 0.1max(‖Aj‖

2
2)

cinc � 2, cdec � 3

iPD
PD
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Figure 2: Iteration process of the compared methods for solving compressed sensing with size m � 1000, n � 5000, and s � 100: (a) data
fidelity at each iteration; (b) penalty function value at each iteration.
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Figure 3: Averaged results of the penalty decomposition methods for the compressed sensing problem with different sampling numbers on
100 instances: (a) CPU time over sampling number; (b) recovered rate over sampling number; (c) MSE over sampling number; (d) data
fidelity over sampling number; (e) number of nonzero components over sampling number.
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the accelerated PD method is stable at different sampling
numbers. Figure 3(b) shows that the recovered rate by the
accelerated PDmethod is higher than that by the original PD
method when m is bigger than 600. When the sampling
number is bigger than 700, the accelerated PD method can
recover all signals successfully. We find that the MSE value
and the DF value generated by the accelerated PD method
are lower than those generated by the original PD method.
.e averaged number of nonzero components also shows
that the accelerated PD method performs better.

In the next experiment, we compare the accelerated PD
method with its original version for solving the compressed
sensing problem with different sparsity levels s. All pa-
rameters are set as the same value as those stated before. .e
averaged computational results on 100 instances are pre-
sented in Table 2.

From Table 2, we find that the PDmethod not works well
when the sparsity level is greater than 150, especially when it
is greater than 200. However, the sparsity level recovered by
the iPD method can reach 200. When the two methods can
recover sparse signals, the iPD method just needs about one
third of the time required by the PD method. Moreover, the
recovered rate of the iPD method is higher than that of the
original PD method. From MSE and DF value, we see that
the signals recovered by the iPDmethod are more exact than
those recovered by the PD method. When s � 100, there is
one instance not recovered exactly by the iPD method since
there exist several very small components and one of them is
not recovered.

5. Conclusions

In this paper, we have proposed an acceleration of the
penalty decomposition for the sparse approximation
problem. .e proposed method does not solve the penalty
subproblems exactly and alternately solve penalty sub-
problems once a time after updating penalty parameters. We
show that this method enhances the performance of the
penalty decomposition method by computational experi-
ments on a number of random instances for solving the
compressed sensing problem. .e experiments demonstrate
that the proposed method indeed improves the original PD
method since it recovers better solutions with less running
time.
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