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-e feature selection problem is a fundamental issue in many research fields. In this paper, the feature selection problem is
regarded as an optimization problem and addressed by utilizing a large-scale many-objective evolutionary algorithm. Considering
the number of selected features, accuracy, relevance, redundancy, interclass distance, and intraclass distance, a large-scale many-
objective feature selection model is constructed. It is difficult to optimize the large-scale many-objective feature selection op-
timization problem by using the traditional evolutionary algorithms.-erefore, this paper proposes a modified vector angle-based
large-scale many-objective evolutionary algorithm (MALSMEA). -e proposed algorithm uses polynomial mutation based on
variable grouping instead of naive polynomial mutation to improve the efficiency of solving large-scale problems. And a novel
worst-case solution replacement strategy using shift-based density estimation is used to replace the poor solution of two in-
dividuals with similar search directions to enhance convergence. -e experimental results show that MALSMEA is competitive
and can effectively optimize the proposed model.

1. Introduction

Feature selection involves the selection of a specific number
of features from existing features to optimize specific ob-
jectives [1]. Feature selection can be regarded as a multi-
objective optimization problem that can be solved using
evolutionary algorithms. Feature selection has attracted the
attention of scholars and has been widely used in gene
expression analysis [2], face recognition [3], and drug dis-
covery [4]. For example, a two-stage heuristic algorithm
minimal redundancy maximal relevance (mRMR) [5] is used
to optimize relevance and redundancy simultaneously. A
filter-based algorithm [6] is used to consider the entropy-
based correlation measure and the combination measure of
the redundancy and cardinality of a selected subset. A de-
composition algorithm based on a weighted method is
utilized to optimize interclass and intraclass distances [7].

Gulsah et al. [8] proposed two algorithms, W-QEISS and
F-QEISS, that use nondominated sorting based on classifi-
cation accuracy, feature number, relevance, and redundancy.
Li et al. [9] established a model with feature number,
classification performance, interclass distance, and intraclass
distance as objectives and proposed a decomposition-based
large-scale algorithm (DMEA-FS).

However, some unsolved problems still exist in feature
selection using traditional evolutionary algorithms. -e first
problem is that the selection of a large number of features
can be regarded as the optimization of the large-scale op-
timization problem [1] or the large-scale multiobjective
optimization problem (LSMOP) [10], but the traditional
evolutionary algorithms cannot effectively solve such
problems. -e second problem is that feature number and
accuracy are two basic objectives, and other objectives are
needed to explore the potential information to guide the
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evolution in feature selection [1]. Correspondingly, more
objectives result in many-objective optimization problems
(MaOPs) [11, 12].

-ere are three main types of current algorithms, which
are mainly used to solve LSMOPs or MaOPs, but they
perform poorly on large-scale many-objective problems
(LSMaOPs) [13], which include more than 3 objectives and
over 100 decision variables [14, 15].

-e first kind of algorithms is based on the Pareto
dominance, which improves the convergence pressure by
modifying the Pareto dominance relation. -e new domi-
nance relations are ε-dominance [16], θ-dominance [17],
L-optimality [18], simplex dominance [19], grid dominance
[20, 21], etc. -e algorithm using shift-based density esti-
mation (SDE) was proposed in the work of [22], which
allows individuals with poor convergence to obtain higher
density.

-e second is based on performance indicators, such as
the hypervolume (HV) adaptive grid algorithm (HAGA)
[23], the evolutionary algorithm (MaOEA/IGD) using
inverted generational distance (IGD) [24], indicator-based
algorithm with boundary protection (MaOEA-IBP) [25],
and R2 indicator and weight vector-based method (R2-
WVEA) [26]. Most of these algorithms are many-objective
evolutionary algorithms (MaOEAs), but their computational
costs are large.

-e third category is composed of decomposition-based
methods. -e most classic ones are the multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
[27] and its variants [28–30]. -e algorithm based on
nondominated sorting approach (NSGA-III) [31] uses
evenly distributed reference points to assist the environ-
mental selection. Based on NSGA-III, Gu and Wang [10]
introduced an information feedback model to solve
LSMaOPs. -e reference vector-guided evolutionary algo-
rithm (RVEA) [32] uses reference vectors to guide the
optimization.

To more comprehensively describe and better solve the
large-scale feature selection problem, this paper studies the
existing multiobjective models based on the evolutionary
algorithm, combines the existing objectives, constructs the
feature selection problem as an LSMaOP, and uses an im-
proved large-scale many-objective evolutionary algorithm
(LSMaOEA) for optimization.

-e main contributions of this paper are summarized as
follows:

(1) A novel worst-case solution replacement strategy
based on SDE is proposed. -is strategy allows
conditional replacement of poor solutions in terms
of convergence and diversity compared to other
solutions, thereby maintaining a balance between
convergence and diversity.

(2) A modified vector angle-based large-scale many-
objective evolutionary algorithm (MALSMEA) is
proposed, which uses variable grouping-based
polynomial mutation instead of naive polynomial
mutation to improve the efficiency of solving large-
scale problems. In the environmental selection

process, the proposed worst solution replacement
strategy is used to improve diversity.

(3) A large-scale many-objective feature selection opti-
mization model is constructed, and MALSMEA is
used to optimize it. -e optimization objectives of
this model are the number of selected features, ac-
curacy, relevance, redundancy, interclass distance,
and intraclass distance.

-e remainder of this paper is arranged as follows.
Section 2 introduces the related works. Section 3 describes
the proposed model and MALSMEA in detail. In Section 4,
we compare and analyze the experimental results of
MALSMEA and four advanced algorithms in solving
benchmark LS-MaOPs, as well as the performance of
MALSMEA and three feature selection algorithms in opti-
mizing the proposed feature selection model. Section 5
provides a summary of the full paper and prospects of future
research.

2. Related Works

2.1. Large-Scale Many-Objective Optimization Problem.
An LSMaOP can be described as

min F(x) � f1(x), f2(x), . . . , fm(x)( 

s.t. x ∈ Ω,
(1)

where Ω � 
D
i�1[li, ui] ⊆ RD is the decision space, D is the

number of decision variables (D≥ 100), and li and ui are the
lower and upper bounds of decision variables in the ith
dimension, respectively. x is the D-dimensional decision
vector in Ω, m is the objective number (m> 3), and
F(x) ∈ Rm is the objective vector of x. If no other solution
dominates x, then x is a Pareto optimal solution [33]. -e
objective vectors corresponding to all Pareto optimal so-
lutions constitute the Pareto optimal front (PF) [34, 35].

2.2. Shift-Based Density Estimation. We use the SDE [22]
with the kth nearest neighbor [36] to estimate the density of
all individuals. For an individual xi, the following method is
used to calculate the density value SDE(xi).

(i) First, the standardized objective vectors of other
individuals in population P are shifted.

(ii) -en, the Euclidean distances between other shifted
normalized objective vectors and the considered
individual are calculated, expressed as d(xi, xk).

(iii) Next, the kth minimum value λ(xi) in the set
d(xi, xk), xk ∈ P∩xk ≠ xi  is found, where k �

��
N

√

and N is the size of the population.
(iv) Finally, SDE(xi) is calculated as follows:

SDE xi(  �
1

λ xi(  + 2
. (2)

-rough the above process of estimating the individual
density, we can observe that the smaller the individual
density is, the better the performance of the individual.
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-erefore, this paper uses this strategy, considering both
diversity and convergence, to judge a pair of individuals with
similar search direction, so as to delete the individual with
poor performance.

2.3. Information 3eory Criterion Based on Entropy. -e
feature selection model uses an entropy-based information
theory criterion [8] to measure correlation and redundancy.
For a given discrete random variable A, its entropy E(A) is
determined as follows:

E(A) � − 
a∈A

p(a)log p(a), (3)

where p(a) � Pr(A � a), A is the set of all possible values of
A, a ∈ A. -en, the joint entropy of A and B is determined as
follows:

E(A, B) � − 
a∈A


b∈B

p(a, b)log p(a, b), (4)

where B is a discrete random variable,
p(a, b) � Pr(A � a, B � b), a ∈ A, and b ∈ B. -en, the
mutual information between A and B is determined as
follows:

M(A, B) � E(A) + E(B) − E(A, B). (5)

Symmetric uncertainty is used to scale the value range of
mutual information to [0, 1] [37], which is defined as
follows:

SU(A, B) �
2M(A, B)

E(A) + E(B)
. (6)

3. Proposed Model and Algorithm

3.1.ModelDesign. -e optimization objectives of the feature
selection model include the number of selected features,
accuracy, relevance, redundancy, interclass distance, and
intraclass distance, which are described as follows:

(1) 3e Number of Selected Features. It is minimized to
ensure the simplification of feature selection:

F1(S) � |S|, (7)

where |S| represents the cardinality of feature set S.
(2) Accuracy. -e accuracy of the learning algorithm is

measured by the classification performance. -e
higher the classification performance is, the greater
the accuracy. In this paper, the extreme learning
machine (ELM) classifier [8] is used to calculate the
accuracy:

F2(S) �
tn + tp

fn + fp + tn + tp
, (8)

where tn, tp, fn, and fp represent the true negative,
true positive, false negative, and false positive,
respectively.

(3) Relevance. -e relevance between features and cat-
egorical variables reflects the recognition ability of
the selected features. -e greater the correlation is,
the stronger the recognition ability is:

F3(S) � 
xi∈S

SU xi, y( ,
(9)

where xi represents the ith feature and y represents
the target categorical variable. -is objective is
normalized according to F3(S) � F3(S)/maxF3(S).

(4) Redundancy. -e redundancy is used to quantify the
level of similarity between selected features. -e
smaller the redundancy is, the smaller the similarity:

F4(S) � 
xi,xj∈S,i<j

SU xi, xj ,
(10)

where xj represents the jth feature. -is objective is
normalized according to F4(S) � F4(S)/maxF4(S).

(5) Interclass Distance. -e interclass distance represents
the distance between the mean sample of each class
and the average of mean samples of all classes, which
reflects the recognition ability of samples of different
classes. In the evolutionary process, a better sample
distribution is obtained by maximizing the distance
between classes:

F5(S) � 
L

i�1
mi −

1
L



L

i�1
mi

⎛⎝ ⎞⎠

2

, (11)

where L is the total number of classes and mi is the
average value of all samples with feature S in class i.
-is objective is normalized according to
F5(S) � F5(S)/maxF5(S).

(6) Intraclass Distance. By calculating the distances
between the samples with the selected feature and the
mean of all samples of the same kind, this value
reflects the cohesion of the same kind of samples and
can improve the accuracy to a certain extent:

F6(S) � 
L

i�1


aij∈Li

aij − mi 
2
, (12)

where aij is the jth sample in class i. -is objective is
normalized according to F6(S) � F6(S)/maxF6(S).

-erefore, the definition of the feature selection opti-
mization model in this paper is as follows:

min F1(S), −F2(S), −F3(S), F4(S), −F5(S), F6(S)( . (13)

3.2. 3e Proposed Algorithm: MALSMEA. In this paper, a
modified vector angle-based large-scale many-objective
evolutionary algorithm is proposed, termed as MALSMEA.
MALSMEA mainly uses a mutation operator based on
variable grouping and the environment selection method of
VaEA [38]. Figure 1 shows the program flowchart of
MALSMEA. -e main process of MALSMEA is as follows:
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(i) Step 1. Initialize a population P(t) with N indi-
viduals randomly in the whole decision space Ω,
and set parameters.

(ii) Step 2. -e mutation operator based on variable
grouping is used to mutate the population P(t),
in which the grouping method is ordered
grouping, to generate the offspring population
Q(t).

(iii) Step 3. Combine the offspring population Q(t)

with the parent population P(t) and obtain the
joint population U(t). -en, the environmental
selection in steps 4–9 is adopted to select N

promising individuals from U(t).
(iv) Step 4. Normalize the individuals in the population

U(t), and calculate the fitness and density values of
each individual as well as the vector angle between
every two individuals.

(v) Step 5. Use the nondominated sorting method to
rank, and determine the last layer F(l).

(vi) Step 6. According to the vector angle between any
two individuals in layer F(l) and the fitness value
of each individual, m individuals with the largest
vector angle and m individuals with the smallest

fitness value are selected to join P(t + 1) to ensure
the diversity.

(vii) Step 7. If |P(t + 1)|<N, select the individual with
the largest vector angle in F(l) to join the new
population P(t + 1) by calculating the vector an-
gles between the individuals in F(l) and the in-
dividuals in P(t + 1); otherwise, go to step 9.

(viii) Step 8. To maintain the balance between conver-
gence and diversity, the worst individual re-
placement strategy is used to replace the poor
individual with other individuals. Repeat from step
7 if |P(t + 1)|<N.

(ix) Step 9. Obtain the new population P(t + 1).
(x) Step 10. Repeat from step 2, and stop when the

maximum number of generations tmax is reached.

3.3. 3e Worst-Case Solution Replacement Strategy Based on
SDE. As the extreme individuals have been selected
according to the vector angle and fitness value, for the worst
individual replacement strategy in the process of environ-
mental selection, we use the SDE strategy to calculate the
density of individuals. -e SDE strategy can consider the
convergence and diversity of individuals simultaneously.
Using this method, we can replace the poor individuals with
similar search directions. -e specific process is as follows: if
the angle between an individual a in F(l) and an individual b

in P(t + 1) is less than the angle between two solutions of N

ideal solutions, that is, θ � ((π/2)/N + 1), where N is the
population size, then they have similar search directions. In
this case, if SDE(a)< SDE(b), then individual b is replaced
by a. After replacement, the angle between each individual
a ∈ F(l) and the new population P(t + 1) is updated.

3.4. 3e Wrapper Structure of MALSMEA. MALSMEA is
applied to the feature selection model, and the pseudocode
of the wrapper structure of MALSMEA is shown in Algo-
rithm 1. -e main steps are as follows:

(i) First, the input dataset DS is divided into training
and test datasets.

(ii) -en, in the initialization process, MALSMEA al-
locates the random feature vector WS selected from
the data feature matrix W. -e selected feature
vector WS is encoded as solutions by using the
coding technology of [9] to reduce the amount of
computation in the evolutionary process, and the
mask of WS is regarded as the decision variables,
and the population P is formed.

(iii) -en, in the wrapper structure, the population P is
evaluated via six objective functions to obtain ob-
jective vectors and obtain the evaluated population
P(t). -e feature number is calculated according to
the decision variables of the solutions. -e accuracy
can be obtained from the decoded feature subset
and the corresponding ELM classifier [8], and other
objectives can be calculated according to the cor-
responding equations.

Start

Initialize population P (t)
and set parameters

t < tmax

Y

Generate Q (t) by mutation operation

P (t) ∪ Q (t) = U (t)

Normalize individuals, calculate
fitness, density and angle

Nondominated sorting

Select extreme solutions, add to P (t + 1)

|P (t + 1)| < N

Choose solutions with maximum angle

�e worst-case solution
replacement strategy based on SDE

t = t + 1

N

Y

End

Optimal resultN

Figure 1: Program flowchart of MALSMEA.
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(iv) -en, the population is optimized by MALSMEA.
(v) Finally, the optimal set PS is obtained.

3.5. Time Complexity Analysis. -e time complexity of
MALSMEA is composed mainly of the following parts: the
time complexity of the mutation operation in MALSMEA is
O(D2N/K), where K is the number of groups, the time
complexity of nondominated sorting is O(N logm− 2 N)

[31], the worst-case solution replacement strategy based on
SDE has the time complexity of O(mN2), and the time
complexity of other operations is O(mN2). -erefore, the
time complexity of MALSMEA is
max O(D2N/K), O(N logm− 2 N), O(mN2) . Compared
with the four algorithms, the time complexity of the grouped
and linked polynomial mutation operator (GLMO) is
max O(D2N/K), O(mN2)  [39], linear combination-based
search algorithm (LCSA) is O(mN2) [40], vector angle-
based evolutionary algorithm (VaEA) is
max O(N logm− 2 N), O(mN2)  [38], and RVEA is
O(mN2) [32]. -us, the time complexity of MALSMEA is
similar to that of GLMO but greater than that of the other
three algorithms.

4. Experimental Studies

In this section, DTLZ1-DTLZ6 in the Deb, -iele, Lau-
manns, and Zitzler (DTLZ) test suite [41] and LSMOP1-
LSMOP9 in the Large-Scale Multi- and Many-Objective
Problems (LSMOP) test suite [42] are selected to evaluate the
performance of MALSMEA, and four datasets in the Uni-
versity of California at Irvine (UCI) machine learning library
[43] are selected to evaluate the ability of MALSMEA to
optimize the proposed feature selection model, among
which Heart is a two-class dataset, Zoo and Iris are two
multiclass datasets, and Musk1 is a high-dimensional
dataset. For LSMaOPs,MALSMEA is compared with GLMO
[39], LCSA [40], VaEA [38], and RVEA [32]. GLMO and
LCSA are large-scale multiobjective evolutionary algo-
rithms. GLMO uses mutation operators based on variable
grouping, and LCSA uses a linear combination to reduce
dimensionality. VaEA and RVEA are many-objective evo-
lutionary algorithms that use vector angles and reference
vectors, respectively. For the proposed six-objective feature
selection model, MALSMEA is compared with W-MOSS
[44], W-QEISS, and F-QEISS [8].

In the next sections, we introduce the performance
indicators and set the parameters in the experiments. -en,
for all algorithms, when the objective numbers m are 5 and
10, the population sizes N are 126 and 275, and the numbers
of decision variables D are 500 and 1000, respectively. Each
algorithm runs 20 times independently and stops when the
number of function evaluations (FEs) reaches 90,000. -e
performance of MALSMEA is verified by comparing the
average IGD values obtained by five algorithms. In each test
instance, the best average IGD value is highlighted in bold.
Finally, in four datasets, MALSMEA and three feature se-
lection algorithms are utilized to deal with the proposed six-
objective feature selection optimization model, for which

N � 100, the maximum number of FEs is 100, and each
algorithm runs independently for 10 times.-e optimization
ability of MALSMEA is verified by comparing the HV in-
dicator and optimization results.

4.1. Experimental Settings

(1) Performance Indicator. In the experiment, IGD [45]
and HV [46] are used as evaluation indicators. -e
smaller (larger) the IGD (HV) indicator value is, the
better the performance of the algorithm. -e IGD
indicator evaluates the algorithm by calculating the
average of minimum distances between all sampled
individuals on the actual PF and the obtained so-
lution set. -e HV indicator quantifies the algorithm
performance by calculating the volume between the
obtained nondominated solution set and the refer-
ence point.

(2) Parameter Settings for the Crossover and Mutation
Operators. In the performance verification experi-
ment of MALSMEA, MALSMEA and GLMO use the
mutation operator based on variable grouping to
generate offspring. Other algorithms use simulated
binary crossover (SBX) [32] and polynomial muta-
tion [47]. -e crossover probability is pc � 1.0, the
mutation probability is pm � 1/D, and the distri-
bution indicator is ηm � 20, where D is the number
of decision variables. In the experiment to verify the
superiority of MALSMEA with respect to the pro-
posed model, according to [9], pc � 0.8, pm � 0.2.

(3) Other Parameter Settings for Algorithms. In MALS-
MEA and GLMO [39], the number of groups K is set
to 4, and the ordered grouping method is adopted.
For RVEA [32], the index α and the frequency fr are
set to 2 and 0.1, respectively. -e parameters in
W-QEISS and F-QEISS are set according to [8], and
the searching method is based on r-NSGA-II [48].
-e parameters in W-MOSS are set according to
[44].

(4) Datasets. -e details of 4 UCI datasets utilized are
shown in Table 1.

(5) ELM Classifier. For the proposed model, the ELM
classifier [8] is utilized to evaluate the accuracy of the
current solution, which follows the criterion given in
[46]: the activation function is g(x) � 1/(1 + e(−x))

in the hidden layer, and the number of neurons is set
to nh � 10. -e target classification variable and the
(input) features are normalized into ranges [0, 1] and
[−1, 1] in each dataset, respectively. To minimize the
accuracy deviation, the k-fold cross validation ap-
proach is utilized with k � 10, and the average ac-
curacy is used for comparison [9].

4.2. Performance Comparison of Algorithms on DTLZ.
Table 2 describes the IGD indicator values obtained by the
five algorithms on the 5- and 10-objective DTLZ1-DTLZ6
with 500 and 1000 decision variables. As shown in Table 2,
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MALSMEA is competitive with the other four algorithms.
Specifically, MALSMEA produces 18 best results out of 24
test instances, and its performance on the 10-objective
DTLZ is significantly better than that of the other algo-
rithms. -e experimental results are analyzed in detail as
below.

DTLZ1 reflects the convergence of the algorithm.
MALSMEA outperforms the other algorithms on the 5- and
10-objective DTLZ1. -ese results demonstrate that
MALSMEA has better convergence on the large-scale high-
dimensional DTLZ1. DTLZ2 is generally used to test the
scalability of algorithms with respect to the number of
objectives. -e performance of MALSMEA on the 5-ob-
jective DTLZ2 is better than that of LCSA but slightly in-
ferior to that of GLMO, VaEA, and RVEA.-e performance
of MALSMEA on the 10-objective DTLZ2 is better than that
of the other four algorithms. -us, MALSMEA has better
scalability to the objective number.

DTLZ3 is a highly multimodal problem similar to
DTLZ1. MALSMEA obtains the smallest IGD indicator
value on DTLZ3 with 500 and 1000 decision variables.
DTLZ4 is used to test the ability of the algorithm to ensure
the diversity of the population. MALSMEA obtains the
smallest IGD indicator value on the 10-objective DTLZ4
with 500 and 1000 decision variables. For the 5-objective
DTLZ4, VaEA outperforms other algorithms on DTLZ4
with 500 and 1000 decision variables. MALSMEA exhibits
greater diversity on the large-scale 10-objective DTLZ4.

For the 5-objective DTLZ5, MALSMEA outperforms
LCSA on DTLZ5 with 500 and 1000 decision variables, but
inferior to GLMO, VaEA, and RVEA. For the 10-objective
DTLZ5, MALSMEA outperforms its counterparts. For
DTLZ6, the overall performance of MALSMEA is optimal
on instances with up to 1000 decision variables.

To further test the performance of MALSMEA, the
nonparametric Friedman test [49] is employed. According to
the average IGD indicator values of the five algorithms on
DTLZ, Table 3 indicates the average ranking of the five
algorithms. -e average ranking of MALSMEA is the

smallest, which indicates that MALSMEA performs the best.
-e average ranking of LCSA is the largest, so its perfor-
mance is the worst.

To verify the efficiency of MALSMEA, Table 4 presents
the running time of MALSMEA and the four other algo-
rithms on the 10-objective DTLZ1 with 1000 decision
variables. -e running times of MALSMEA and GLMO are
quite similar but greater than those of other algorithms.

4.3. Performance Comparison of Algorithms on LSMOP.
LSMOP is proposed to test the performance of the algorithm
in LSMaOPs. Table 5 lists the IGD indicator values obtained
by five algorithms on 5- and 10-objective LSMOP1-LSMOP9
with 500 and 1000 decision variables. MALSMEA produces
26 best results out of 36 test instances. -erefore, compared
with the other four algorithms, MALSMEA has better
performance in solving LSMaOPs.

Specifically, for the LSMOP test suite with 500 decision
variables, MALSMEA outperforms the other algorithms on
the 5- and 10-objective LSMOP2, LSMOP4, LSMOP5,
LSMOP8, and LSMOP9. MALSMEA is inferior to LCSA on
LSMOP3. MALSMEA outperforms the other algorithms on
the 10-objective LSMOP1 and LSMOP7, but LCSA obtains
the smallest IGD indicator value on the 5-objective LSMOP1
and LSMOP7. MALSMEA obtains the smallest IGD indi-
cator value on the 5-objective LSMOP6, while RVEA per-
forms better on the 10-objective LSMOP6.

For the LSMOP test suite with 1000 decision variables,
MALSMEA outperforms the other algorithms on the 5- and
10-objective LSMOP2, LSMOP4, LSMOP5, LSMOP8, and
LSMOP9. MALSMEA is inferior to LCSA on LSMOP3.
LCSA obtains the best performance on the 5-objective
LSMOP1 and LSMOP7, and MALSMEA outperforms the
other algorithms on the 10-objective LSMOP1 and
LSMOP7. -e performance of MALSMEA on the 5-objec-
tive LSMOP6 is better than that of the other algorithms, but
it is slightly inferior to that of LCSA and RVEA on the 10-
objective LSMOP6.

4.4. Comparison of the Optimization Results on the Proposed
Model. Table 6 shows the HV indicator values and objective
values of the four algorithms after optimization on four
datasets. -e results demonstrate that MALSMEA obtains
the maximum HV indicator values, showing that MALS-
MEA has certain advantages in feature selection. As noted in

Input: Datasets with labels, DS; the maximal number of generations, tmax; the population size, N;
Output: -e Pareto subset, PS;

(1) divide DS into training and test datasets;
(2) [W, Y] � Segment(training datasets);
(3) S � Encoding(WS); WS � Feature Select(W);
(4) P(t) � Evaluate SixObjectives(P); P � Initialize(N, S);
(5) P(t) � MALSMEA(P(t));
(6) PS←P(t);

ALGORITHM 1: -e wrapper structure of MALSMEA.

Table 1: -e information of four UCI datasets.

Dataset Classes Features Instance
Heart 2 13 270
Zoo 7 16 101
Iris 3 4 150
Musk1 2 166 476
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Table 2: Performance comparison between MALSMEA and four algorithms with respect to the average IGD values on the DTLZ1-DTLZ6
(gray values represent the best values in each row).

Problem m D MALSMEA GLMO LCSA VaEA RVEA

DTLZ1
5 500 1.1079e+ 3 (4.24e+ 2) 9.9478e+ 3 (1.61e+ 3) 3.9526e+ 3 (2.52e+ 2) 4.5327e+ 3 (2.97e+ 2) 7.8347e+ 3 (1.99e+ 2)

1000 3.6284e+ 3 (1.03e+ 3) 1.8810e+ 4 (2.97e+ 3) 7.7836e+ 3 (4.34e+ 2) 1.3520e+ 4 (5.87e+ 2) 1.8532e+ 4 (3.84e+ 2)

10 500 2.2202e+ 3 (3.47e+ 2) 9.4305e+ 3 (5.82e+ 2) 4.5825e+ 3 (3.67e+ 2) 8.4640e+ 3 (3.85e+ 2) 7.2316e+ 3 (7.61e+ 2)
1000 4.7828e+ 3 (9.45e+ 2) 1.8648e+ 4 (9.68e+ 2) 9.2419e+ 3 (4.31e+ 2) 1.8151e+ 4 (5.38e+ 2) 1.6042e+ 4 (3.96e+ 2)

DTLZ2
5 500 2.8988e+ 1 (1.27e+ 0) 3.0185e+ 1 (4.19e+ 0) 2.9554e+ 1 (2.79e+ 0) 4.0643e+ 0 (2.88e - 1) 2.5720e+ 0 (1.80e− 1)

1000 6.6661e+ 1 (2.14e+ 0) 6.2634e+ 1 (6.02e+ 0) 7.7019e+ 1 (5.98e+ 0) 1.8169e+ 1 (8.34e− 1) 1.4208e+ 1 (6.65e− 1)

10 500 2.1635e+ 1 (3.68e+ 0) 3.7764e+ 1 (4.64e+ 0) 4.2687e+ 1 (1.30e+ 1) 2.4451e+ 1 (1.05e+ 0) 2.6761e+ 1 (7.91e+ 0)
1000 4.4200e+ 1 (7.77e+ 0) 7.7862e+ 1 (7.30e+ 0) 7.9824e+ 1 (2.29e+ 0) 5.8910e+ 1 (1.32e+ 0) 5.0172e+ 1 (1.07e+ 0)

DTLZ3
5 500 4.3020e+ 3 (1.57e+ 3) 2.3235e+ 4 (6.13e+ 3) 1.2346e+ 4 (7.98e+ 0) 1.8602e+ 4 (7.53e+ 2) 3.1291e+ 4 (6.31e+ 2)

1000 1.0670e+ 4 (2.63e+ 3) 4.3783e+ 4 (8.98e+ 3) 2.4844e+ 4 (1.47e+ 1) 6.0220e+ 4 (1.81e+ 3) 7.6232e+ 4 (9.67e+ 3)

10 500 1.3306e+ 4 (1.60e+ 3) 4.1894e+ 4 (2.65e+ 3) 1.4213e+ 4 (1.03e+ 1) 3.8615e+ 4 (7.37e+ 2) 3.9350e+ 4 (7.75e+ 2)
1000 2.5625e+ 4 (4.16e+ 3) 8.4954e+ 4 (6.42e+ 3) 2.7420e+ 4 (9.93e+ 0) 8.5528e+ 4 (1.17e+ 3) 8.8290e+ 4 (1.15e+ 3)

DTLZ4
5 500 2.6523e+ 1 (1.65e+ 0) 3.5059e+ 1 (5.11e+ 0) 2.6238e+ 1 (3.03e+ 0) 5.6372e+ 0 (3.94e - 1) 5.9172e+ 0 (7.12e - 1)

1000 5.8758e+ 1 (3.00e+ 0) 6.6782e+ 1 (1.20e+ 1) 6.9454e+ 1 (3.04e+ 0) 2.2961e+ 1 (9.24e− 1) 2.9794e+ 1 (2.77e+ 0)

10 500 2.3290e+ 1 (1.42e+ 0) 3.3557e+ 1 (9.70e+ 0) 4.0018e+ 1 (1.84e+ 0) 2.4352e+ 1 (8.56e− 1) 2.5171e+ 1 (5.22e− 1)
1000 4.9795e+ 1 (3.90e+ 0) 7.0596e+ 1 (1.42e+ 1) 8.0600e+ 1 (2.05e+ 0) 5.8910e+ 1 (1.22e+ 0) 5.6250e+ 1 (1.07e+ 0)

DTLZ5
5 500 2.8696e+ 1 (1.44e+ 0) 2.4279e+ 1 (7.19e+ 0) 3.5655e+ 1 (1.04e+ 0) 7.8308e+ 0 (6.53e− 1) 2.9302e+ 0 (2.18e− 1)

1000 6.3241e+ 1 (2.51e+ 0) 3.7272e+ 1 (1.12e+ 1) 7.4941e+ 1 (1.88e+ 0) 2.7873e+ 1 (1.40e+ 0) 1.6365e+ 1 (4.94e− 1)

10 500 2.2663e+ 1 (4.07e+ 0) 2.2874e+ 1 (7.97e+ 0) 4.0439e+ 1 (4.57e+ 0) 2.7748e+ 1 (1.08e+ 0) 2.6317e+ 1 (8.24e+ 0)
1000 4.8397e+ 1 (7.02e+ 0) 4.8756e+ 1 (1.63e+ 1) 8.1209e+ 1 (2.71e+ 0) 6.3840e+ 1 (1.28e+ 0) 4.9904e+ 1 (1.13e+ 0)

DTLZ6
5 500 8.8879e+ 0 (1.39e+ 0) 4.2732e+ 2 (2.36e+ 1) 9.4574e+ 0 (8.51e+ 0) 3.8495e+ 2 (4.90e+ 0) 3.6416e+ 2 (2.58e+ 0)

1000 1.9706e+ 1 (3.29e+ 0) 8.9090e+ 2 (2.39e+ 1) 2.9199e+ 1 (1.29e+ 1) 8.1717e+ 2 (6.01e+ 0) 8.0078e+ 2 (3.00e+ 0)

10 500 5.4188e+ 1 (1.00e+ 1) 4.2710e+ 2 (1.53e+ 1) 7.0212e+ 1 (1.23e+ 1) 4.1523e+ 2 (2.44e+ 0) 4.1207e+ 2 (2.66e+ 0)
1000 1.0773e+ 2 (3.16e+ 1) 8.6234e+ 2 (4.55e+ 1) 1.1227e+ 2 (8.94e+ 1) 8.5524e+ 2 (2.99e+ 0) 8.5757e+ 2 (2.39e+ 0)

Table 3: Average rankings of the Friedman test.

Algorithm Ranking
MALSMEA 2.1667
GLMO 3.4583
LCSA 3.6667
VaEA 2.9583
RVEA 2.75

Table 4: Comparison of running time between MALSMEA and the other four algorithms.

Algorithm Time
MALSMEA 2.3113e+ 2
GLMO 2.0182e+ 2
LCSA 4.3017e+ 1
VaEA 1.2587e+ 2
RVEA 6.8803e+ 1

Table 5: Performance comparison between MALSMEA and four algorithms with respect to the average IGD values on the
LSMOP1–LSMOP9 (gray values represent the best values in each row).

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP1

5
500 1.3173e+ 0

(1.55e− 1)
9.9913 e− 1
(1.05e− 1) 9.3999e− 1 (5.30e− 3) 1.6687e+ 0

(2.66e− 1) 1.2713e+ 0 (1.54e− 1)

1000 1.3109e+ 0
(1.61e− 1)

1.2099e+ 0
(5.21e− 1) 9.3942e− 1 (2.67e− 3) 3.6704e+ 0

(4.00e− 1) 2.6898e+ 0 (2.09e− 1)

10
500 1.2008e+ 0

(1.89e− 1)
5.9934e+ 0
(2.79e+ 0) 1.2010e+ 0 (1.16e− 3) 4.1745e+ 0

(1.28e+ 0) 1.6742e+ 0 (3.51e− 1)

1000 1.1728e+ 0
(1.53e− 1)

7.9449e+ 0
(3.19e+ 0) 1.1938e+ 0 (2.75e− 3) 7.0153e+ 0

(6.50e− 1) 4.0353e+ 0 (9.27e− 1)

Computational Intelligence and Neuroscience 7



Table 5: Continued.

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP2

5
500 1.5237e− 1

(1.77e− 3)
1.8423e− 1
(5.16e− 3) 1.9821e - 1 (6.56e− 3) 1.6390e - 1 (1.71e− 3) 1.6594e− 1 (9.99e− 4)

1000 1.3444e− 1
(1.08e− 3)

1.6139e− 1
(4.75e− 3) 1.7402e− 1 (3.87e− 3) 1.4188e− 1

(1.73e− 3) 1.4299e− 1 (8.72e− 4)

10
500 2.8094e− 1

(6.69e− 3)
3.3525e− 1
(7.25e− 3) 3.6322e− 1 (8.55e− 3) 3.1995e− 1

(3.89e− 3) 2.8197e− 1 (3.56e− 3)

1000 2.3979e− 1
(2.71e− 3)

2.8301e− 1
(5.22e− 3) 3.0751e− 1 (7.90e− 3) 2.6900e− 1

(1.85e− 3) 2.3980e− 1 (3.04e− 3)

LSMOP3

5
500 1.1955e+ 1

(3.86e+ 0)
1.3626e+ 0
(6.23e− 1) 9.5883e− 1 (0.00e+ 0) 1.6636e+ 1

(4.85e+ 0) 4.7605e+ 0 (1.27e+ 0)

1000 1.3419e+ 1
(4.38e+ 0)

1.4773e+ 0
(5.34e− 1) 9.5883e− 1 (0.00e+ 0) 1.6875e+ 1

(5.62e+ 0) 8.7885e+ 0 (1.03e+ 0)

10
500 1.2546e+ 1

(1.59e+ 0)
2.1075e+ 2
(3.43e+ 2) 1.8733e+ 0 (1.57e− 3) 1.7999e+ 1

(3.05e+ 0) 2.4510e+ 0 (4.99e− 1)

1000 1.3071e+ 1
(1.29e+ 0)

1.1423e+ 4
(1.26e+ 2) 1.9179e+ 0 (8.35e− 4) 1.9379e+ 1

(2.80e+ 0) 4.3816e+ 1(1.40e+ 0)

LSMOP4

5
500 2.8356e - 1 (8.13e - 3) 3.3698e− 1

(1.31e− 2) 3.2856e− 1 (9.98e− 3) 3.0856–1 (5.78e− 3) 2.8894e− 1 (2.96e− 3)

1000 2.1150e - 1 (5.31e− 3) 2.4674e− 1
(7.40e− 3) 2.5458e− 1 (6.51e− 3) 2.1842e− 1

(3.10e− 3) 2.1661e− 1 (1.51e− 3)

10
500 3.3748e− 1

(5.61e− 3)
3.9190e− 1
(1.04e− 2) 4.3146e− 1 (1.52e− 2) 3.7828e− 1

(3.79e− 3) 3.4044e− 1 (3.98e− 3)

1000 2.7003e− 1
(2.36e− 3) 3.1838e - 1 (8.76e− 3) 3.5483e− 1 (6.41e− 3) 3.0457e− 1

(3.65e− 3) 2.7902e− 1 (3.82e− 3)

LSMOP5

5
500 4.5817e− 1

(5.45e− 3)
3.3566e+ 0
(3.16e+ 0) 4.6074e− 1 (3.81e− 2) 4.5633e+ 0

(3.26e− 1) 1.8603e+ 0 (3.83e− 1)

1000 4.5647e− 1
(2.97e− 2)

8.3782e+ 0
(6.28e+ 0) 4.5874e− 1 (1.99e− 2) 7.4372e+ 0

(7.67e− 1) 3.3211e+ 0 (5.08e− 1)

10
500 6.5504e− 1

(4.37e− 2)
1.6148e+ 1
(8.45e+ 0) 1.1132e+ 0 (8.69e− 2) 8.4930e+ 0

(1.21e+ 0) 3.0758e+ 0 (5.69e− 1)

1000 6.6973e− 1
(6.22e− 2)

1.4246e+ 1
(6.02e+ 0) 1.1087e+ 0 (9.32e− 2) 1.0274e+ 1

(1.04e+ 0) 6.1324e+ 0 (5.95e− 1)

LSMOP6

5
500 1.2094 e+ 0

(1.33e− 1)
5.3807e+ 2
(1.68e+ 3) 1.2106e+ 0 (3.67e− 2) 1.1135e+ 1

(5.75e+ 0) 8.3040e+ 0 (1.66e+ 1)

1000 1.2188e+ 0
(8.52e− 2)

2.5183e+ 3
(4.35e+ 3) 1.2549e+ 0 (5.34e− 2) 1.4415e+ 2

(3.65e+ 1) 5.3053e+ 1 (2.99e+ 1)

10
500 1.4348e+ 0

(1.42e− 1)
6.0471e+ 1
(1.88e+ 2) 1.4179e+ 0 (8.13e− 2) 1.3763e+ 2

(2.90e+ 2) 1.2580e+ 0 (1.09e− 1)

1000 1.4961e+ 0
(1.46e− 1)

7.6272e+ 2
(3.01e+ 3) 1.3573e+ 0(7.95e− 2) 1.5136e+ 0

(8.68e− 3) 1.2743e+ 0 (9.00e− 2)

LSMOP7

5
500 1.3323e+ 0

(6.63e− 2)
2.4841e+ 0
(3.00e− 1) 1.0912e+ 0 (1.46e− 2) 2.9317e+ 0

(1.47e− 1) 1.2645e+ 0 (1.88e− 1)

1000 1.3577e+ 0
(6.26e− 2) 1.7911e+ 0 (1.01e− 1) 1.0321e+ 0 (1.40e− 2) 1.9182e+ 0

(5.40e− 2) 1.1214e+ 0 (8.68e− 2)

10
500 1.3995e+ 0

(7.97e− 2)
3.5137e+ 4
(1.36e+ 4) 1.5578e+ 0 (5.12e− 2) 1.0739e+ 3

(7.45e+ 2) 2.6040e+ 1 (6.95e+ 0)

1000 1.4663e+ 0
(1.11e− 1)

3.7805e+ 4
(1.15e+ 4) 1.5933e+ 0 (5.63e− 2) 2.7102e+ 3

(1.09e+ 3) 1.4501e+ 2 (3.01e+ 1)

LSMOP8

5
500 3.8850e− 1

(2.43e− 2) 1.1661e+ 0 (7.11e− 2) 3.8922e− 1 (1.02e− 2) 1.1767e+ 0
(9.67e− 3) 9.3066e - 1 (1.19e− 1)

1000 3.9206e− 1
(3.27e− 2)

1.0697e+ 0
(9.46e− 2) 3.9962e− 1 (8.72e− 3) 1.1544e+ 0

(1.25e− 3) 8.9791e - 1 (1.45e− 1)

10
500 6.4152e− 1

(4.00e− 2)
1.2619e+ 1
(4.49e+ 0) 9.6995e− 1 (9.27e− 2) 2.8446e+ 0

(5.01e− 1) 1.4025e+ 0 (1.12e− 1)

1000 6.2434e− 1
(3.37e− 2)

1.1402e+ 1
(4.19e+ 0) 1.0886e+ 0 (1.06e− 1) 4.0270e+ 0

(6.02e−1) 2.6957e+ 0 (3.85e− 1)
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Table 6, for the four datasets, the optimization performance
of MALSMEA is better on Iris and Musk1. MALSMEA is
slightly inferior to the other three algorithms in relevance
and redundancy but exhibits better performance in the other
four objectives. In addition, W-QEISS and F-QEISS are
relatively better than the other algorithms in terms of rel-
evance and redundancy, but they are worse in other
objectives.

5. Conclusion

In this paper, a modified vector angle-based large-scale
many-objective evolutionary algorithm called MALSMEA is
proposed. InMALSMEA, the polynomial mutation based on
variable grouping is used to replace the polynomial mutation
to improve the efficiency of solving large-scale optimization
problems. A novel worst-case solution replacement strategy
based on SDE is proposed to replace the worse one of two
individuals with similar search directions to increase di-
versity. In addition, MALSMEA is compared with four
typical algorithms to solve the optimization problemwith up
to 10 objectives and 1000 decision variables. Experimental
results indicate that MALSMEA outperforms the four al-
gorithms on the DTLZ and LSMOP test suites. By studying
the existing feature selection models, taking the number of
selected features, accuracy, relevance, redundancy, interclass
distance, and intraclass distance as the optimization ob-
jectives, a six-objective optimization model is constructed

and solved by using MALSMEA. Compared with the other
three feature selection algorithms, MALSMEA has some
advantages in solving this model.

Future studies will proceed in two directions. -e first
direction is to add a parallel strategy to MALSMEA to
improve efficiency or to further modify its environmental
selection method. Another research direction is to solve
LSMaOPs in other fields using MALSMEA.
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Table 5: Continued.

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP9

5
500 2.8005e+ 0

(2.91e− 8)
2.9775e+ 0
(9.23e− 2) 2.9985e+ 0 (8.77e− 3) 1.2971e+ 1

(2.27e+ 0) 2.5483e+ 1 (6.20e+ 0)

1000 2.9801e+ 0
(9.11e− 2)

2.9976e+ 0
(9.44e− 2) 3.0005e+ 0 (0.00e+ 0) 3.5883e+ 1

(3.99e+ 0) 5.5544e+ 1 (1.95e+ 1)

10
500 6.4182e+ 0 (1.93–1) 6.5037e+ 0

(7.63e− 1) 6.5321e+ 0 (3.65e− 15) 3.6094e+ 2
(2.89e+ 1) 2.7313e+ 2 (9.11e+ 1)

1000 6.3652e+ 0
(2.05e− 1)

6.3891e+ 0
(1.06e+ 0) 6.5321e+ 0 (3.65e− 15) 5.0223e+ 2

(2.77e+ 1) 3.4370e+ 2 (9.37e+ 1)

Table 6: HV values and optimized results of four algorithms (values in bold represent better results).

Dataset Algorithm HV Feature Accuracy Relevance Redundancy Interclass distance Intraclass distance

Heart

MALSMEA 0.9972 6 0.7979 0.4615 0.1923 0.0802 0.0123
W-MOSS 0.9962 7 0.7667 0.5385 0.2692 0.0769 0.0128
W-QEISS 0.9943 8 0.7604 0.6154 0.3590 0.0764 0.0130
F-QEISS 0.9980 7 0.7811 0.5385 0.0256 0.0798 0.0125

Zoo

MALSMEA 0.9979 5 0.9842 0.3125 0.0833 0.0637 0.0074
W-MOSS 0.9975 7 0.9816 0.4375 0.1750 0.0622 0.0085
W-QEISS 0.9972 7 0.9697 0.5000 0.2333 0.0615 0.0076
F-QEISS 0.9977 6 0.9556 0.3750 0.0167 0.0609 0.0083

Iris

MALSMEA 0.9351 2 0.9387 0.5000 0.1667 0.2574 0.1667
W-MOSS 0.9234 3 0.9071 0.7500 0.5000 0.2566 0.1673
W-QEISS 0.9236 3 0.9049 0.5655 0.1765 0.2571 0.1670
F-QEISS 0.9247 3 0.9187 0.7500 0.1667 0.2569 0.1668

Musk1

MALSMEA 0.9697 11 0.6173 0.0663 0.0045 7.3102e− 5 0.0060
W-MOSS 0.9693 12 0.6130 0.0723 0.0048 7.3023e− 5 0.0060
W-QEISS 0.9603 13 0.5956 0.0783 0.0057 7.3037e− 5 0.0067
F-QEISS 0.9627 13 0.6069 0.0783 0.0057 7.3026e− 5 0.0062
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