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Since the outbreak of Coronavirus disease 2019 (COVID-19), it has been spreading rapidly worldwide and has not yet been
effectively controlled. Many researchers are studying novel Coronavirus pneumonia from chest X-ray images. In order to improve
the detection accuracy, two modules sensitive to feature information, dual-path multiscale feature fusion module and dense
depthwise separable convolution module, are proposed. Based on these two modules, a lightweight convolutional neural network
model, D2-CovidNet, is designed to assist experts in diagnosing COVID-19 by identifying chest X-ray images. D2-CovidNet is
tested on two public data sets, and its classification accuracy, precision, sensitivity, specificity, and F1-score are 94.56%, 95.14%,
94.02%, 96.61%, and 95.30%, respectively. Specifically, the precision, sensitivity, and specificity of the network for COVID-19 are
98.97%, 94.12%, and 99.84%, respectively. D2-CovidNet has fewer computation number and parameter number. Compared with
other methods, D2-CovidNet can help diagnose COVID-19 more quickly and accurately.

1. Introduction

Coronavirus disease 2019 (COVID-19) caused by the 2019
novel Coronavirus (2019-nCoV) has spread all over the
world in a very short time. 0e detection technology based
on reverse transcription polymerase chain reaction (RT-
PCR) is the most widely used method for diagnosing
COVID-19. However, because its kits are limited and ex-
pensive, the diagnosis is time-consuming [1]. 0is approach
has certain limitations in the diagnosis process and easy to
get false negative result.

At present, the auxiliary diagnosis and treatment
methods for COVID-19 mainly include chest X-ray and
computed tomography (CT) [2]. Compared with CT, the
structure and tissue of the lesion in the chest X-ray image are
more obvious, and the X-ray device is more popular [3]. For
radiologists, manual reading is a labor-intensive task that is
time-consuming and error prone.0erefore, an effective and
fast auxiliary detection method for COVID-19 could sig-
nificantly reduce the pressure on medical staff and resource
supply and reduce the risk of infection among medical staff.

In recent years, the application of deep learning methods
in the field of computer vision has achieved good results, and
the advantages of convolutional neural networks (CNNs) in
feature extraction have been proven. For example, Wang
et al. [4] proposed the Dense-MobileNet model, which can
make full use of the output feature maps generated by
previous convolution layers in dense blocks, so as to generate
a large number of feature maps with fewer convolution
kernels and reuse these feature. Mei et al. [5] used CNNs and
traditional machine learning algorithm to quickly diagnose
COVID-19-positive patients. Wang et al. [6] proposed and
improved a deep learning approach with global average
pooling (GAP) to classified colonoscopy polyp images for
assisted diagnosis. Wang et al. [7] designed the channel
feature weight extraction module (CFWE) according to the
characteristics of chest X-ray image and proposed a new
CFW-Net. Apostolopoulos and Mpesiana [8] used a CNN
based on the transfer learning method to automatically
detect X-ray images. Wang et al. [9] designed a COVID-19
network for detecting COVID-19 cases from chest X-ray
images and investigated how interpretable methods could be
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used for prediction in an attempt to gain insight into the key
factors associated with COVID-19 cases. Khan et al. [10]
proposed a deep CNN model based on Xception-CoroNet
and used a pretraining method based on the ImageNet
dataset to identify COVID-19-positive chest X-ray images.
Ozturk et al. [11] proposed a DarkCovidNet model with
fewer parameters to automatically detect COVID-19-posi-
tive chest X-ray images.

CNNs have been widely used in computer vision tasks,
such as image classification [12], target detection, and se-
mantic segmentation [13]. Diagnosis accuracy is critical to
preventing epidemics, but chest X-ray images have high
feature similarity between classes and low intraclass feature
variability, which could cause model deviation or overfitting
and increase the difficulty of model identification of
COVID-19. To solve the above problems, dual-path mul-
tiscale fusion (DPM) module and dense depthwise separable
(DDS) module, which are sensitive to feature information
are proposed. Based on these two modules, a new light-
weight CNN model, D2-CovidNet, is designed for COVID-
19 detectiong in X-ray images.

2. Architecture Design

2.1. DPMModule and DDS Module. Due to the chest X-ray
images with high similarity between categories and low
intracategory variability, DPMmodule and DDS module are
proposed. 0ese two modules, as shown in Figures 1 and 2,
have strong characterization capabilities and efficient
computing abilities. In Figures 1 and 2, h, w, and c denote the
height, width, and channels of the feature map, respectively.
k is the kernel size, s is the strides, and f is the number of
filters in the convolution. In these modules, “h-swish” is
employed as the activation function, which can reduce the
time delay and make the model suitable for mobile devices
[14].

0e DPM module contains 2 branches, and each branch
contains 1 pooling layer and 3 convolutional layers. Max-
imum pooling layer with the filter size of 2× 2 and step size
of 2× 2 is used as the pooling layer. Maximum pooling can
ensure the invariance of the position and rotation of the
features, which reduce the number of parameters of the
model, thereby alleviating the problem of overfitting. 0e
first 1× 1 convolutional layer increases the channel number
of the feature map for enriching the feature information.0e
second 1× 1 convolutional layer is used to correlate the
output feature maps with different channel information,
which is depthwise convolution or dilated depthwise con-
volution, for example, depthwise convolution using con-
volutional filters with the dilation rate of 2. Since the dilated
convolution [15] does not increase the number of param-
eters and the amount of computation, the complexity of the
two branches is the same, making the model better suitable
for dual-path-parallel computing. 0e features extracted by
the convolutional layer close to the input contain detailed
texture information, so the DPM module is used in the
shallow layers of the network.

2.2.D2-CovidNet. Based on DPMmodule and DDSmodule,
a new lightweight CNN, D2-CovidNet, and an automatic
detection approach for COVID-19 detection are proposed,
as shown in Figure 3.
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Figure 1: 0e structure of DPM module.
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Figure 3: 0e structure of D2-CovidNet.
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In Figure 3, the first layer contains a dilated convolution
filter with an expansion rate of 2. 0en, the DPMmodule is
used for 5 times to halve the spatial dimension of the
feature map for five times, reducing the size of the model.
Next, the depthwise separable convolution layer (DW) [16]
is used to enrich feature information, and the DDS module
is used for 9 times to extract features to alleviate the dis-
appearance of gradients. After the adaptive average pooling
layer, the space size of the feature map becomes 1 × 1. To
prevent overfitting, the obtained output feature map is
subjected to a dropout layer with the drop rate of 0.2, and
then a full connection layer is used to increase dimen-
sionality of feature. Finally, the SoftMax layer is employed
for classification.

2.3.NetworkComplexity. Amount of computation and the
number of parameters are used to measure the com-
plexity of the model. Introducing the dilated convolution
with the expansion rate of 2 will not change the number
of parameters and the amount of computation. 0e
depthwise separable convolutional layer has fewer pa-
rameters and computations than the traditional con-
volutional layer, which can save memory and running
time. Compared with serial connection, the dual-path
structure can reduce the model size and the number of
memory accesses.

For a given module, which contains two ordinary
convolutional layers, as shown in Figure 4, the size of input
feature map is F× F×M and the size of output feature map is
(F/2)× (F/2)× (M+ 16). In Figure 4, F× F means the spatial
dimension of the input feature map and the channel of the
input feature map M≥ 16. Meanwhile, f, k, and s represent
the number of convolution kernels, the size of convolution
kernels, and the step size of convolution kernels, respec-
tively. 0e number of parameters POC1 and the number of
computations FOC1 are as follows.

POC1 � (M + 16) × M +(M + 16)
2

× 9,

FOC1 � (M + 16) × M × F
2

+(M + 16)
2

×
F

2
􏼒 􏼓

2
× 9.

(1)

0e number of parameters PDPM and computations
FDPM generated by the DPM module with dilated depthwise
convolution of stride 1 is, respectively, shown as follows:
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0erefore, compared with the module shown in Figure 4,
the reduction in parameter ΔPDPM and computation ΔFDPM
achieved by DPM module is shown as follows:

ΔPDPM � POC1 − PDPM �
9
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· M
2

+ 136 · M + 1024,
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15
8
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2
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2
.

(3)

0e parameters of D2-CovidNet are shown in Table 1.
0e flops and parameters of some deep learning models are
as shown in Table 2 (the least number of flops and the least
number of parameters are bolded). According to Table 2,
D2-CovidNet has the least number of computations and
amount parameters among the networks above. D2-Cov-
idNet is appropriately 262.90 times smaller than VGG19 in
computations and 685.20 times smaller than VGG19 in
parameters.

3. Experimental Results and Analysis

3.1. Dataset. 0e chest X-ray images used in our experi-
ments are from two open-source datasets. 0e common
pneumonia and normal chest X-ray images are selected from
the data set provided by Kaggle [26] (https://www.kaggle.
com/paultimothymooney/chest-xray-pneumonia). It con-
tains a total of 5863 chest X-rays images. 4265 chest X-ray
images of pneumonia and 1575 normal chest X-ray images
are selected from this dataset. 0e COVID-19 chest X-ray
images used in our experiments are selected from the dataset
(https://github.com/ieee8023/covid-chestxray-dataset) col-
lected by Cohen et al. [27]. 0is dataset contains 790 chest
X-ray images and CT images of infected patients with
COVID-19 or other pneumonia. 412 chest X-ray images of
with COVID-19 patients are selected from this dataset.
Figure 5 shows a partial example of various chest X-ray
images from the data set used in the experiments. Finally,
102 COVID-19 X-ray images, 234 normal X-ray images, and
390 pneumonia X-ray images are randomly selected as the
test set and the rest as the training set.
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Figure 4: A ordinary convolutional module to achieve dimensional
transformation.
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Chest X-ray image features have high interclass simi-
larity and low intraclass variance, causing the model clas-
sification deviation or over fitting. According to the
evaluation criteria adopted by most medical image classi-
fication models, accuracy, precision, specificity, sensitivity,
and F1-score are used as performance indicators.

0e formulas for these evaluation criteria are as follows:

accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

F1 − score �
2 × TP

2 × TP + FP + FN
.

(4)

Among these equations, TP represents true positive, FP
represents false positive, FN represents false negative, and
TN represents true negative.

3.2. Preprocessing and Parameter Setting. Image augmen-
tation techniques and pretraining methods are adopted
based on chest X-ray image datasets to overcome the lack of
data. In the experiments, firstly, the chest X-ray images are
resized to a fixed resolution of 224× 224, randomly selected
half of the training set images for 60-degree horizontal
flipping and randomly selected half of the training set images
for 45-degree vertical flipping. 0en, the values of the
brightness, the contrast, and the saturation of the chest X-ray
images are changed uniformly 0.6–1.4 times. 0erefore, the
number of samples used for training is 5 times that of the
training set through data enhancement technology, en-
hancing the generalization performance of the model.

0e weight parameters of the convolutional layer of the
experimental model are initialized by using Kaiming normal
distribution [28]. 0e weight value in the batch normali-
zation layer is 1, and the bias value is 0. 0e weight pa-
rameters in the full connection layer are initialized with a
normal distribution with a mean value of 0 and a standard
deviation of 0.01. We conducted 10 sets of experiments in
the same configuration environment, including 9 sets of
comparative experiments. 0e software platform and
hardware environment of our experiment are shown in
Table 3.

0e initial learning rate (LR) of the experimental models
is set to be 0.01. For each set, models are trained for 200
epochs. For the first 20 epochs, Adam optimizer [29] is
adopted with betas between 0.9 and 0.999 to make the
model converge quickly. In the last 120 epochs, the SGD
optimizer [30] is used with a momentum of 0.9 and a weight
decay of 5e−4 to find the optimal solution of the model.
Meanwhile, the method of adjusting the learning rate is
employed periodically. At the 50th epoch, the learning rate
is set to 0.005. When epoch ∈ [60, 70, 80, 90, 110, 130, 150],
the decay rate of the LR corresponds to [1/4, 1/8, 1/16, 1/32,
1/20, 1/40, 1/80, 1/100]. 0e “BatchSize” of the training set
and test set is 32 and 16, respectively.

3.3. Recognition Results. To reflect the lightweight and good
recognition performance of our proposed model, Mobile-
NetV2 and ShuffleNetV2 are used for comparative experi-
ments. 0e accuracy curves of MobileNetV2, ShuffleNetV2,
and D2-CovidNet are shown in Figure 6. 0e average ac-
curacy of every 50 epochs and model complexity is shown in
Table 4. 0e best performing model and model parameters
are saved for each network model. It can be seen from
Figure 7 that D2-CovidNet is more stable thanMobileNetV2
and ShuffleNetV2 on the experimental data set. As can be
seen from Table 3, the average accuracy rate of the last 10
epochs of D2-CovidNet is 2.22% higher than that of
MobileNetV2 and 2.91% higher than that of ShuffleNetV2.
However, the number of computations and parameters of
D2-CovidNet is only 0.23 times and 0.09 times of Mobi-
leNetV2 and 0.49 times and 0.16 times of ShuffleNetV2,

Table 1: Parameters of each layer of D2-CovidNet.

Layer (type) Output shape Params
Conv2d-1 [−1, 16, 224, 224] 464
DPM-2 [−1, 32, 112, 112] 1968
DPM-3 [−1, 48, 56, 56] 3888
DPM-4 [−1, 64, 28, 28] 6720
DPM-5 [−1, 80, 14, 14] 10320
DPM-6 [−1, 96, 7, 7] 14688
DW-7 [−1, 112, 7, 7] 12032
DDS-8 [−1, 16, 7, 7] 3056
DDS-9 [−1, 16, 7, 7] 3488
DDS-10 [−1, 16, 7, 7] 3920
DDS-11 [−1, 16, 7, 7] 4352
DDS-12 [−1, 16, 7, 7] 4784
DDS-13 [−1, 16, 7, 7] 5216
DDS-14 [−1, 16, 7, 7] 5648
DDS-15 [−1, 16, 7, 7] 6080
DDS-16 [−1, 16, 7, 7] 6512
Conv2d-17 [−1, 480, 1, 1] 124320
SoftMax-18 SoftMax-18 1443
Total params 218755
Input size (MB) 0.57

Table 2: Flops and parameters of other deep learning models and
D2-CovidNet.

Model Flops (million) Params (million)
VGG19 [17] 18736.81 137.04
GoogleNet [18] 1434.21 5.32
ResNet50 [19] 3919.13 22.42
DenseNet121 [20] 2731.91 6.62
SqueezeNet1.0 [21] 702.71 0.73
MobileNet [22] 560.73 3.11
ShuffleNet [23] 142.02 0.91
MobileNetV2 [24] 311.13 2.13
ShuffleNetV2 [25] 144.72 1.22
D2-CovidNet 71.27 0.20
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Figure 5: Cases of chest X-ray images: (a-b) COVID-19 images; (c-d) normal images; (e-f) other pneumonia images.

Table 3: Experimental platform configuration.

Attribute Configuration information
Operating system Ubuntu 16.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Frame PyTorch
IDE PyCharm
Language Python
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Figure 6: Accuracy curves of MobileNetV2, ShuffleNetV2, and D2-CovidNet on training set and test set.
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respectively. 0us, on the experimental data set, D2-Cov-
idNet performs better than MobileNetV2 and ShuffleNetV2,
and the complexity of D2-CovidNet is lower than that of
MobileNetV2 and ShuffleNetV2.

To reflect the effectiveness of our model, other 7 CNN
models are used to conduct comparative experiments on the
expanded data set, including several traditional CNN
models, such as VGG19, GoogleNet, ResNet50, and Den-
seNet121, and several lightweight CNN models, such as
SqueezeNet1.0, MobileNet, and ShuffleNet. 0e accuracy,
precision, sensitivity, specificity, and F1-score of the models
are shown in Table 5 (the best results are bolded).

As can be seen from Tables 1, 4, and 5, D2-CovidNet has
the lowest complexity and the best overall performance
among these models. Table 5 shows that the classification
accuracy, sensitivity, specificity, and F1-score of D2-Cov-
idNet are 94.43%, 94.02%, 96.61%, and 95.30%, respectively.
0ese values are higher than those of other models. Among
the traditional CNN models, ResNet50 has the highest
classification accuracy of 93.53%, but it is still 0.90% lower
than D2-CovidNet, and its computation amount and pa-
rameter amount are 54.99 times and 112.10 times those of
D2-CovidNet, respectively. From Table 5, among the
lightweight CNN models, MobileNet has the highest clas-
sification accuracy rate of 88.53%, but it is 5.90% lower than
D2-CovidNet. However, the computation amount and pa-
rameter amount of MobileNet are 7.87 times and 15.55 times
those of D2-CovidNet, respectively. Different from the
ShuffleNet unit and the inception structure in GoogleNet,
the complexity of each branch in DPM module is the same,
which can be better applied to dual-path-parallel computing.
0e DPM model implements different scales feature fusion
to enhance model representation ability and improve model

performance. Unlike DenseNet121, which used dense
connections in the entire network, D2-CovidNet only used
dense connections in the deeper layers of the network. 0is
improves the utilization of feature maps and effectively
alleviates the problem of gradient disappearance. 0erefore,
D2-CovidNet can effectively identify COVID-19 X-ray
images and can be applied to mobile devices.

0e features extracted by the convolutional layer near the
input include detailed texture information such as contours,
and the features extracted by the convolutional layer near the
output include rich semantic information. 0erefore, D2-
CovidNet uses DPM module with strong characterization
capabilities in the shallow layer of the network and DDS
module that can realize feature reuse in the deep layer of the
network. After many fine-tuning and experimental verifi-
cation, D2-CovidNet in this article has higher recognition
performance and lower computing overhead and is the most
cost-effective choice among multiple configurations.

In order to further verify the necessity of using a specific
number of different modules in the shallow and deep layers
of the model, we conducted a more comprehensive ablation
experiment. Two configurations were used in the ablation
experiment: “F-DPM” and “F-DDS,” respectively. “F-
DPM” is composed only of DPM modules, and “F-DDS” is
composed only of DDS modules. 0e above two models are
used to conduct experiments in the same experimental
environment, and the experimental results are shown in
Table 6.

It can be seen from Table 6 that the network performance
using only the DPM module or the DDS module is not as
good as D2-CovidNet. For a network model, it is not enough
to have shallow information extraction capabilities or deep
information extraction capabilities. Only when these two

Table 4: 0e experimental results and model complexity.

Model
Average accuracy (%)

Flops (million) Params (million)
Epoch (1–50) Epoch (51–100) Epoch (101–150) Epoch (151–200) Epoch (191–200)

MobileNetV2 75.5861 84.1087 83.7101 86.2726 89.8007 311.13 2.13
ShuffleNetV2 81.3605 86.5734 89.8614 89.5389 89.1169 144.72 1.22
D2-CovidNet 85.4792 89.8542 90.7228 91.1304 92.0245 71.27 0.20
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Figure 7: Confusion matrix of D2-CovidNet.
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capabilities are used in a reasonable combination can the
feature extraction capabilities be maximized, which also
verifies the superiority of D2-CovidNet.

In addition, some deep learning methods for automatic
detection of COVID-19 chest X-ray images are compared
with D2-CovidNet, as shown in Table 6 (the best results are
bolded). In Table 6, among the 4 comparison models,
DarkCovidNet [11] has the least number of parameters, but
it is still 5.50 times that of D2-CovidNet, and its classifi-
cation accuracy is 7.41% lower than D2-CovidNet. CoroNet
[10] has the highest accuracy, which is only 0.16% higher
than D2-CovidNet, but its parameter amount is 165.00
times that of D2-CovidNet. For such a large difference, an
intuitive explanation is that deep separable convolution is
used many times in our network. Considering the network

performance and complexity, D2-CovidNet is a recom-
mended intelligent method for identifying chest X-ray
images of COVID-19.

Figure 7 shows the confusion matrix of D2-CovidNet
on test set, and Table 7 shows the specific performance of
D2-CovidNet on various performance indicators.

It can be seen from Table 8 that the average accuracy,
average sensitivity, and average specificity of D2-CovidNet
are all higher than 90%, which are 95.14%, 94.02%, and
96.16%, respectively. Especially, the accuracy, sensitivity,
and specificity of D2-CovidNet’s recognition of COVID-19
are 98.97%, 94.12%, and 99.84%, respectively. H. Wong
et al. mentioned that the baseline sensitivity of COVID-19
chest X-ray images was 69% [31], so our proposed D2-
CovidNet can effectively improve the diagnostic efficiency

Table 5: Values of criteria of experimented models.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)
VGG19 [18] 93.11 96.09 92.93 96.47 93.02
GoogleNet [19] 92.56 95.29 91.56 95.78 92.06
ResNet50 [20] 93.53 96.01 93.15 96.53 93.34
DenseNet121 [21] 93.11 95.98 92.75 96.38 92.92
SqueezeNet1.0 [22] 67.91 45.83 50.51 64.16 57.93
MobileNet [23] 88.53 90.14 87.25 91.84 87.89
ShuffleNet [24] 87.02 90.08 86.17 92.31 86.59
D2-CovidNet 94.43 95.14 94.02 96.61 95.30
0e best results are bolded.

Table 6: Values of criteria of models with different DPM and DDS configurations.

Model
Average accuracy (%)

Epoch (1–50) Epoch (51–100) Epoch (101–150) Epoch (151–200) Epoch (191–200)
F-DPM 83.5336 84.9918 86.0190 85.1278 85.3804
F-DDS 81.3605 86.5734 89.8614 89.5389 89.1169
D2-CovidNet 85.4792 89.8542 90.7228 91.1304 92.0245
0e best results are bolded.

Table 7: Comparison of D2-CovidNet with other deep learning methods developed using X-ray images.

Method Numbers of cases Model Accuracy (%) Params (million)

Ioannis et al. [8]
224 COVID-19

Xception 92.85 33.00700 pneumonia
504 normal

Wang et al. [9]
358 COVID-19

CovidNet 93.30 11.755538 pneumonia
8066 normal

Khan et al. [10]
284 COVID-19

CoroNet 94.59 33.00657 pneumonia
310 normal

Ozturk et al. [11]
125 COVID-19

DarkCovidNet 87.02 1.10500 pneumonia
500 normal

Our method
412 COVID-19

D2-CovidNet 94.43 0.204265 pneumonia
1575 normal
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of COVID-19. Maybe it can be further combined with the
traditional features with depth features to improve the
detection results.

4. Conclusion

In this paper, to identify COVID-19 chest X-ray images
quickly and accurately, DPM module and DDS module are
proposed. Based on these two modules, D2-CovidNet is
designed with strong representation and low complexity. 4265
chest X-ray images of common pneumonia patients, 1575
normal chest X-ray images, and 412 chest X-ray images of
COVID-19 patients are selected from two open-source
datasets to train and evaluate the model. 0e experimental
results show that D2-CovidNet has good performance, and its
classification accuracy for images tested is 94.43%. Specifi-
cally, its accuracy, sensitivity, and specificity for COVID-19
are 98.97%, 94.12%, and 99.84%, respectively. Using D2-
CovidNet to detect COVID-19 chest X-ray can effectively
improve the diagnostic efficiency and help to detect and
isolate patients in time, preventing the spread of 2019-nCoV.
Although D2-CovidNet has good experimental results, it
needs further clinical research and testing [32]. After further
training and testing, D2-CovidNet is expected to be put into
practical application in auxiliary diagnosis COVID-19.
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