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Short-term traffic prediction under corrupted or missing data for large-scale transportation networks has become an important
and challenging topic in recent decades. Since the critical roads have predictive power on their adjacent roads, this paper proposes
a novel hybrid short-term traffic state prediction method based on critical road selection optimization. First, the utility function of
the quality of service (QoS) for the critical roads in a large-scale road network is proposed based on the coverage and the data
score. 'en, the critical road selection optimization model in the transportation networks is presented by selecting an appropriate
set of critical roads with the maximum proportion of the total calculation resources to maximize the utility value of the QoS. Also,
an innovative critical road selection method is introduced, which is considering the topological structure and the mobility of the
urban road network. Subsequently, the traffic speed of the critical roads is regarded as the input of the convolutional long short-
term memory neural network to predict the future traffic states of the entire network. Experiment results on the Beijing traffic
network indicate that the proposed method outperforms prevailing DL approaches in the case of considering critical
road sections.

1. Introduction

Real-time traffic state prediction plays a vital role in traffic
management and public service. By predicting the evolution
of traffic timely and accurately, governments and travelers
could react to the traffic congestion ahead of time. For
instance, intelligent transportation systems, advanced traffic
management systems, and traveler information systems
depend on real-time traffic state prediction.

In the past decades, there have been numerous studies on
this topic [1]. 'ese studies could be divided into mathe-
matical models, statistical models, and data-driven methods
[2]. Compared with data-driven methods, mathematical or
statistical models derived from macroscopic and micro-
scopic theories of traffic flow are difficult to handle unstable
traffic conditions and complex road settings due to strong
hypotheses and assumptions [3].

Data-drivenmethods have achieved promising results due
to more potential in processing complex nonlinear problems

[4]. 'ese methods include support vector machine (SVM),
Bayesian network, and neural network. Among all these data-
driven methods, deep learning approaches have proven ef-
fective in traffic state prediction. 'is method could exploit
much deeper architectures and process the high-dimensional
set of explanatory variables [5].

However, most of the deep learning approaches are
constructed based on the entire dataset. 'e attributes of
datasets influence the prediction performance. In other
words, the deep learning approaches have highlighted the data
quality in short-term traffic state prediction [5]. Due to the
corrupted or missing data problem, there is limited high-
quality real-time or historical data obtained, indicating that
the data has low predictive quality [6]. 'ese setbacks weaken
the predictive accuracy and efficiency, limiting the capacity
for providing a practical and reliable forecasting result.

Recently, researchers find that some critical roads sig-
nificantly affect the traffic states of their adjacent roads at a
specific road network [7, 8]. 'is conclusion indicates that
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the traffic state of one road could be predicted based on its
neighbors’ state [6].

'ere have been numerous studies on this topic, but only
a tiny percentage of them have paid attention to prediction
based on critical road selection optimization. 'erefore, if
we extract the traffic state of the critical road sections with
the most dominant predictive power, we could characterize
the spatiotemporal features of traffic flow and predict the
future traffic state of the overall network.

In this paper, we propose a novel hybrid short-term
traffic state prediction method based on critical road se-
lection optimization. Different scores were given to data
collected on different road segments. 'e higher the criti-
cality of the road segment, the higher the score of the data.
'e critical road selection problem is abstracted as a mul-
tiobjective optimization problem, maximizing the sensing
coverage and data scores. In other words, our objective is to
select the most suitable critical roads to maximize the quality
of the service (QoS) with the limited consumption of net-
work resources.

'en, a novel critical road selection method is proposed,
considering the topological structure and the mobility of the
urban road network. Subsequently, the traffic speed of the
critical roads is regarded as the input of the convolutional
long short-term memory neural network to predict the
future traffic states of the entire network. Finally, to dem-
onstrate the effectiveness of the proposed method, the nu-
merical experiments using the traffic states depicted from
GPS trajectory data in Beijing. In addition, other traditional
machine-learning models are compared to demonstrate the
advantage of the proposed method. Practical experiment
results showed that the proposed method could precisely
predict future traffic network states.

'e rest of our paper is organized as follows. Section 2
discusses the literature on short-term traffic state prediction
and the existing approaches to prediction based on critical
roads. In Section 3, the critical road selection optimization
model is proposed by selecting an appropriate set of critical
roads with the maximum proportion of the total calculation
resources to maximize the utility value of the QoS and also
an innovative critical road selection method is introduced.
Section 4 elaborates on the numerical experiments using the
traffic states depicted from GPS trajectory data in Beijing.
'e last section concludes the study and discusses future
work.

2. Literature Review

Over the past decades, considerable short-term traffic
forecast models have emerged to handle the prediction of
future traffic states ranging from a few seconds to few hours.
'ese approaches could be generally categorized into
mathematical approaches, statistical approaches, and data-
driven approaches.

Mathematical approaches focus on predetermining the
model structure by theoretical assumption. 'e evolution of
the traffic state could be simulated by the theoretical
mathematical models [9]. Because of the strong dependence
on theoretical considerations, these mathematical

approaches do not match the actual traffic state condition
[10]. Mathematical approaches depend on theoretical
mathematical models to simulate the traffic evolution. 'ere
are many famous mathematical models in the past decades,
such as the Greenshields model, car-following model, Van
Lighthill–Whitham–Richards (LWR) model, and so on. 'e
future traffic state of the road network could be calculated by
these models directly [11, 12]. Most traffic simulation
simulators, such as Q-Paramics, VISSIM, DynaMIT, and
DynaSMART-X, predict traffic states based on the traffic
flow models, car-following models, and dynamic traffic
assignment models [13–16].

Statistical approaches usually rely on statistical as-
sumptions. 'e autoregressive integrated moving average
(ARIMA) and its variants are the most common mathe-
matical approaches. Hamed et al. [17] proposed a simple
ARIMA to predict the traffic state of the road network.
Williams et al. developed a seasonal ARIMA (S-ARIMA) to
predict the traffic state of the urban freeway. 'e results
showed that the S-ARIMA model could obtain better
properties [18, 19]. Ding et al. proposed a space-time
ARIMA to predict the traffic state of the road network [20].

In addition, the Markov chain, Kalman filter (KF), KF-
based approaches, and other approaches also have important
applications in short-term traffic prediction [21–24].
However, these approaches fail to produce favorable results
under unstable traffic conditions, such as unexpected events
[25].

Different from mathematical approaches and statistical
approaches, data-driven approaches rely on a sufficient mass
of traffic data. In recent years, due to abundant data attached
to extensive traffic sensors and advanced big data technol-
ogy, data-driven approaches have developed rapidly. Nu-
merous data-driven approaches were put forward for the
short time traffic state prediction, such as SVM [26–28],
neural network [29–32], and hybrid methods [33, 34].

Among these data-driven approaches, deep learning
methods have become extremely popular and successful
because of their powerful ability to process nonlinear high-
dimensional problems. Huang et al. employed a deep belief
network (DBN) with multitask learning for traffic flow
prediction [4]. Lv et al. proposed an SAE model to predict
the traffic flow, and the performance is superior to other
methods at different prediction horizons [35]. Furthermore,
numerous efforts have been devoted to emphasizing the
temporal characteristics and spatial dependencies on pre-
diction [2]. Ma et al. predicted the traffic speed of a large-
scale transportation network using an LSTM neural network
and CNN [36, 37]. Wu and Tan extracted spatial and
temporal features by CNN and LSTM, respectively, and
predicted traffic volume combined these two approaches
[38]. Wang et al. proposed an eRCNN model then trained
the recurrent CNN by reducing predictive feedback errors
[39].

In summary, among all these traffic state prediction
approaches, deep learning methods stand out as the most
potent alternative. However, few prediction methods could
achieve satisfactory accuracy because of the missing data
problem in reality. For the critical roads that have a
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significant effect on the traffic states of their respectively
adjacent roads at a specific road network, we could extract
the traffic state of the critical road sections and predict the
future traffic state of the overall network.

3. Methodology

'is research focuses on utilizing data from critical road
sections to predict future traffic conditions of the overall
urban transportation network. In this section, the utility
function of the QoS for the critical roads in a large-scale road
network is proposed based on the coverage and the data
score. 'en, the critical road selection optimization in the
transportation networks is presented by selecting an ap-
propriate set of critical roads with the maximum proportion
of the total calculation resources to maximize the utility
value of the QoS. Specifically, the critical road sections are
selected by an innovative critical road selection method.
Finally, the traffic speed of the critical roads is regarded as
the input of the convolutional long short-term memory
neural network to predict the future traffic states of the entire
network.

3.1. Road Network Topology Analysis. In the practical urban
road network, road sections are connected at intersections
and eventually form a complex network. When performing
sensing tasks in urban road network areas, the topological
structure characteristics of the road network need to be
considered.'e results of numerous studies have shown that
the topology of urban road networks is complex and diverse.
'e failure of connectivity in some sections of the network
can impact the traffic operation in the whole network.
However, it is inevitable that road connectivity in the net-
work will sometimes be interrupted due to bad weather,
technical failures, or serious accidents. 'is will lead to local
traffic congestion and paralysis in the network, which will
have harmful economic and social impacts. It means that the
higher importance of road sections in the network under
different spatial and temporal conditions indicates the more
severe damage to the integrity of the road network con-
nectivity brought by their failure. In order to avoid serious
impacts on road network connectivity and vehicle move-
ments, priority should be given to the use of high, critically
important road sections for future traffic state prediction.

In order to study the structural properties of real road
networks, it is necessary to reasonably abstract the road
networks into topological structure diagrams, consisting of
points and lines by suitable methods. 'e primal approach
and the dual approach are two methods to abstract the road
network into a complex network model. 'e primal ap-
proach uses the roads in the road network as edges in the
abstract network and the intersections as nodes in the ab-
stract network. 'e dual approach models the intersections
as edges in the network and the roads in the urban road
network as nodes, thus showing the interconnections be-
tween roads in a highly abstract way. 'e primal approach is
intuitive and simple and can retain the layout characteristics
of the road network. 'e dual approach ignores some

geographic significance of network entities, such as the
geographic location of roads, length, and width, and
therefore, it is more suitable for analyzing abstract network
structures. In this paper, we pay more attention to the
characteristics of road connectivity, so we use the primal
approach to model the road network.

3.2. QoS for the Critical Roads. 'e QoS is the standard for
measuring the performance of the critical roads in a pre-
diction task. 'e greater the value of QoS, the better the
prediction performance of the critical roads. Here, we
propose a utility function to calculate the QoS for the critical
roads.

'e coverage of the selected roads is mainly concerned
with people when predicting the traffic state of the whole
road network. So, we choose coverage as our first metric.
Coverage indicates the coverage of the selected vehicle to the
entire road network. For better calculating the coverage C,
we divide the road network into small grids, and the grid is
used as the basic measuring element for coverage calcula-
tion. As shown in Figure 1, the pink curves represent roads.
'e grid with roads passing through is painted green. In this
paper, the size of the grid is 0.0005° × 0.0005°, based on
longitude and latitude, where 0.0005 longitude (latitude) is
about 50m.

Define gj as the single grid in the urban road network.
Let f(gj) represent the coverage state of gj, and f(gj) � 1
indicates that grid j is selected during the predicting task
time; otherwise, f(gj) � 0. In this paper, we tried to predict
the whole network traffic state. If gj belongs to road section l
and road section l has φ grids, then the road factors could be
calculated as z(gj) � 1/φ. 'e following equations could
calculate the coverage of the selected grids:

f gj  �

1, if gj is selected in predicting task,

0, otherwise,

⎧⎪⎨

⎪⎩

C �


n
i�1 f gj ∗ z gj 

n
.

(1)

On the other hand, we introduce the concept of data
score to represent the criticality level of the roads. Specially,
we give a higher score to the data collected from the critical
roads than the data collected from the ordinary roads. Here,
we use the correlations among road sections on both space
and time to calculate the data score.

'e spatial weights matrix represents the spatial de-
pendency among road sections in traffic networks.
According to graph theory, the local connectivity of a node
can be calculated based on the connection between the node
and its adjacent node, which is represented by the degree of
node k. Suppose there exists a network, which can be
represented as G � (V′, E), where V′ is the set of nodes in
the network and E is the set of edges in the network, rep-
resenting the connections between nodes in the network.
'e network G � (V′, E) has |V′| � N nodes and |E| � M

edges. 'en, this network can be represented by the adja-
cency matrix AM×N. If nodes i and j are connected directly or
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indirectly, we call these two nodes “kth-order neighbors,”
and their adjacency relationship could be expressed as
equation (2). 'e spatial weights matrix P could be defined
as the sum of the kth spatial weights matrix; element pij in P
is calculated as shown in equation (3).

A
k
ij �

1, when nodes i and j are directly connected,

0, otherwise,


(2)

pij � 
K

i�1


n

j≠ i

A
k
ij, (3)

where K is the highest order of the spatial weights matrix.
And, to comprehensively consider the spatial correlation

of the road network with the temporal correlation, the spatial
weights matrix is introduced as a spatial indicator to improve
the initial correlation distance. Let xt

i be traffic speed in the
road section i at time t, where xt

i � (x1
i , x2

i , . . . , xT
i ). 'en, the

integrated speed values of the adjacent road sections RXt
i

could be computed by equation (4). 'en, the data score
Di(s) between road section i and its adjacent road sections
could be calculated by equation (5):

RXt
i � 

R

j�1
Pijx

t
j, (4)

Di(s) � 1 −


T
t�1 x

t
i − xi  RXt+s

i − RXi 
�������������


T
t�1 x

t
i − xi 

2
 ���������������


T
t�1 RXt+s

i − RXi 

 , (5)

where s � (1, 2, . . . , S) (s > 0) is the time lag between the
speeds of road sections i and its adjacent road sections; xi

is the mean value of traffic speed xt
i in road sections i

during the time duration of T. RXi is the mean value of
integrated speed RXt

i . Based on the previous analysis,
mathematical expressions of data score D are defined as
follows:

D � 
n

i�1
Di(s). (6)

'e utility function of QoS, U, is defined as

U � α · log2 C +(1 − α) · lnD, (7)

where α ∈ [0, 1] is a parameter for tuning the weight of data
coverage and data score. To make α more sensitive in
equation (7), we apply log2C instead of C and ln D instead of
D. Since logarithm is a common way to aggregate data, this
process can reduce the heteroscedasticity of data in the QoS
function.

3.3. -e Critical Road Selection Optimization

3.3.1. Definition of the Critical Road Selection Problem.
'e goal of the critical road selection model is to maximize
the QoS of the urban traffic prediction system with limited
critical roads, so the mathematical expression of the critical
roads selection problem can be defined as

(a) (b)

Figure 1: An area of the urban road network in Beijing, China. (a) 'e primal graph of the road network and (b) the gridding of the road
network.
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maxU � α · log2 C +(1 − α) · ln
n

j�1
Di(s)

s.t.

C �


n
i�1 f gj ∗ z gj 

n
,

f gj  �

1, if gj is selected in predicting task,

0, otherwise,

⎧⎪⎨

⎪⎩

F � f gj |i � 1, 2, . . . , n ,

0≤ α≤ 1,

Di(s) � 1 −


T
t�1 x

t
i − xi  RXt+s

i − RXi 
������������


T
t�1 x

t
i − xi 

2
 ���������������


T
t�1 RXt+s

i − RXi 

 ,

x
t
i � x

1
i , x

2
i , . . . , x

T
i ,

z gj  �
1
φ

,

C< μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where function U is used to calculate the utility value of the
QoS; f(gj) represents whether grid j is selected, with
f(gj) � 1 indicating that grid j has been selected; otherwise,
the value of f(gj) is 0. F is the set of critical roads, and C is
the coverage. Di(s) is the data score between road section i
and its adjacent road sections. μ is the threshold for the
selection.

3.3.2. -e Critical Road Selection Method. Based on the
above analysis, a critical road selection model for traffic state
prediction is constructed. In this paper, due to the spatio-
temporal state changes of the road network, the selected
roads need to be updated at intervals T. An improved greedy
algorithm is proposed to solve the critical road selection
problems. A greedy algorithm means that we always make
the best choice for the current situation when solving an
optimization problem. In other words, such an algorithm
does not consider the overall situation but rather considers
only the local situation. 'e pseudocode of the proposed
algorithm is shown in Algorithm 1.

3.4.TrafficStatePredictionUsing theDeepLearningApproach.
In this paper, a spatiotemporal recurrent convolutional
network is proposed for the prediction (STRCN). 'e
proposed STRCN inherits the advantages of deep con-
volutional neural networks (DCNN) and long short-term
memory (LSTM) neural networks. 'e spatial dependencies
of network-wide traffic can be captured by CNN, and the
temporal dynamics can be learned by LSTM.

3.4.1. Capturing Spatial Features by CNN. CNN has been
successfully applied to traffic prediction for its great po-
tential in extracting features using multiple layers. A typical
CNN mainly comprises multiple convolution layers and
pooling layers. 'e former contributes to mine spatial de-
pendencies of road sections since every layer retrieves a
distinct feature using different filters. In comparison, the
latter assists in reducing the number of parameters required
for training CNN under the premise of ensuring prediction
accuracy. Given that the input for CNN could be intuitively
regarded as an image with each pixel value associating one
kind of traffic state during a certain time, 2D CNN is
naturally utilized to abstract spatial features between road
sections. Figure 2 illustrates the structure of CNN, including
the input layer, convolution layer, pooling layer, fully
connected layer, and output layer. Each part plays a unique
and vital role for CNN, and the details are briefly explained
below.

Suppose that we need to predict the future traffic speed of
the network Vt+a � vt+a

i 
m

i�1, where a is the prediction ho-
rizon andm is the number of road sections. 'e input of the
CNN is the historical traffic speed of critical road sections
{Ut−n, Ut−1, Ut}, where Ut−n � vt−n

i 
Pα
i�1 represents the traffic

state of critical road sections at time (t−n), n is the look back
step, and Pα is the number of critical road sections.'en, the
spatial features of input are captured by convolutional and
pooling layers. Let Ol

r be the output of lth convolutional and
pooling layers with r filters and the weights and bias of lth
layers be (Wl

r, bl
r). 'en, the Ol

r could be calculated by the
following equation:
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O
l
r � pool f 

r

W
l
r ∗O

l−1
r + b

l
r

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (9)

where Ol−1
r means the output of the previous layer and O1

r is
exactly the input layer. f is a nonlinear activation function,
and pool denotes the pooling procedure.

3.4.2. Capturing Temporal Features by LSTM. Intuitively,
traffic states at each moment have a strict sequential rela-
tionship in time dimension rather than isolated from each
other, which is especially suitable for RNN to capture the
temporal evolution of traffic flow. However, it is difficult for
traditional RNN to capture temporal dependency if two time
intervals are remote. 'en, LSTM, one of the specific forms
of RNNs, is proposed to tackle these issues by adding
memory cells in hidden layers. As shown in Figure 3, four
main parts, an input gate, a neuron with a self-recurrent
connection, a forget gate, and an output gate, are collabo-
rated to alleviate the problems of traditional RNN caused by
the gradient vanish and explosion.

In our model, next to CNN, the LSTMnaturally takes the
output of CNN Vt � xt

i 
R

i�1 as its input to predict the future
traffic states Ht � ht

i 
q

i�1, namely, its output, where q is the
number of hidden units of the output layer. For a memory

cell, the input states are Gt−1 while the output is Gt.
Meanwhile, the states of input, forget, and output gates are
It, Ft, andOt, respectively. 'e temporal features could be
iteratively calculated by the following equations:

input gate: It � σ W
i
vV

t
+ W

i
hH

t−1
+ bi , (10)

forget gate: Ft � σ W
f
v V

t
+ W

f

h H
t−1

+ bf , (11)

Critical Road Sections Convolution Pooling Convolution Pooling Fully-connected Overall Network

Figure 2: 'e structure of the CNN.

Input: number of roads: n
Number of prediction tasks: m
Set of critical roads: F
QoS for the critical roads: U
Output: set of finally selected roads: R

(1) U←∅, U(F)← 0
(2) for j from 1 to m do
(3) i � Fi⟶ head
(4) for i from 1 to n do
(5) U(Fi) � α · log2 C + (1 − α) · ln

n
j�1 Di(s)

(6) ΔU � U(Fi+1) − U(Fi)

(7) if ΔU> 0 then
(8) R←R∩Fi

(9) else
(10) i � Fi⟶ next
(11) end if
(12) end for
(13) end for
(14) return R;

ALGORITHM 1: Greedy-based critical road selection method (pseudocode of the proposed algorithm).

Gt-1 Gt

Ht

Ht-1

× + ×

∫ ×∫ ∫

tanh

tanh

Forget
gate

Input
gate

Output
gate

Ot

It

F t

Vt

Figure 3: 'e architecture of LSTM NN.

6 Computational Intelligence and Neuroscience



output gate: Ot � σ W
O
v V

t
+ W

o
hH

t−1
+ bo , (12)

cell input: Gt−1 � tanh W
c
vV

t
+ W

c
hH

t−1
+ bc , (13)

cell output: Gt � It ⊙Gt + Ft ⊙Gt−1, (14)

hidden layer output: Ht � Ot ⊙ tanh Gt( , (15)

where weights matrices W and bias vectors b are constructed
to connect input layer, output layer, and the memory cell, ⊙
denotes the scalar product of two vectors, and σ(·) repre-
sents the standard logistics sigmoid function defined as
follows:

σ(x) �
1

1 + e
−x. (16)

3.4.3. Training with STRCN. Integrated with the advantages
of CNN and LSTM, the STRCNs is utilized to predict future
traffic states by sufficiently exploiting the spatiotemporal
characteristics of the data. Eventually, a fully connected layer
is employed to predict the future speed by taking the output
of LSTM as input. 'e future speed could be calculated by
the following equation:

Y
t+1

� WyHt + by, (17)

where Wy and by are weight and bias related to the hidden
layer. Conclusively, the model is trained from end to end,
and the values of Yt+1 are prediction results, which are the
output of the entire mode. Several hyperparameters within
the model will be set and elaborated in the experiment
section. Additionally, it is significant to note that the input
size will alter as the number of critical road sections changes
due to different extracting rate α, and hence several
hyperparameters will change too.

4. Case Study

4.1. Data Used. In this section, a case study is conducted to
evaluate the performance of the proposed critical road se-
lection optimization model and the traffic prediction
method. 'e main urban road of a subtransportation net-
work of Beijing near West Second Ring Road is selected as
the research objective, as shown in Figure 4. 'e network
comprises 278 road sections, including several kinds of
hierarchies of roads, such as freeways, arterials, secondary
roads, and collectors. 'e total length of all the roads is
approximately 24.53 km, and the network covers around
0.6 km2 areas.

Data collected by taxis equipped with GPS devices from
June 1st, 2015, to August 31st, 2015 (92 days) is utilized for
training the proposed model and predicting the future traffic
speed of the network. 'e updating frequency of data is 2
minutes, and a time period ranging from 6 : 00 : 00 to 23 : 00 :
00 is concerned for high travel demand is repeatedly ob-
served. Accounting for the traffic state varies every time
interval, we could observe 511 traffic states per day.

4.2. Critical Road Selections. 'e proposed QoS-based
critical road selection method and other two road selection
methods (random method and coverage-based method)
were used to select the road sections for prediction in the
road network. In a random method, the road is selected
randomly during the prediction process. In the coverage-
based method, the road is selected based on the coverage,
which means that roads with higher coverage are preferred
for selection. 'e three critical road selection methods are
applied under different roads extracting rate μ (i.e.,
the proportion of critical road sections to all
roads, μ ∈ [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,

100%]).
Eventually, the correspondence of extracting rate and the

number of critical road sections are listed in Table 1. For
example, μ � 0.50 means that we will select 139 roads as
critical road sections and subsequently use them to predict
the traffic states of 278 roads.

4.3. Results and Comparison

4.3.1. Performance between Different Critical Road Selection
Methods. 'e root means squared error (RMSE) and root
mean squared error proportional (RMSEP) are employed to
evaluate the performance of all the models, which could be
calculated as in the following equations:

RMSE �
1
nμ

�������������

nμ 

Nμ

i�1
yi − yi( 

2




, (18)

RMSEP �
100
y
ave
i

�������������

1
nμ



Nμ

i�1
yi − yi( 

2




, (19)

where yi is the ith ground-truth value and yi is the ith
predicted value. 'e value of nμ denotes the number of
critical road sections at extracting rate μ and Nμ is the total
number of traffic states.

Figure 4: 'e layout of the subtransportation network in Beijing.
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4.3.2. Performance Using the Different Critical Road Selection
Method. In order to evaluate the performance of the pro-
posed critical road selection optimization model, we train
and test the STRCN model using different road selection
methods.'e RMSEs and RMSEPs in the context of different
extracting rates μ are listed in Table 2.

It could be found that in the range of 0.8 to 1.0, the
performance of the STRCN model using different road
selection methods is almost the same. 'e reason is that the
finally selected road sections by different methods have little

difference under the condition of high extracting rate.
However, when the extracting rate is between 0.5 and 0.8, the
performance of the QoS-based selection method is a little
superior to the overall prediction model. In general, the
decrease of accuracy is reasonable and within the acceptable
limits, which demonstrates the validation and generalization
of the approach and the fact that some road sections indeed
have less contribution towards prediction.

Additionally, when the extracting rate comes to 0.5, the
predictive performance gradually tends to be unstable,

Table 1: Correspondence of extracting rate and the number of critical road sections.

Parameters Values
Extracting rate μ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Number of roads 167 181 195 209 222 236 250 264 278

Table 2: Performance of the STRCN using different critical road selection methods.

Extracting rate μ
QoS-based method Random method Coverage-based method

RMSE RMSEP (%) RMSE RMSEP (%) RMSE RMSEP (%)
1.0 6.767 21.019 6.766 21.013 6.768 21.022
0.9 6.911 21.572 6.901 22.021 6.875 21.531
0.8 7.143 22.698 7.175 22.781 7.144 22.700
0.7 7.144 22.693 7.231 23.276 7.174 23.091
0.6 7.027 21.425 7.285 23.763 7.186 23.113
0.5 7.089 21.889 7.301 24.017 7.197 23.150
0.4 7.179 22.802 7.376 24.172 7.223 23.350
0.3 7.235 23.763 7.405 24.508 7.331 24.003
0.2 7.471 24.078 7.479 24.967 7.474 24.095
0.1 7.701 25.102 7.705 25.109 7.703 25.108

0.0 0.2 0.4 0.6 0.8 1.0
6.6

6.8
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7.4
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7.8
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SE

Extracting rate
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Coverage-based method
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21
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24

25

RM
SE

P

Extracting rate

(b)

Figure 5: 'e trend of prediction accuracy using different critical road selection methods. (a) 'e RMSE of different methods and (b) the
RMSEP of different methods.
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probably because too many roads are omitted. Particularly
when the extracting rate is between 0.0 and 0.2, the per-
formance is basically the same. 'at is because no matter
what method is used, there are too many missing road
sections to predict. Figure 5 shows that prediction accuracy
generally declines as the extracting rate decreases with
different critical road selection methods.

4.3.3. Performance between Several DL Algorithms. As we
introduced before, corrupted or missing data generally exist
on account of the monitoring equipment failure, extreme
weather, data transmission error etc., which weakens the
effectiveness of the prediction model or even disables the
model. To test the performance of our model under random
structural missing data, we stochastically extract a part of

Table 3: Performance between several DL algorithms.

μ
Q-STRCN LSTM CNN ANN SAE

RMSE RMSEP RMSE RMSEP RMSE RMSEP RMSE RMSEP RMSE RMSEP
0.8 7.143 22.698 7.198 22.701 7.213 23.101 8.173 27.134 7.989 26.311
0.7 7.144 22.693 7.351 22.816 7.939 26.631 9.512 31.781 8.296 28.501
0.6 7.027 21.425 8.136 26.589 8.813 26.897 10.891 36.123 9.375 30.134
0.5 7.089 21.889 9.257 30.317 9.785 30.871 11.231 39.177 10.012 33.891
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Figure 6: 'e quantitative results among different approaches under different extracting rates. (a) μ � 0.8; (b) μ � 0.7; (c) μ � 0.6; (d) μ � 0.5.
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road sections of the rate of μ where the value remains the
same as those mentioned above.

Four popular deep learning-based algorithms are se-
lected for comparison, including ANN, CNN, LSTM, and
SAE. ANN adopts a plain and shallow structure to process
multidimension and nonlinear problems. 'e parameters of
the SAE are set according to [35], which achieves high
accuracy in predicting traffic flow. We take 30min historical
traffic speed as the input to predict overall traffic states after
2min.

Table 3 presents the quantitative results of Q-STRCN,
ANN, CNN, and LSTM. It could be observed that the result
of Q-STRCN outperforms other models, indicating that our
model could precisely mine the spatiotemporal features of
the data and make a relatively accurate prediction. Among
all the rival algorithms, LSTM has the best performance,
probably resulting from that the temporal features of the
time-series data are essentially prominent. 'e results of
ANN and SAE demonstrate that these two models fail to
extract spatiotemporal characteristics that have vital impacts
on prediction. Figure 6 shows the quantitative results among
different approaches under different extracting rates.

5. Summary and Conclusions

Structural missing data usually has a massive negative effect
on short-term traffic state prediction. In this paper, a novel
hybrid short-term traffic state prediction method based on
critical road selection optimization is proposed. First, the
utility function of the quality of service (QoS) for the critical
roads in a large-scale road network is proposed based on the
coverage and the data score. 'en, the critical road selection
optimization model in the transportation networks is pre-
sented by selecting an appropriate set of critical roads with
the maximum proportion of the total calculation resources
to maximize the utility value of the QoS. Also, an innovative
critical road selection method, which is considering the
topological structure and the mobility of the urban road
network, is introduced. Subsequently, the traffic speed of the
critical roads is regarded as the input of the convolutional
long short-term memory neural network to predict the
future traffic states of the entire network. Experiment results
on the Beijing traffic network indicate that the proposed
method outperforms prevailing DL approaches in the cases
of considering critical road sections.

However, even the case study showed that the proposed
method could significantly improve the QoS of the traffic
prediction, there is still a long way to go from practical
application for the method. For future studies, the inherent
attributes of the road should be taken into account when
calculating the QoS for the road network. Besides, the traffic
accident, temperature, weather, and other external factors
affect the traffic prediction accuracy. All these will be left for
our future research.
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