Hindawi

Computational Intelligence and Neuroscience
Volume 2021, Article ID 9945044, 15 pages
https://doi.org/10.1155/2021/9945044

Research Article

Hindawi

End-to-End Autonomous Exploration with Deep Reinforcement
Learning and Intrinsic Motivation

Xiaogang Ruan,"? Peng Li®,"? Xiaoqing Zhu ©,"* Hejie Yu(®,"? and Naigong Yu"?

Faculty of Information Technology, Beijing University of Technology, Beijing, China
2Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, China

Correspondence should be addressed to Xiaoqing Zhu; 553455117@qq.com

Received 7 October 2021; Revised 17 November 2021; Accepted 26 November 2021; Published 16 December 2021
Academic Editor: Yugen Yi

Copyright © 2021 Xiaogang Ruan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Developing artificial intelligence (AI) agents is challenging for efficient exploration in visually rich and complex environments. In
this study, we formulate the exploration question as a reinforcement learning problem and rely on intrinsic motivation to guide
exploration behavior. Such intrinsic motivation is driven by curiosity and is calculated based on episode memory. To distribute the
intrinsic motivation, we use a count-based method and temporal distance to generate it synchronously. We tested our approach in
3D maze-like environments and validated its performance in exploration tasks through extensive experiments. The experimental
results show that our agent can learn exploration ability from raw sensory input and accomplish autonomous exploration across
different mazes. In addition, the learned policy is not biased by stochastic objects. We also analyze the effects of different training

methods and driving forces on exploration policy.

1. Introduction

Exploration behavior is the fundamental of organisms for
survival and reproduction. For example, animals searching
for food may have to travel long distances without getting
any reward from the environment [1, 2]. Likewise, auton-
omous exploration is essential for many applications in
robotics [3, 4] and has garnered increased interest in recent
years.

Autonomous exploration is challenging because the
agent must localize itself, recognize explored areas, and plan
aroute to cover the environment. This work considers agents
that need to explore the environment through vision. For
traditional exploration methods, agents require a tabular
representation of the environment and rely on the Q-value
of state-action pairs to complete the exploration. The
Q-value size is determined by the number of times the agent
visits the pair and the Q-learning algorithms. Although some
later studies have nicely balanced the exploration-exploi-
tation problem [5, 6], the classical methods cannot be ap-
plied in high-dimensional state spaces because they had no
way to cope with dimensional catastrophes. Recent deep

reinforcement learning (DRL) [7], which combines deep
convolutional neural networks (CNNs) and reinforcement
learning (RL) [8], provides a framework for learning control
policy for specific tasks. DRL has achieved impressive results
in many robotic tasks [9-11], including methods that at-
tempt to finish autonomous exploration from raw sensory
input.

There have been many research efforts to make explo-
ration techniques more suitable for high-dimensional state
spaces. Bellemare [12] proposed a pseudocount method that
generalizes a count-based method to the nontabular case.
This approach improves the agent’s exploration efficiency in
anumber of hard games, particularly Montezuma’s Revenge.
Ostrovski et al. [13] used a Pixel CNN model to supply
pseudocount and achieved outstanding performance in
many Atari games. In addition, this research discovered that
the mixed Monte Carlo update is a powerful facilitator for
exploration. Tang et al. [14] integrated the hash table with
the classic count-based method to compute the novelty
bonus of state. This combination allowed the method to
reach near state-of-the-art performance on various con-
tinuous DRL benchmarks. Houthooft et al. [15] introduced


mailto:553455117@qq.com
https://orcid.org/0000-0002-5914-539X
https://orcid.org/0000-0002-3226-0099
https://orcid.org/0000-0002-4772-8619
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9945044

an exploration method that rewards the agent by maxi-
mizing information about the agent’s belief in environment
dynamics. This method achieves superior performance in
simple video games but struggled in complex environments.
Relying on the theory that novel states are easier to dis-
tinguish than others, Fu et al. [16] used an exemplar model to
detect novelty during interaction and combine it with a
count-based method to guide exploration in egocentric
observations. Pathak et al. [17] proposed an intrinsic curi-
osity module (ICM) that compute reward based on the
prediction error. The ICM pushed the agent in ViZDoom
and Super Mario Bros to explore the environment more
efficiently, but it did not work when the agent observed
something unpredictable. Burda et al. [18] took prediction
error as a reward signal and conducted a large-scale study of
purely curiosity-driven learning. The experiment results
show a high alignment of behavior guided by curiosity-
driven intrinsic motivation and hand-designed extrinsic
reward in many game environments. Furthermore, this
work discusses the limitations of prediction-based curiosity
methods that have no way to deal with curiosity traps caused
by unpredictable objects. Savinov et al. [19] created curiosity
through a reachability network and episode memory [20].
This method solves navigation problems in sparse reward
environments and overcomes the “couch-potato” issues in
prior works, which manifests as agents being attracted to
unpredictable objects and stopping exploration, but it
cannot guide the agent to finish autonomous exploration in
no-reward environments. Some navigation methods use
auxiliary tasks, such as reward prediction [21], depth pre-
diction, and loop closure classification [7], to encourage the
agent to explore the environment faster.

In this study, we propose a DRL method, augmented
with intrinsic motivation, for training agents to accom-
plish autonomous exploration through vision only.
Considering the limitations in prediction-based explora-
tion methods, we calculate the intrinsic motivation based
on the episode memory. To accomplish the objective of
covering the environment, we use two methods of gen-
erating intrinsic motivation. The first is a count-based
method, which pays attention to the novelty bonus of the
environment that has been explored and encourages the
agent to reach the rarely visited states. The second method
is determined by temporal distance [22, 23] between
current observation and those in memory. It calculates the
novelty bonus of unexplored areas and tries to push the
agent to distant places. In our approach, the intrinsic
motivation is a combination of such novelty bonuses. This
enables our approach to outperform existing methods and
achieves substantial scalability. We further analyze the role
of different training methods and driving forces on
learning exploration policy.

The rest of the paper is structured as follows: in Section
2, the background to our approach is listed. In Section 3,
the architecture and algorithm details are introduced. In
Section 4, the proposed algorithm is simulated and ex-
perimentally tested, and the test results are analyzed and
discussed. Finally, the conclusions and future work are
given in Section 5.

Computational Intelligence and Neuroscience

2. Background

2.1. Reinforcement Learning Foundation. Standard RL as-
sumes the agent interacts with the environment in a number
of discrete time steps. At each time step ¢, the agent observes
a state s, (s € S) and selects an action a, (a € A) according to
its policy m, where 7 is a mapping from states to actions. In
return, the agent enters the next state s,,; and receives a
scalar reward r,. The process continues until the maximum
time steps of an episode or reaches a terminal state. The
reward R, = Y20, y*7,,, is the accumulated return from the
time step ¢ with the discount factor y € (0, 1]. The goal of the
agent is to maximize expected return from each state s,, and
there are two common ways to do this: value-based and
policy-based methods.

The value function V7 (7) = E[R,[s, = s] is the expected
return for following policy 7 from state s, and the more
familiar action-value function Q" (s,a) = E[R,|s, = s,a] is
defined as the expected return for selecting action a in state s
and following policy 7. In many RL approaches, the action-
value function is represented with a function approximator,
and the famous one is DQN [24], which aims to approximate
the optimal action-value function through CNNs. In con-
trast to value-based method, policy-based method directly
parameterize the policy 7 (als; 6) and update the parameter 6
by gradient ascent on E[R,]. One example of such an al-
gorithm is REINFORCE [25], which updates the policy
parameter 0 in the direction Vglog 7 (a,ls,; 0) [26].

As described above, the ultimate goal of the value-based
method is the same as the policy-based method, but they use
different way to obtain the policy, and each of them has its
respective pros and cons. In order to combine the merit of
both, the Actor-Critic (AC) [27] algorithm is proposed.
Inside the framework, the actor and critic are represented by
policy 7 and value function V7" (s,), respectively, and the
advantage estimation A(s;,a,) = Q(s;,a) — V (s,) is used to
scale the policy gradient. The running diagram of the AC
algorithm is shown in Figure 1, it is an iterative optimization
process, and the two blue lines represent the time difference
(TD) errors used to update the “Actor” and “Critic,”
respectively.

2.2. Asynchronous Advantage Actor-Critic Algorithm. The
asynchronous advantage actor-critic (A3C) [28] algorithm is
an online DRL method. It maintains a policy 7 (a|s,; 6) and
a value function V (s,; 0,) during interaction and relies on
parallel actor-learners to provide accumulated update. Like
the variant of n-step Q-learning, A3C also operates in the
forward view and uses the same mixed n-step return to
update policy and value function after every ¢, actions
until a terminal state being reached. The update is performed
by the estimation of an advantage function A(s;,a,;0,0,)
given by R,-V(s;0,), where R,= Zf;olyirtJri + 9V
(S1%;0,) and k € (0,t,,.]. In addition, although the pa-
rameter 0 of policy m(a,ls;;60) and 6, of value function
V(s;;0,) are computed and updated separately, sharing
some parameters and adding entropy regularization terms
have been shown to be helpful for learning control policy.



Computational Intelligence and Neuroscience

LY
Poﬁiy

Actor
Valye
Funttion

VA

reward

—C Environment )47

F1Gure 1: AC algorithm flow chart.

. action
Critic

state

In the A3C algorithm, each agent independently inter-
acts with the environment. Due to the randomly initialized
parameters, the observed states, the selected actions, and the
achieved reward are different between agents, which is
shown in Figure 2, thus enabling asynchronous update and
reducing the relevance of training samples. Similar to other
nonsynchronous methods, the loss function of the policy
and value function is calculated by the following equations,
respectively:

f(0) =log ”(“tlsﬁe)(Rt_V(st;ev))’ (1)

£,(0) = (R, -V (s;;6,)). (2)

The losses of every learner are collected in terms of the
standard noncentered RMSProp, as shown in (3) and (4), to
update the global network. After each update, the global
network transmits the policy and value function to each
actor.

g=ag+(1- )V, (3)
g0 (4)
N

where g is the moving average of elementwise squared
gradients, 0<a <1 is a hyperparameter, # is the learning
rate, and ¢ is the constant added to maintain numerical
stability.

2.3. Nav A3C Model. The Nav A3C model [7] is an end-to-
end navigation framework that incorporates multiple ob-
jective. Similar to A3C, Nav A3C maximizes accumulated
return through actor-critic architecture and uses policy
7 (a,ls,; 0) and value function V' (s,; 0,) to select actions.
The architecture details of Nav A3C are shown in Fig-
ure 3. Nav A3C has a three-layer-CNN encoder and uses a
stacked LSTM to address the memory requirement. The
inputs to this model include the agent observation
0, € R"W* (where W and H are the width and height of the
image, respectively), the velocity v, € R, the previous action
a,_; € RN4, and the previous reward r,_; € R. Inside the

model, the first LSTM layer receives the reward, and the
velocity and previously selected action are directly fed to the
second recurrent layer. The policy and value function share
all intermediate representation, and each of them is com-
puted by linear layer.

3. Exploration Method

In this section, we introduce the temporal correlation net-
work, explain how to create intrinsic motivation based on
episode memory, and then describe the exploration model.

3.1. Temporal Correlation Network. The temporal correla-
tion network (TC-network, ¢;) is trained to compute the
temporal distance between observations, a process critical
for creating intrinsic motivation.

Conceptually, we use TC-network to accomplish a
classification task. The network is trained to assign high
similarity to pairs of observation that are temporally close
and low similarity to pairs that are temporally distant. The
TC-network architecture, shown in Figure 4, consists of two
parts: an embedding part ¢, that is constructed based on
ResNet-18 [29] and calculates the raw observations (o;, o]-)
into feature vectors and a comparator partd. that takes
features as input and output the temporal correlation co-
efficient tc between observations:

tc = ¢TC(Oi’Oj) = ¢c(¢£ (Oi)"/’E(Oj))- (5)

The training samples of TC-network are in a triple form
0, 011> Viy» consisting of two observations and a binary
label. These observations are considered close (y; =1) if
they are separated by at most k steps. Negative examples are
pairs where the two observations are separated by at least
M ek steps where the hyperparameter M is necessary to
create a gap between positive and negative examples. In the
end, the network is trained with logistic regression loss to
output the probability of the positive class.

3.2. Formulate Intrinsic Motivation. It is difficult for one
agent to act near-optimally until it has sufficiently explored
the environment. The key question, however, is how to
generate such exploration behavior. Obviously, relying on
simple entropy maximization as a source of actions is dif-
ficult in complex environments, and annotating each en-
vironment with a hand-designed dense reward is not
scalable. Inspired by the cognitive mechanism in animals,
the intrinsic motivation method [30] is proposed. Such
methods use a curiosity-driven intrinsic reward to guide
exploration behavior. Theorists in many fields suggested the
patterns of intrinsic motivation include empowerment [31],
surprise [32], and novelty [33]. The way we make up intrinsic
motivations is based on the novelty theory, which shows that
an animal has the ability to reward itself for something novel.
Our intrinsic motivation includes two types of novelty
bonuses, both related to the episode memory.

The first part of our intrinsic motivation is calculated
based on count-based method. For models that use the same



Computational Intelligence and Neuroscience

Environment

= T B Ldaq i
_» —p.-- —» {(Sp ap rt)}t 0,...T
s 't

STq St \ 4 N

experiences

ST_1 St 4 N

experiences

{(sp ap r)}imo

S0 S )
a, N ar. ol
— ese — - T
e [ r 71 Ty
:

oo

experiences
{(Sp ap r[)}t 0

4
. f
— | o
.g
g
s
° g
o]
S
NG4S
a [\l
7 (alsz0,) t e
Agent, . ]
Sy Sy §
w
o .
. % : .
global policy and P . :
< 2/
value network
a, s S0
Agent > g
S =
t 54 g
N

asynchronous update

batching

FIGURE 2: The A3C algorithm flow chart.

7'[
LSTM1

CONV3
CONV2

CONV1

Tt

{vp a1}

FiGure 3: Nav A3C model.

— — -
¢p (0))
0;
Ly
o o[ | = t-=drc (o)
>
. . i Compa;ator Part
ops (0]') ¢
i
Embedding Part
bk

FiGURE 4: TC-network model.

approach, the novelty of a state-action pair is derived from
the number of times an agent has reached that pair. Such
approaches require an enumerable representation of the

environment to prevent the dimension explosion problems
which prevents the count-based method being practical for
high-dimensional state spaces. Our approach discretizes the
state space by TC-network ¢,-: S — M and uses the
stored observations (0™ € M) to represent the environment.
States are mapped to a memory buffer. So, their occurrences
can be counted by corresponding observations within
memory. Then, these counts are used to calculate reward
according to the classic count-based method, and such
novelty bonus r*: § — R is defined as

rch (OC Om) _ o

n(¢re (0, Om))’ (©)

where a € R, is the bonus coefficient, o¢ is the current
observation, and o™ is the observations stored in memory.
For every mapping o° — 0™ (0™ € M) being found, the
corresponding 1 (¢ (0, 0™)) is increased by one. Certainly,
the count-based method can effectively calculate the novelty
bonus of current state when the mapping is discovered.
However, if the mapping is not existing, in other words, if
the current observation is in the unexplored part of envi-
ronment, it is difficult to calculate the reward.

As previously mentioned, an animal can reward itself
when it sees something novel, but the size of the reward
varies with the effort that the agent has made. This intuition
can be formalized as giving a reward to observations that are
outside the already explored part of the environment, and
the size of the reward is proportional to the shortest tem-
poral distance between the current observation and those in
memory. Therefore, the other part of our intrinsic moti-
vation r* %: § — R is defined as

‘ B
r' (o0 )—g}};ﬁ{(pTc(Oc’om)}, ™



Computational Intelligence and Neuroscience

where f € R, is the bonus coefficient, o is the current
observation, and 0™ (0™ € M) is the observations stored in
memory. The intrinsic motivation 7’ (0°, 0™) is defined as the
sum of the two types of novelty bonuses:

r (0,0™) = r (o5, 0™) +7* d (0, 0™). (8)

The process for calculating intrinsic motivation is
depicted in Figure 5. To determine the novelty bonus of the
current observation, we must keep track of the explored
region, and the memory buffer is a good choice for that.
However, we cannot store every observation during the
interaction because such actions may make the current
observation always temporally close to the previous step. In
our method, the current observation is added to memory
only if r' is larger than the novelty threshold ™. This op-
eration induces a discretization in the memory, thus en-
suring the temporally distant observations are stored. As a
side benefit, the memory buffer stores information with low
redundancy.

3.3. Exploration Model. The exploration model is shown in
Figure 6. Its main body is constructed based on the Nav A3C
model and adjusted according to the exploration task. The
most obvious change occurs in the architecture of the en-
coder and memory unit. First of all, to reduce the complexity
of training, our method uses a two-layer CNN encoder and
outputs 16 and 32 features, respectively, instead of a three-
layer CNN encoder and 32 and 64 features in the Nav A3C
model. Since our method does not need to store additional
environment information provided by auxiliary tasks, the 1
layer LSTM is able to meet the memory requirement. The
input to this model includes the observation o, € R¥>W*H
(where W and H are the width and height of the image), the
previous action a,_; € R™!, and the previous reward 7| € R.
At every time step ¢, the action g, is selected to maximize the
reward ri. It should be noted that, in addition to the two
types of novelty bonus generated by the agent itself, the
reward r! does not include any reward from the environ-
ment. We use the A3C algorithm with n-step lookahead
value to update policy 7 (a,|s,; 0) and value function V (s,; 0)
and use an entropy regularization penalty to discourage
premature convergence. During training, many instances of
agent interact in parallel with many instances of
environment.

4. Experiment

In this section, we evaluate the performance of our method
in exploration task and compare it to relevant baselines.

4.1. Experiment Setup

4.1.1. Experiment Environment. We test our approach and
relevant baselines in multiple mazes from DMLab [34]; the
illustration of an agent navigating toward a goal in the
environment is shown in Figure 7. In this 3D simulation
environment, the agent perceives the environment from a
first-person perspective and have access to additional

environmental information such as inertial information and
local depth information. The action space is discrete while
allowing fine control, including 6 actions: move forward/
backward, turn left/right, and turn left/right + move for-
ward. The environment run at 60 frames-per-second, and
the extrinsic reward is achieved by reaching apple (worth + 1
point) and goal (worth + 10 points) in the environment. If
the goal is reached, the agent is respawned to a new start
location, and the episode does not end until a fixed amount
of time expires.

4.1.2. Baselines. We compared our method to a set of
baselines that rely on intrinsic motivation to guide explo-
ration. The simplest baseline was the basic RL algorithm
Trust Region Policy Optimization (TRPO) [35], which uses
heuristic ¢ — greedy strategy to encourage exploration. Then,
we take VIME [15] as a comparison object; this method
perceives dynamic changes of environment based on
Bayesian Neural Network (BNN) and obtains exploration
policy through maximizing such information gain. The third
baseline is a classifier-centered approach EX2 [16], and its
novelty detection of exploration relies entirely on a dis-
criminatively trained exemplar model. Finally, as a sanity
check, we reproduce the state-of-the-art curiosity method
ICM [17] in our experiment.

4.1.3. Model Implementation. The details of the architecture
of our exploration model are as follows. It has two layers of
CNN: the first one with 8 x 8 filters applied with stride 4 x 4
and 16 feature maps and the second with 4 x 4 filters with
stride2 x 2 and 32 feature maps. Next there is a fully con-
nected layer with 256 units, and all three layers are followed
by a ReLU nonlinearity unit. After that, an LSTM layer with
256 units uses the CNN’s encoded observation, previous
action, and previous reward as input, and the policy and
value function are linear projections of the LSTM layer
output.

For the TC-network, the inputs are two observations,
each processed by a ResNet-18 encoder and producing 512-
dimensional feature vector. The TC-network concatenates
these features firstly and then puts them to a fully connected
network with four hidden layers, each equipped with 512
units and a ReLU nonlinearity unit, to predict if the two
observations are adjacent or not.

4.1.4. Hyperparameters. In the exploration process, we
chose the commonly used A3C algorithm as the basic RL
approach and used 84 x 84 RGB observation that samples at
intervals of three frames (every action is repeated 4 times) as
input. Eight workers were equipped with noncentered
RMSProp to interact with the environment setting in par-
allel. The learning rates were sampled from a log-uniform
distribution between 0.0001 and 0.005, and the entropy costs
were sampled from a log-uniform distribution between
0.0005 and 0.01.

The inputs of TC-network are two RGB images at the
resolution of 160 x 120 pixels, and all the training data are



Embedding Part  L____. Comparator Part

buffer ¢c
f

Append to memory if ' > 1"

FIGURE 5: Calculation process of intrinsic motivation.

7

o, CONV2
CONV1 L

- ¢5 (o) —|—>

—_—————n

o le| | —+renom
Embedding Part
¢r

|
I
I
I
|
|
| L
1 Comparator Part
[ — l ¢
memory c
buffer

Append to memory if r > 1"

FIGURE 6: Exploration model.

generated by the agent itself. We randomly sample a min-
ibatch of 64 observation pairs from the replay buffer B
during training and perform an update using the Adam
optimizer [36] with a learning rate A = 0.0001.

4.2. Parameter Selection Experiment. We are interested in an
agent that can explore the environment spontaneously.
However, before testing the performance of our approach,
some parameters need to be set up in advance. These pa-
rameters mainly involve two aspects: one is the training
details in TC-network; the other one is the key element
about intrinsic motivation; we will confirm them in the maze
shown in Figure 8.

4.2.1. Sample Separation Parameter. In the process of
training TC-network, a threshold k is required to separate
positive from negative sample pairs. To obtain suitable
training samples, we conduct an experiment that make k

Computational Intelligence and Neuroscience

vary from 1 to 10 and show its influence to TC-networks and
memory buffer. The training results (1.5M interaction
quantity) of TC-network are averaged over the top 5 random
hyperparameters, and the proportion of observations stored
in memory buffer (POSM) are calculated based on the
corresponding TC-network and 30 random observation
sequences. Table 1 shows that the training effect of TC-
network is closely related to the difference between positive
and negative samples. In the beginning, due to the small
difference between samples, the accuracy of TC-network is
low. Then, the prediction ability goes up with the increase of
k, but when the threshold is greater than a value, the ac-
curacy falls again. As we expected, the number of stored
observations drops off with the increase of k and augments
again when the prediction ability of TC-network reaches a
bottleneck.

The experiment results put us in a dilemma because TC-
network is the key to generate intrinsic motivation; we must
keep it in good condition. However, we also support storing
as few observations as possible during the interaction. After
careful consideration, we choose the data separated by 4-
time steps as training samples.

4.2.2. Interaction Quantity Parameter. Except for threshold
k, the interaction quantity with the environment is another
important parameter in the pretraining phase. In our
method, the sample complexity includes two parts: pre-
training and online learning. The exploration behavior is
finished by online learning and with no need for care about
the sample size, but such situation is opposite in the pre-
training part. The relationship between the amount of in-
teraction and network performance is shown in Table 2, and
the results are averaged over the top 5 random hyper-
parameters. As Table 2 demonstrates, the accuracy of TC-
network goes up with the expansion of training data while
decreasing when the network is overfitting. In order to have
efficient training and maintain good performance of the
network, the interaction quantity of pretraining is set as
25M.

In conclusion, the TC-network can learn useful con-
trollers based on trajectories of a randomly acting agent and
use it to create intrinsic motivation. However, since all the
samples in pretraining stage come from the same envi-
ronment, it inevitably leads to a lack of generality in TC-
network. So, in the subsequent exploration process, we will
collect data from different environments and conduct sec-
ond training for TC-network.

4.2.3. Intrinsic Motivation Parameter. Our intrinsic moti-
vation 7! is an augmented reward; it consists of two types of
novelty bonus. In order to tradeoff the influence between the
bonus, we test the effect of different parameter groups, which
setup « + f = 1 and sample them in the same interval (0.1),
and mainly demonstrate two results: the episode reward
(novelty bonus generated by the agent within 1800 time
steps) and the amount of interaction required to encode the
environment. The results are averaged over the top 5 random
hyperparameters and are summarized in Figure 9 after data



Computational Intelligence and Neuroscience

FIGURE 7: Simulation environment. (a) Go forward. (b) Apple. (c) Goal. (d) Door.

FiGURE 8: Parameter selection environment.

TaBLE 1: Experiment results of sample separation parameter.

k TC-network (%) POSM (%)
1 88.68 31.25
2 91.53 22.34
3 93.06 16.27
4 92.32 12.51
5 90.87 11.63
7 86.59 12.48
10 81.93 12.65

TaBLE 2: Experiment results of interaction quantity parameter.

Sample size TC-network (%)

300K 80.35
500K 82.42
1M 87.95
25M 92.63
5M 91.02

normalization (take the lowest result as standard). As Fig-
ure 9 demonstrates, relying on one type of novelty bonus,
where a, 5 = (0.0, 1.0) or o, 5 = (1.0, 0.0), the agent is able to
generate various exploration behavior. However, their ex-
ploration efficiency is lower than the agents that simulta-
neously use the two types of novelty bonuses, which is why
these agents need more interaction to encode the envi-
ronment. Meanwhile, we can interpret the experiment re-
sults from the composition of intrinsic motivation. Our

intrinsic motivation includes two parts and each of them
focuses on a direction: the count-based method pays at-
tention to the novelty bonus of the environment that has
been explored, encouraging the agent to reach the rarely
visited states; the temporal distance method concentrates on
calculating the novelty bonus of unexplored area and trying
to push the agent to a distant place. Therefore, it is beneficial
to use them together to guide exploration.

Among all the agents, the one equipped with the pa-
rameter group a, 8 = (0.2,0.8) shows the best exploration
efficiency and requires fewer interaction to encode the en-
vironment, so we select &« = 0.2 and 8§ = 0.8 in the following
experiment. In addition, unlike the pretraining stage, the
agent no longer acts randomly but learns an exploration
policy in the environment (Figure 8); this is the basis to
conduct fine-tuning method in other mazes.

4.3. Exploration Experiment. 'The goal of the experiment was
to quantitatively evaluate the exploration performance of
different approaches and learning patterns. The test envi-
ronment is shown in Figure 10. The structure of Maze-1 and
Maze-2 was inspired by spatial cognition experiments in
rodents, the former consisting of three paths of different
lengths, and the latter have a central corridor and six arms.
Maze-3 is a common maze that includes various obstacles.
There was no extrinsic reward (such as goal or fruit)
available in these mazes.

The performance of each method was evaluated by a
uniform count-based reward, which was calculated based on
the area explored by the agent within an episode. The
learning process was presented as an episode reward/
training step diagram (results are averaged over the top five
random hyperparameters), within the time limit of 7200
steps (equivalent to two minutes), and the agent had to
explore the environment as much as possible. Every time the
episode is done, the agent was respawned into a new location
and had to explore the environment again.

4.3.1. Learning Exploration from Scratch. In our first set of
experiments, the entire exploration policy was learned from
scratch. In addition, because the TC-network needs an extra
2.5M of data to finish pretraining, for a fair comparison, we
shift the curves for our method by the number of envi-
ronment steps to train it.

By analyzing the training curves, shown in Figure 11, we
can draw several conclusions. First, the VIME method,



1.6

Computational Intelligence and Neuroscience

1.5
14
1.3 ’ P
1.2 * )

11 .

normalization results

1.0 ® g

0.9

0.8

(0.0,1.0) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1.0,0.0)

parameter group (o,()

-@- episode reward
--% - interaction quantity

FIGURE 9: Experiment results of the reward function parameter.

(a) (b)

(©)

FIGURE 10: Top-down view of test mazes. (a) Maze-1. (b) Maze-2. (c) Maze-3.

which achieves good results on simple, clean images in the
Atari games, struggles in all test mazes. This is because the
BNN is insufficient to support a dynamic model that is built
from a first-person view, in which the agent shows reactive
behavior in the learning process. The worst case occurs in
Maze-1, where the area explored by VIME is even smaller
than the randomly acting agent. Second, compared with
VIME, the EX2 is more applicable in challenging image-
based environments. It generates coherent exploration be-
havior and guides the agent to reach alcoves of the end in
Maze-2. However, EX2 requires a good deal of interaction to
train the exemplar model, resulting in the reward it obtained
being lower than 300 in the early training stage. Owing to the
limited ability of the classifier, as the structure of mazes
becomes more complex, more areas lose their deserved
novelty bonus and are neglected by the agent. Finally, the
exploration policy achieved by ICM and our method greatly

exceeds that of prior exploration techniques, thereby
proving that these methods are suitable to high-dimensional
continuous state spaces. The difference in performance
between them is more obvious in Maze-3. Because there are
many obstacles and hidden areas within Maze-3, relying on
prediction error to guide exploration can easily produce a
dead zone. Meanwhile, our method, which generates in-
trinsic motivation based on episode memory, can push the
agent to explore every corner in the environment. One last
thing to note is that, despite ICM and our method get almost
equal rewards in Maze-1 and Maze-2, our method is able to
push the agent to reach distant state and discover more areas
with the same interaction.

Table 3 lists exploration indicators, including the
achieved reward, the maximum exploration ratio (MER)
within an episode, and the interaction quantity required to
encode the environment (IQRE). The IQRE metric



Computational Intelligence and Neuroscience 9

600

w
(=}
[=}

'S
(<)
S

episode reward
W
(=]

(=]
episode reward
W
(=]

o

]I:“

5]
(=3
(=)
[\o]
(=3
(=}

il I‘“

WM‘]M v »1“ 'N‘ ‘\‘ \Imm'

100 100
0 0
0 2 4 6 8 10 0 2 4 6 8 10
training step (1e6) training step (1e6)
—— TRPO — ICM —— TRPO — ICM
—— VIME —— Ours —— VIME —— QOurs
— EX2 — EX2
(a) (b)
600
500 Mo "

400 ¢

episode reward
3
S
3

200 il M
.‘w u.‘ ik el w
100
0
0 2 4 6 8 10

training step (1e6)

—— TRPO — ICM
—— VIME —— Ours
— EX2

(c)

FIGURE 11: Experiment results of learning exploration from scratch. (a) Learning curves in Maze-1. (b) Learning curves in Maze-2.
(c) Learning curves in Maze-3.

TaBLE 3: Experiment results of learning exploration from scratch.

Environment Method Reward MER (%) IQRE
TRPO 327.36 55.29 N/A

VIME 321.14 53.58 N/A

Maze-1 EX2 489.27 82.43 N/A
ICM 584.59 100.00 7.93

Ours 586.32 100.00 4.72

TRPO 232.47 41.02 N/A

VIME 228.34 39.98 N/A

Maze-2 EX2 425.73 74.56 N/A
ICM 567.28 100.00 8.07

Ours 571.87 100.00 5.15

TRPO 243.49 41.73 N/A

VIME 276.54 47.82 N/A

Maze-3 EX2 339.62 58.35 N/A
ICM 532.27 91.64 N/A

Ours 579.65 100.00 6.54




10

demonstrates the exploration efficiency of different ap-
proaches, which are calculated using preobtained environ-
mental features and observations stored during the
exploration of the agent. As shown in Table 3, both the
reward and explored area increase with the improvement of
exploration efficiency. To our surprise, the basic exploration
method TRPO, whose behavior depends primarily on
random actions, still covers half of Maze-1 and obtains the
reward almost equal to VIME in Maze-2. For the second
baseline, the agent walks like an aimless human (such as
wall-following behavior) and is unable to explore the en-
vironment consciously, because the VIME method lacks
appropriate inference about environment dynamics. The
following methods show better performance in high-di-
mensional visual spaces. EX2 achieves at least 70% coverage
compared to the first two mazes and makes the agent reach
more than 50% area in Maze-3. The ICM model guides the
agent to obtain complete memory of Maze-1 and Maze-2,
but it needs substantial interaction to stabilize exploration
behavior, and such policy is not guaranteed in Maze-3.
Compared with previous methods, our approach maintains
an effective exploration policy across different mazes and
uses it to push the agent to cover the environment. In terms
of exploration efficiency and the amount of training data
required for policy convergence, our method is superior to
others, and such phenomena are evident in Maze-1 and
Maze-2.

In addition, it shown in Table 4 that the accuracy of the
pretrained TC-network declines rapidly in a new environ-
ment. If we make no adjustments to it, the performance of
subsequent exploration will be affected. We also find that
training the TC-network for each maze is not a wise choice,
because such a targeted method will significantly increase
the cost of pretraining and put off the process of creating
intrinsic motivation, although it achieves better prediction
ability. Therefore, we fine-tune the secondary training for the
TC-network. This online method can randomly sample
training data from each test maze in the process of learning
control policy. In fact, the generalization training reduces
the accuracy of TC-network, but such reduction is accept-
able. Meanwhile, the training process can be completed
within 2.5 M interaction (equal to the pretraining stage) and
does not prevent the agent from exploring the mazes.

4.3.2. Learning Exploration with the Fine-Tuning Method.
In the previous section, we showed how the ICM model and
our approach can efficiently guide the agent in exploring the
environment. However, such an exploration policy is
learned from scratch. We want to know whether these
methods could be trained with fine-tuning. To answer this
question, we used the exploration policy that was obtained in
Section 4.2.3 (trained in the environment shown in Figure 8)
as initial input and then used the fine-tuning method to train
ICM and our approach in each maze. At the same time, we
studied the effect of extrinsic reward on learning exploration
policy.

Figure 12 shows how using the fine-tuning method to
train the agent can end the random behavior sooner and

Computational Intelligence and Neuroscience

TaBLE 4: The secondary training results for TC-network.

Method Environment TC_I(I;; ;fvork
Parameter selection 92.36
.. Maze-1 84.52
Pretraining Maze-2 85.14
Maze-3 78.32
Maze-1 93.16
Targeted training Maze-2 92.67
Maze-3 92.03
Maze-1/Maze-2 90.89
Generalization Maze-1/Maze-3 91.35
training Maze-2/Maze-3 90.62
Maze-1/Maze-2/Maze- 90.28

3

achieve an effective exploration policy in new environments,
but the training effect varies in different mazes. As shown in
Table 5, there is no marked difference between learning from
scratch or fine-tuning in Maze-1, either from the achieved
reward or the amount of interaction required to cover the
environment. However, their learning curves show that
because the structure of Maze-1 is relatively simple, learning
from scratch is an efficient way to achieve exploration policy.
They also show that the fine-tuning method, whose initial
parameters include behaviors such as wall-walking, obstacle
avoidance, and turning a corner, makes some mismatches in
the early training stage. In Maze-2, compared with learning
from scratch, the fine-tuning method significantly speeds up
the training efficiency of ICM and enables it to use less
interaction to converge the policy, but such improvement is
not witnessed in our method. The role of fine-tuning can be
better illustrated in Maze-3, and the effects manifest
themselves in two aspects: that the exploration performance
of ICM has improved again and that the amount of inter-
action needed to encode the environment has been further
reduced. Overall, the improvement brought about by fine-
tuning is more helpful for ICM, while our method shows
stability and scalability across different learning patterns.
Next, we put extrinsic rewards in each maze and
retrained ICM and our method with fine-tuning. The ex-
trinsic reward is in the form of goal (worth + 10) and apple
(worth + 1), and their location is fixed in an episode and
varies randomly between episodes. If the goal is reached, the
agent is respawned to a new start location and has to explore
the maze again, and the performance of each method is
measured by the uniform count-based reward. The exper-
iment results are shown in Figure 13 and Table 6. It can be
seen that, compared to the former method, using extrinsic
reward to conduct the fine-tuning results in more negative
effects, it not only slows down the training process, but also
confuses exploration and navigation. Such damage to per-
formance is rooted in the driving force, which results in the
states, including extrinsic reward, becoming attractive
during exploration and the agent wanting to reach it con-
sistently. In addition, because the agent will be reset to a new
location when it reaches the goal, the purpose of fine-tuning
seems to be finding the goal instead of exploring the en-
vironment. This is why the agent can quickly get a good



Computational Intelligence and Neuroscience

600

episode reward
W
[=}
[=}

0 2 4 6 8 10
training step (1e6)

—— ICM+scratch
—— Ours+scratch

—— ICM+fine-tuning
—— Ours+fine-tuning

(a)

11

episode reward

0 2 4 6 8 10
training step (1e6)

—— ICM-+scratch
—— Ours+scratch

—— ICM+fine-tuning
—— Ours+fine-tuning

(b)

600

episode reward

0 2 4
training step (1e6)

—— ICM-+scratch
—— Ours+scratch

6 8 10

—— ICM-+fine-tuning
—— Ours+fine-tuning

FIGURE 12: Experiment results of learning exploration with fine-tuning method (no extrinsic reward). (a) Learning curves in Maze-1. (b)

Learning curves in Maze-2. (c) Learning curves in Maze-3.

TaBLE 5: Experiment results of learning exploration with fine-
tuning method (no extrinsic reward).

Environment Method Reward MER (%) IQRE
ICM + scratch 584.59 100.00 7.93
Maze-1 Ours + scratch 586.32 100.00 4.72
ICM + fine-tuning  585.16 100.00 7.58
Ours + fine-tuning ~ 585.45 100.00 5.14
ICM + scratch 567.28 100.00 8.07
Maze-2 Ours + scratch 571.87 100.00 5.15
ICM + fine-tuning  566.34 100.00 6.49
Ours + fine-tuning ~ 568.25 100.00 4.81
ICM + scratch 532.27 91.64 N/A
Maze-3 Ours + scratcb 579.65 100.00 6.54
ICM + fine-tuning  573.49 100.00 7.23
Ours + fine-tuning ~ 572.86 100.00 473

reward in the early training period but still need more in-
teraction to complete the exploration. This phenomenon is
particularly obvious in Maze-1 and Maze-2, while the worst

case occurs in Maze-3, because there is no one method
trained by fine-tuning that can guide the agent to cover the
environment within an episode.

4.3.3. “Noisy-TV” Experiment. In the previous section, we
observed that the ICM method is superior to other baselines
and achieves nearly the same performance as our method in
the first two test mazes. However, the “couch-potato” issue,
which appears in the “noisy-TV” experiment, is still a
challenge of such a prediction-based curiosity method.
While our method relies on the agent’s observation and
memory to guide exploration, the goal of this experiment is
to provide additional evidence to verify whether it is more
robust to stochastic objects.

The “noisy-TV” experiment is implemented as follows.
In all test environments, the TV is on the head-on display
of the agent, and its location is fixed within an episode. An
image at resolution of 21 x 21 is shown on the TV screen at



12

600

episode reward
W
(=1
(=]

0 2 4 6 8 10
training step (1e6)

—— ICM+scratch
—— Ours+scratch

—— ICM+fine-tuning
—— Ours-+fine-tuning

()

Computational Intelligence and Neuroscience

episode reward

0 2 4 6 8 10
training step (1e6)

—— ICM-+scratch
—— Ours+scratch

—— ICM+fine-tuning
—— Ours+fine-tuning

(®)

600

episode reward

6 8 10

training step (1e6)

—— ICM-+scratch
—— Ours+scratch

—— ICM+fine-tuning
—— Ours+fine-tuning

FiGURe 13: Experiment results of learning exploration with fine-tuning method (exist extrinsic reward). (a) Learning curves in Maze-1. (b)

Learning curves in Maze-2. (c) Learning curves in Maze-3.

TaBLE 6: Experiment results of learning exploration with fine-
tuning method (exist extrinsic reward).

Environment Method Reward MER (%) IQRE
ICM + scratch 584.59 100.00 7.93

Maze-1 Ours + scratch 586.32 100.00 4.72
ICM + fine-tuning  583.74 100.00 9.13

Ours + fine-tuning  586.56 100.00 7.24

ICM + scratch 567.28 100.00 8.07

Maze-2 Ours + scratch 571.87 100.00 5.15
ICM + fine-tuning  514.63 89.46 N/A

Ours + fine-tuning ~ 569.44 100.00 6.83

ICM + scratch 532.27 91.64 N/A

Maze-3 Ours + scratch 579.65 100.00 6.54
ICM + fine-tuning ~ 483.16 82.95 N/A

Ours + fine-tuning ~ 542.68 92.63 N/A

every time step, independently from the agent’s actions,
and each pixel in the image is sampled uniformly from
[0, 255].

The experiment results that appear in Figure 14 and
Table 7 show that the performance of ICM and our method
both deteriorated after adding the source of stochasticity, but
that ICM was more severely affected. The ICM exhausted its
curjosity very quickly and exploration was stalled when
learning from scratch, while the fine-tuning method was able
to promote exploration to some extent, but the obtained
policy was not satisfactory. It can be seen that some parts of
state space simply cannot be modeled, like the “noisy-TV” in
this experiment. Their prediction error will remain high and
show an irresistible attraction to the ICM model, thereby
making the agent fall into a curiosity trap and deteriorate
into undesired behavior. Obviously, the images of “noisy-
TV” are inconsequential to exploration, and the agent’s
continued curiosity about them is useless. In our approach,
the agent seeks out the curiosity based on memory instead of
prediction. Relying on a comparison to the past, the agent
will not maintain curiosity about such stochastic objects and



Computational Intelligence and Neuroscience

13

600 600
500 500
5 400 5 400
< <
= =
2 2
o 300 o 300
k! <
2 2
& 200 £ 200
100 100
0 0
0 2 4 6 8 10 0 2 4 6 8 10
training step (1e6) training step (1e6)
—— ICM+scratch —— ICM+fine-tuning —— ICM+scratch —— ICM+fine-tuning
—— Ours+scratch —— Ours+fine-tuning —— Ours+scratch —— Ours+fine-tuning
(@ (b)
600
500
= 400
3
H
2
= 300
<
3
& 200
100
0
0 2 4 6 8 10
training step (1e6)
—— ICM+scratch —— ICM+fine-tuning
—— Ours+scratch —— Ours-+fine-tuning

(©

FIGURE 14: Experiment results of “noisy-TV.” (a) Learning curves in Maze-1. (b) Learning curves in Maze-2. (c) Learning curves in Maze-3.

TaBLE 7: Experiment results of “noisy-TV.”

Environment Method Reward MER (%) IQRE
ICM + scratch 315.62 53.86 N/A
Maze-1 Ours + scratch 582.74 100 7.58
ICM + fine-tuning  374.52 64.05 N/A
Ours + fine-tuning  586.43 100 8.67
ICM + scratch 279.68 48.71 N/A
Ours + scratch 565.32 100 6.93
Maze-2 .
ICM + fine-tuning  317.54 56.18 N/A
Ours + fine-tuning  566.73 100 7.75
ICM + scratch 362.49 63.28 N/A
Maze-3 Ours + scratch 577.86 100 7.69
ICM + fine-tuning  305.47 54.72 N/A
Ours + fine-tuning  572.63 100 8.12

will overcome the “couch-potato” issues. The experiment
results show that our method can explore the environment
reasonably well and obtain the complete memory of all test

mazes, although the presence of “noisy-TV” slows down the
learning speed.

5. Conclusion

In this work, we proposed an autonomous exploration
method based on deep reinforcement learning and the
concept of intrinsic motivation. One component of our
method has the objective of creating intrinsic motivation
while the other has the objective of learning exploration
policy, and they are designed to work together. Our ex-
periment results and analysis highlight the role of intrinsic
motivation and training method in learning exploration
policy. We also examine the agent’s performance in an
environment that includes stochastic objects.

Our approach is inspired by the behavior of curiosity in
animals, which enables them to explore the environment
without any extrinsic reward. For Al agents, to accomplish
the autonomous exploration with raw visual inputs, we use



14

deep reinforcement learning as the basic framework and
allow the agent to create rewards for itself. Considering the
limitations of prediction-based exploration methods, our
intrinsic motivation is calculated based on episode memory
and include two types of novelty bonuses. This enables our
approach to outperform the existing methods in 3D maze-
like environments and gives it better ability to handing
stochastic objects.

Although our approach successfully learns exploration
policy from visual inputs, its performance would be limited
in very large environments, owing to the capacity of the
single-layer LSTM and the memory buffer. In the future, it is
necessary to increase the capacity of our exploration model
by adding LSTMs or using external memories. Furthermore,
we believe it would be intriguing for future work to migrate
our method to the real world and compare it with vision-
based simultaneous localization and mapping (SLAM)
approaches.

Data Availability

We did not use any specific dataset, and all the experiment
data were from the public data platform, DMLab.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
report regarding the present study.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 61773027), the Natural Science
Foundation of Beijing (no. 4202005), and the Project of S&T
Plan of Beijing Municipal Commission of Education (no.
KM201810005028).

References

[1] P. Y. Oudeyer, “Computational theories of curiosity-driven
learning,” 2018, https://arxiv.org/abs/1802.10546.

[2] E.C. Tolman, “Cognitive maps in rats and men,” Psychological
Review, vol. 55, no. 4, pp. 189-208, 1948.

[3] S.Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and
J. Malik, “Cognitive mapping and planning for visual navi-
gation,” 2019, https://arxiv.org/abs/1702.3920.

[4] C. Cadena, L. Carlone, H. Carrillo et al., “Past, present, and
future of simultaneous localization and mapping: toward the
robust-perception age,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309-1332, 2016.

[5] B. H. Abed-Alguni, “Action-selection method for reinforce-
ment learning based on cuckoo search algorithm,” Arabian
Journal for Science and Engineering, vol. 43, no. 12,
pp. 6771-6785, 2018.

[6] B. H. Abed-Alguni and M. A. Ottom, “Double delayed
Q-learning,” International Journal of Artificial Intelligence,
vol. 2, no. 16, pp. 41-59, 2018.

[7] P. Mirowski, R. Pascanu, F. Viola et al., “Learning to navigate
in complex environments,” 2017, https://arxiv.org/abs/1611.
03673.

Computational Intelligence and Neuroscience

[8] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning
in robotics: a survey,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[9] A. Devo, G. Costante, and P. Valigi, “Deep reinforcement
learning for instruction following visual navigation in 3D
maze-like environments,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1175-1182, 2020.

[10] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-
based reinforcement learning for closed-loop dynamic control
of soft robotic manipulators,” IEEE Transactions on Robotics,
vol. 35, no. 1, pp- 124-134, 2019.

[11] O. M. Andrychowicz, B. Baker, M. Chociej et al., “Learning
dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020.

[12] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos, “Unifying count-based exploration
and intrinsic motivation,” 2016, https://arxiv.org/abs/1606.
01868.

[13] G. Ostrovski, M. G. Bellemare, A. V. D. Oord, and R. Munos,
“Count-based exploration with neural density models,” 2017,
https://arxiv.org/abs/1703.01310.

[14] H. Tang, R. Houthooft, D. Foote et al., “#Exploration: a study
of count-based exploration for deep reinforcement learning,”
2017, https://arxiv.org/abs/1611.04717.

[15] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and
P. Abbeel, “VIME: variational information maximizing ex-
ploration,” 2017, https://arxiv.org/abs/1605.09674.

[16] J. Fu, J. D. Co-Reyes, and S. Levine, “EX2: exploration with
exemplar models for deep reinforcement learning,” 2017,
https://arxiv.org/abs/1703.01260.

[17] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-
driven exploration by self-supervised prediction,” 2017,
https://arxiv.org/abs/1705.05363.

[18] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and
A. A. Efros, “Large-scale study of curiosity-driven learning,”
2018, https://arxiv.org/abs/1808.04355.

[19] N. Savinov, A. Raichuk, R. Marinier et al., “Episode curiosity
through reachability,” 2019, https://arxiv.org/abs/1810.02274.

[20] A. Pritzel, B. Uria, S. Srinivasan et al., “Neural episode
control,” 2017, https://arxiv.org/abs/1703.01988.

[21] M. Jaderberg, V. Mnih, W. M. Czarnecki et al., “Reinforce-
ment learning with unsupervised auxiliary tasks,” 2016,
https://arxiv.org/abs/1611.05397.

[22] P. Sermanet, C. Lynch, Y. Chebotar et al., “Time-contrastive
nerwork: self-supervised learning from video,” 2018, https://
arxiv.org/abs/1704.06888.

[23] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, and Z. Wang,
“Playing hard exploration games by watching youtube,” 2018,
https://arxiv.org/abs/1805.11592.

[24] V. Mnih, K. Kavukcuoglu, D. Silver et al,, “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, 2015.

[25] R. J. Williams, “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning,” Machine
Learning, vol. 8, no. 3-4, pp. 229-256, 1992.

[26] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans,
“Bridging the gap between value and policy based rein-
forcement learning,” 2017, https://arxiv.org/abs/1702.
08892.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Intruction, The MIT Press, Cambridge, MA, USA, 1998.

[28] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods
for deep reinforcement learning,” 2016, https://arxiv.org/abs/
1602.01783.


https://arxiv.org/abs/1802.10546
https://arxiv.org/abs/1702.3920
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1703.01310
https://arxiv.org/abs/1611.04717
https://arxiv.org/abs/1605.09674
https://arxiv.org/abs/1703.01260
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1808.04355
https://arxiv.org/abs/1810.02274
https://arxiv.org/abs/1703.01988
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1805.11592
https://arxiv.org/abs/1702.08892
https://arxiv.org/abs/1702.08892
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783

Computational Intelligence and Neuroscience

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2015, https://arxiv.org/abs/1512.
03385.

[30] S. Forestier and P. Y. Oudeyer, “Modular active curiosity-
driven discovery of tool use,” in Proceedings of the 2016 IEEE/
RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 3965-3972, Daejeon, South Korea, October 2016.

[31] C. Salge, C. Glackin, and D. Polani, “Changing the envi-
ronment based on empowerment as intrinsic motivation,”
Entropy, vol. 16, no. 5, pp. 2789-2819, 2014.

[32] D. Y. Little and F. T. Sommer, “Learning and exploration in
action-perception loops,” Frontiers in Neural Circuits, vol. 7,
no. 37, pp. 37-19, 2013.

[33] R.S. Sutton, “Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming,” in Proceedings of the Seventh International Conference
on Machine Learning, pp. 226-224, Austin, TX, USA, June
1990.

[34] C. Beattie, J. Z. Leibo, D. Teplyashin et al., “Deepmind lab,”
2016, https://arxiv.org/abs/1612.03801.

[35] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” 2017, https://arxiv.org/
abs/1502.05477.

[36] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2017, https://arxiv.org/abs/1412.6980.

15


https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03801
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1412.6980

