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To improve foresight and make correct judgment in advance, pedestrian trajectory prediction has a wide range of application
values in autonomous driving, robot interaction, and safety monitoring. However, most of the existing methods only focus on the
interaction of local pedestrians according to distance, ignoring the influence of far pedestrians; the range of network input
(receptive field) is small. In this paper, an extended graph attention network (EGAT) is proposed to increase receptive field, which
focuses not only on local pedestrians, but also on those who are far away, to further strengthen pedestrian interaction. In the
temporal domain, TSG-LSTM (TS-LSTM and TG-LSTM) and P-LSTM are proposed based on LSTM to enhance information
transmission by residual connection. Compared with state-of-the-art methods, the model EGATachieves excellent performance
on both ETH and UCY public datasets and generates more reliable trajectories.

1. Introduction

Because of complexity and uncertainty of interaction be-
tween pedestrian and environment, it is difficult to predict
human trajectory. Early methods [1, 2] have made some
achievements in the study of human behavior by manual
energy function, but these methods have poor generalization
ability and are not suitable for constructing human-human
interactions in crowded space. Formethods in deep learning,
such as Recurrent Neural Network (RNN) [3, 4] and
Generative Adversarial Networks (GAN) [5, 6], the human
interaction is modeled based on social pooling. Although the
receptive field is improved, location information of pedes-
trians is lost. Moreover, the generator of GAN is designed
with RNN, so methods of pedestrian trajectory prediction
based on RNN and GAN are not only inefficient, but also
costly.

Graph structure is a natural method to represent human
interaction, which is more intuitive and effective than
pooling methods. Graph Convolutional Network (GCN)
based on graph data shows powerful modeling function, and
it has become a new hotspot in the research of pedestrian
interaction. In the graph, a node represents a pedestrian, and

the connecting edge of two nodes represents the interaction
between pedestrians. However, existing methods based on
GCN cannot distinguish the importance of nodes because
they distribute the weights of nodes equally. Due to the
different influence of adjacent pedestrians on the target
pedestrian in trajectory prediction, attention mechanism is
more helpful to encode potential pedestrian interaction. On
this basis, Graph Attention Network (GAT) [7] comes into
being and has been widely applied. Kosaraju et al. [8]
proposed Social-BiGAT, which relies on a graph to simulate
human interaction, but does not make full use of graph
representation. Huang et al. [9] and Mohamed et al. [10]
introduced a flexible graph attention mechanism to improve
social modeling, but only model the local interaction of close
pedestrians.

At present, there are many problems in the field of
pedestrian trajectory prediction. Firstly, when pedestrians
are walking in a real scene, from single walking to group
activity [11], social interactions are not only affected by
spatial proximity. As shown in Figure 1(a), the blue pe-
destrian’s trajectory is mainly influenced by the black people
who are far away, while the purple pedestrian who is near has
less influence on it.
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Secondly, in the temporal domain, during modeling
pedestrian’s historical trajectory based on LSTM, the current
state of a pedestrian only depends on the hidden state of
previous moment, which ignores information transmission
of the current moment and affects judgment of pedestrian’s
intention. See Figure 1(b) for the pink missing connection in
LSTM.

+irdly, when prediction length increases, the prediction
accuracy of LSTM-based trajectory prediction models tends
to decline.

EGAT is proposed in this paper to solve these problems.
At first, Feature Update Mechanism (FUM) is designed in
EGAT to explore global influence for pedestrians. For those
far away but influential pedestrians, FUM can pay attention
to them and increase the receptive field. Because the local
interaction between pedestrians is extended to global in-
teraction, the network structure is called EGAT. Next, a
pedestrian’s movement of next moment is mainly affected by
his intention of current moment, such as going straight,
turning left, or turning right +erefore, to enhance infor-
mation transmission at the current time, the residual con-
nection (i.e., the missing connection in Figure 1(b)) is added
to LSTM to form TSG-LSTM (TS-LSTM and TG-LSTM).
TS-LSTM and TG-LSTM models’ temporal correlation for
individual and interaction, respectively, not only simulates
the real scene, but also reflects human dynamic movement.
+en, P-LSTM predicts pedestrian trajectory based on the
observed trajectory. Different from LSTM, residual con-
nection is also added to P-LSTM. As the prediction length
increases, P-LSTM alleviates prediction accuracy decreases.

2. Related Work

+is section mainly introduces the content involved in
EGAT, including human-human interactions, trajectory
prediction based on RNN or attention mechanism, and
application of GCN. +e relevant literature of each part is
compared, and the advantages of our model are put
forward.

2.1. Human-Human Interactions. Early human interaction
is defined by [1] as a social force with attraction and re-
pulsion, which is an effective method. Due to the influence of
objective environment, human-human interactions become
more complex. +e early models are not enough to simulate
these interactions and have poor environment adaptability.
On this basis, the subsequent research methods [12, 13]
consider more manual rules and functions, but limit the
improvement of accuracy. With the development of deep
learning, complex group activities are concerned. Bag-
autdinov et al. [14] proposed to recognize group activity
through human-human interactions. Xu et al. [15] defined
pedestrian relationship based on spatial affinity. Alahi et al.
[3] proposed social LSTM to aggregate interactions through
social pooling. +ese methods only model pedestrian local
interaction based on distance. In this paper, EGAT can not
only predict the trajectory of a single person, but also predict
potential human-human influences. It is not limited to
nearby pedestrians for a target pedestrian, but focuses on all
other non-local pedestrians.

2.2. Trajectory Prediction Based on RNN. In recent years,
RNN and its variants, LSTM and GRU, have been widely
used in the field of trajectory prediction. +e models share
parameters and show good performance. Liu et al. [16]
proposed spatiotemporal RNN, which has a transformation
matrix to model spatiotemporal context in each layer. Gupta
et al. [5] added adversarial training based on social LSTM to
improve performance. Zhang et al. [4] proposed SR-LSRM,
which activates how to use the current intention of
neighbors to iteratively refine the current state of crowd
participants. Li et al. [17] also achieved good results by using
GRU. Above research proves that RNN methods are very
suitable for trajectory prediction. In this work, LSTM is
improved and TSG-LSTM is proposed to encode observed
trajectories of pedestrians at different time steps. Based on
the observed trajectory, P-LSTM is used to predict future
trajectory for pedestrians.
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Figure 1: A scene of pedestrians walking.+e solid red line is historical trajectory, and dotted yellow line is predicted trajectory. It is better to
show in color.
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2.3. Trajectory Prediction Based on Attention Mechanism.
Attention mechanism originates from imitating human
vision and has significant effect on selection of relevant data
[18]. +e correlation coefficient between pedestrians and
neighbors based on speed is determined by Su et al. [19].
Sadeghian et al. [6] combined with CNN to add bidirectional
attention for pedestrians. Vemula et al. [20] used hidden
state of EdgeRNN to calculate soft attention score and reflect
importance of neighbors. However, these methods generally
calculate the relationship between current pedestrian and
adjacent pedestrians, ignoring the relationship with other
long-distance pedestrians [21]. +e purpose of this paper is
to pay attention to all nodes in the graph, capture long-
distance dependence, and extract more social features.

2.4. Application of GCN. GCN is very effective for data
processing in non-Euclidean space. Its core idea is to map
nodes or edges to vector space through deep learning
methods, and then cluster and classify. GCN is widely used
in action recognition [22], scene graph generation [23],
video recognition [24], and other fields. Liang et al. [25]
designed RNN on spatial graph to encode inductive devi-
ation of pedestrian motion patterns. A directed social graph
is dynamically constructed by Zhang et al. [26] to effectively
obtain interactions of pedestrians. +e Edge-Enhanced
Graph Convolutional Neural Network (EGCN) proposed by
Jeon et al. [27] is inherently scalable to graph nodes. In this
model, frame sequences are constructed as a fully connected
attention graph, in which pedestrian features involve in-
teraction features and spatial location. +e main contribu-
tions in this paper are summarized as follows:

(i) Extended Graph Attention Network (EGAT) is first
proposed for pedestrian trajectory prediction, in
which the Feature Updating Mechanism (FUM) is
designed to solve the small receptive field of local
attention.

(ii) TSG-LSTM and P-LSTM are proposed based on
LSTM to pay attention to the current feature in-
formation of pedestrians and improve prediction
accuracy.

(iii) On two open datasets ETH and UCY, the proposed
model EGAT achieves superior performance as
compared to previous methods.

3. Methods

+e structure of our proposed model is shown in Figure 2.
+e model consists of encoder and decoder. +e encoder
mainly includes FUM and TSG-LSTM (TS-LSTM and TG-
LSTM). P-LSTM is a decoder. FUM, TSG-LSTM, and
P-LSTM are the special designs of this paper. In Figure 2,
FUM is shown in red box, TS-LSTM is shown in blue box,
and TG-LSTM is shown in pink box. P-LSTM is shown in
Figure 3. When encoding in the spatial and temporal do-
main, spatial relationship of pedestrians is encoded by FUM,
while TSG-LSTM encodes the historical trajectory of pe-
destrians in the temporal domain. Before FUM, TS-LSTM

encodes for a single pedestrian. After FUM, pedestrians
already have interaction information with other pedestrians.
+erefore, TG-LSTM encodes interaction relationship of
pedestrians. In decoding, P-LSTM is used to predict the
future trajectory of pedestrians based on encoder.

3.1. Problem Definition. Suppose in a scene, there are N
pedestrians. With the movement of pedestrians, their po-
sitions are represented by two-dimensional coordinates at
different times, which are used as the input of the model. At
time steps 1, . . . , Tm, two-dimensional coordinate of the ith
pedestrian at each time step t is (xt

i , yt
i). +e positions of N

pedestrians during the time 1, . . . , Tm forms N observed
trajectories; namely, pt

i � (xt
i , yt

i)|i � 1, . . . , N, t � 1, . . . ,􏼈

Tm}. +en, the problem is defined as follows: trajectories
formed by positions of N pedestrians in the time interval
Tm+1, . . . , Tend are predicted. +e definition is shown in the
following equation:

􏽢p
t
i � 􏽢x

t
i , 􏽢y

t
i􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌, i � 1, . . . , N, t � Tm+1, . . . , Tend􏼚 􏼛. (1)

3.2. Encoding for a Single Pedestrian by TS-LSTM. Long
Short-Term Memory (LSTM) networks have been suc-
cessfully proved to be able to learn and infer attributes of a
sequence, which is suitable for predicting pedestrian tra-
jectory [3–5, 9, 28]. For observed sequences, one LSTM is
denoted as TS-LSTM to encode the change of one pedes-
trian’s movement state at different time steps.

For pedestrian i, firstly, the coordinate (xt
i , yt

i) of the
pedestrian at time step t is embedded into a fixed length
vector vt

i by an embedding function. +e definition is shown
in equation (2). Secondly, the vector is used as an input to
TS-LSTM. ω represents an embedded function. +irdly, TS-
LSTM is used to calculate the hidden state of LSTM cell; see
equation (3). W is a shared parameter and ht

i is the output.
+e difference between TS-LSTM and LSTM is that the
residual connection is added after output. +e purpose of
this design is to better combine the current position feature
of each pedestrian, to ensure historical information will not
be lost, and achieve better information transmission.

v
t
i � ω x

t
i , y

t
i , Wv􏼐 􏼑, (2)

h
t
i � LSTM h

t−1
i , v

t
i , Wh􏼐 􏼑 + v

t
i . (3)

3.3. FUM for Spatial Interaction Modeling. During pedes-
trian movement, the change of trajectory mainly comes from
interactions of surrounding pedestrians. +erefore, it is not
enough to encode a single person’s motion state by TS-
LSTM. To share information across pedestrians in a crowded
scene, FUM is proposed in the spatial domain to treat pe-
destrians as nodes of a graph at each time step. FUM consists
of FU and GAT. FU is the innovation to compute global
interactions of nodes. GAT follows a self-attention mech-
anism to define the importance of neighbors. +e algorithm
flow of FUM is shown in Algorithm 1.
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Feature Updating (FU) from equation (3): h only rep-
resents the features of a single pedestrian, but the interaction
between pedestrians cannot be shared. To achieve global
interaction and increase input range of graph attention
network, FU is defined. For a target pedestrian i, the function
of FU is to update interaction features of node i by
implementing weighted fusion of all node features. +e
weight is to calculate the intimacy between node i and other
nodes. At time t, relevant definitions between node i and
node j are shown in the following equations:

M
t
ij �

d h
t
i , h

t
j􏼐 􏼑

􏽐∀jd h
t
i , h

t
j􏼐 􏼑

, (4)

s h
t
j􏼐 􏼑 � wsh

t
j, (5)

c
t
i � M

t
ijs h

t
j􏼐 􏼑, (6)

z
t
i � wzc

t
i + h

t
i . (7)

d(ht
i , ht

j) is a function to calculate the intimacy for any
two nodes, so it increases the receptive field of the model.
s(ht

j) is a display function to compute the features of node j.
+e final output zt

i is defined by residual connection. ws and
wz are weight parameters to learn. +ere are four definitions
of d(ht

i , ht
j) in equation (8) and ablation experiments in

Section 4.2 to verify their effectiveness. +e detailed cal-
culation of Z is shown in Figure 4,
Z � zt

i |∀i ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏼈 􏼉.

d hi, hj􏼐 􏼑 � e
hi( )

T
hj ,

d hi, hj􏼐 􏼑 � e
θ hi( )

Tϕ hj( 􏼁
,

d hi, hj􏼐 􏼑 � θ hi( 􏼁
Tφ hj􏼐 􏼑,

d hi, hj􏼐 􏼑 � ReLU w
T
d θ hi( 􏼁

Tφ hj􏼐 􏼑􏽨 􏽩􏼐 􏼑.

(8)

Graph Attention Network. In the spatial domain, for a graph
G (P, L), P represents the set of pedestrians,
P � pt

i |i � 1, . . . , N, t � 1, . . . , Tm􏼈 􏼉. N is the number of
pedestrians; a pedestrian is one node in G.
L � ltij|∀ij ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏽮 􏽯 represents the hu-
man-human interaction at time step t. If there is a con-
nection between two pedestrians, ltij equals 1, otherwise 0.
+e adjacency matrix A is constructed according to whether
there are connecting edges among pedestrians, A ∈ RN×N.
Because a fully connected graph is constructed at time t and
all pedestrians are assumed to be connected, therefore if
node j is a neighbor of i, Aij � 1, otherwise 0. In the temporal
domain, there are connecting edges for pedestrians with the
same ID. Given an observed sequence, through spatial-
temporal construction, the relationship of pedestrians
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Figure 3: Flowchart of P-LSTM. It is better to show in color.
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formed a spatiotemporal graph in Figure 5. For a spatial
graph G at time step t, features of pedestrians are aggregated
by graph convolution. Figure 5 also illustrates the process of
graph convolution and the distribution of attention.

Graph convolution network has many convolution
layers. In the process of one-layer graph convolution,
suppose Z(l) ∈ RN×Dl represents the feature matrix of N
pedestrians at the lth layer, and D is the feature dimension.
Output of graph convolution can be written as equation (9),
where 􏽢A � A + I, I is a self-connected matrix, and σ is an
activation function. +e function of trainable weight matrix
W is to transform the dimension, W ∈ RDl×Dl+1 .

Z
(l+1)

� σ 􏽢AZ
(l)

W􏼐 􏼑. (9)

It can be seen from equation (9) that the adjacency
matrix A is only used to define whether there is a connection
between two nodes and cannot explain connection strength.
+erefore, an attention matrix B needs to be defined to show
the connection strength of any two nodes. During observed
period, Z � zt

i ∈ RD|∀i ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏼈 􏼉 is fed
to a graph convolution layer. +e attention coefficient of the
node pair (i, j) can be computed by the following equation:

αt
ij � softmax exp Leaky ReLU a

T
W

t
z

t
iW

t
z

t
j􏽨 􏽩􏼐 􏼑􏼐 􏼑􏼐 􏼑, (10)

where T represents transposition, a ∈ R2D′ is the weight
vector of single-layer perceptron, Wt ∈ RD′×D, ‖ is concat-
enation operation, andNi represents neighbors of node i in
the graph. At time step t, the attention matrix Bt ∈ RN×N is
formed by αt

ij (i, j � 1, . . . , N), B � Bt|t � 1, . . . , Tm􏼈 􏼉.

Output of FUM. For the observed sequence, after graph
attention convolution, the final output of FUM shown in
equation (11) is a softmax operation corresponding to a node
i (i � 1, . . . , N), ⊙ represents the multiplication of elements.
zt

i in Z(l+1) is concatenated by multi-head attention. +e
number of attention heads is 4. FUM can have multiple FU
blocks, as shown in Figure 6, and ablation experiments in
Section 4.2 to determine the number of blocks.

Z
(l+1)

� σ ρi(
􏽢A⊙B)Z

(l)
W􏼐 􏼑. (11)

3.4. TG-LSTM for Temporal Interaction Modeling. After
FUM, pedestrians already have interactive information in
the spatial domain. However, it is still necessary to encode
the historical trajectory of pedestrian in the temporal do-
main. Similar to TS-LSTM, TG-LSTM is proposed. In this
way, the spatial and temporal information can be fused. +e
definition of TG-LSTM is shown in the following equation:

g
t
i � LSTM g

t−1
i , z

t
i , Wg􏼐 􏼑 + z

t
i . (12)

zt
i is the input and comes from equation (11), Wg is a

shared weight of TG-LSTM, and gt
i is the output.

Affected by the surrounding complex environment, pe-
destrian trajectory is uncertain. To simulate pedestrian tra-
jectory in a real environment, in the process of training, noise
u is randomly sampled from the standard normal distribution
N (0,1) for each pedestrian. In complex interaction scenarios,
trajectory prediction depends not only on the target pedes-
trian himself, but also on historical movements of sur-
rounding pedestrians. +en, a single motion state in TS-
LSTM, interactive state in TG-LSTM, and the noise u are
concatenated to complete encoding. +erefore, at time step t,
the observed trajectory is finally encoded as follows:

e
t
i � h

t
i g

t
i

����
����u. (13)

3.5. P-LSTM for Trajectory Prediction. For pedestrian tra-
jectory prediction, the current state of a pedestrian can
reflect his movement intention in the future. To enhance
information dependence at the current moment, residual
connection is also required. +is can not only improve
prediction performance, but also alleviate the problem that
the prediction accuracy decreases when the prediction
length increases. +e structure of P-LSTM shows the tra-
jectory of three pedestrians in Figure 3.

Input: the set of observed trajectories forN pedestrians on the current batch, pt
i � (xt

i , yt
i )|, i � 1, . . . , N, t � 1, . . . , Tm􏼈 􏼉, denoted as X;

Output: global interaction feature for N pedestrians after graph convolution of l layers, denoted as Z(l+1);
(1) Embedded Vectors.+e pedestrian coordinate (xt

i , yt
i ) is embedded into a fixed length vector vt

i , and the set of vt
i for N pedestrians is

denoted as V � vt
i |∀i ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏼈 􏼉;

(2) TS-LSTM. V is used to encode a single pedestrian, and the output is H � ht
i |∀i ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏼈 􏼉;

(3) Feature Updating (FU). H as input, the global interaction feature Z for all nodes is updated by FU,
Z � zt

i |∀i ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏼈 􏼉;
(4) Graph Construction. In the spatial domain, N pedestrians are regarded as nodes, and the connections between pedestrians are

regarded as edges to construct a graph. +e graph structure is represented by adjacency matrix A, 􏽢A is the adjacency matrix with
self-connection;

(5) Attention Calculation. +e attention coefficient αt
ij is calculated by zt

i and zt
j at each time step t, and the set of αt

ij constitutes the
attention matrix B � αt

ij|∀ij ∈ 1, . . . , N{ }, t � 1, . . . , Tm􏽮 􏽯;
(6) Graph Convolution. Features of pedestrians are aggregated by graph convolution, Z(l+1) � σ(ρi(

􏽢A⊙B)Z(l)W), Z(0) � Z, W is a
weight matrix, ρi is softmax operation;

(7) return Z(l+1);

ALGORITHM 1: Framework of FUM to model spatial interaction.
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+e relevant definitions are shown in equations (14)
and (15), where e

Tm

i is the initial state of P-LSTM, which is
derived from equation (13). v

Tm

i is from equation (2), We

is an updatable weight, δe represents multilayer per-
ception operation, and (x

Tm+1
i , y

Tm+1
i ) is the predicted

position.

e
Tm+1
i � LSTM e

Tm

i , v
Tm

i , We􏼐 􏼑 + v
Tm

i , (14)

x
Tm+1
i , y

Tm+1
i􏼐 􏼑 � δe e

Tm+1
i􏼐 􏼑. (15)

3.6. Definition of Loss Function. To make pedestrians re-
spond to changes of environment and improve the accuracy
of trajectory prediction, the diverse loss method proposed by
Gupta et al. [5] simulates the polymorphism of pedestrian
movement. +e definition of loss is shown in equation (16).
During training, different Gaussian noise u is sampled to
produce k results in one prediction. L2 distance is calculated
k times, and the minimum value is taken as the loss. Yi is the
actual trajectory, 􏽢Yi is the predicted trajectory, and k is a
super parameter. In this paper, k� 20.

L � mink Yi − 􏽢Y
k

i

�����

�����2
. (16)

4. Experiments and Results Analysis

In this section, Section 4.1 first introduces the experimental
settings. Next, ablation experiments for FUM and residual
connection are displayed in Section 4.2. +en, our model
EGAT is compared with other models in Section 4.3. Finally,
experimental results of our proposed model are analyzed in
Section 4.4.

4.1. Experiment Settings. +e experiment settings include
datasets, evaluation metrics, and implementation details.

4.1.1. Datasets. +e model is experimented on two pedes-
trian trajectory datasets: ETH [12] and UCY [29]. ETH
includes two scenes: ETH and HOTEL. UCY consists of
three scenes: ZARA1, ZARA2, and UNIV. +e original
dataset of each scene is a video shot from an aerial view,
which involves many complex situations, such as pedestrians

b × n × f

b × nf × 4

b × 4 × nf

b × nf × 4

b × nf × 4
b × 4 × n × f

b × 4 × n × f
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Z Wz

Figure 4: +e structure of FU to calculate Z. H is the initial input from equation (3). b is the sequence length and n is the number of
pedestrians. f is the embedded dimension, which is defined as 32 dimensions. 4 represents the number of attention heads. θ, ϕ, and s are
convolution operations. θ and ϕ calculate the intimacy between nodes, that is, the weight of adjacent nodes. s is a display function, which is
used to calculate the feature of adjacent nodes. + and ⊗ represent addition andmultiplication of matrices, respectively. BN is normalization.
It is better to show in color.
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walking, pedestrians staying talking, and complex envi-
ronment. +ese datasets have 2206 human motion trajec-
tories. All the data has been converted to world coordinates
and the trajectory is sampled every 0.4 seconds. When
training on five scene datasets, following previous studies
[3, 5, 9], the leave-one-out method is adopted. +e model is
trained on four scenes, and the remaining one is tested. +e
observed trajectory is 3.2 seconds (8 time steps), and the
predicted trajectory is 4.8 seconds (12 time steps).

4.1.2. Evaluation Metrics. +ere are two metrics to evaluate
the model’s performance. +ey are the average displacement
error (ADE) and the final displacement error (FDE). Def-
initions are shown in equations (17) and (18). Specifically,
ADE evaluates the average prediction performance, while
FDE only considers the final prediction accuracy. +e
smaller the value of the twometrics, the better the prediction
results. +e two metrics are defined as follows:

ADE �
􏽐i∈N􏽐t∈Tend

􏽢p
t
i − p

t
i

����
����2

N × Tend
, (17)

FDE �
􏽐i∈N 􏽢p

t
i − p

t
i

����
����2

N
, t � Tend. (18)

4.1.3. Implementation Details. +e proposed network EGAT
is implemented in PyTorch 1.2 framework using Python
language, and trained with two NVIDIA GeForce GTX-1080
GPUs. +e setting of learning rate in different datasets is
shown in Table 1. Adam optimizer is used and batch size is
64. TSG-LSTM and P-LSTM have only one layer. +e size of
hidden state and output of TSG-LSTM is 32 dimensions.
Embedded vector vt

i is 32 dimensions. FUM has two layers,
and its input is normalized. +e size of noise u is set to 16
dimensions.

4.1.4. Training Visualization. +e trends of Loss, ADE, and
FDE during training are shown in Figure 7. +e change of
Loss shows that the training process is divided into three
stages: 15% of epochs are used to encode for a single pe-
destrian by TS-LSTM, 15% to 25% of epochs are trained for
FUM and TG-LSTM, and the remaining epochs are decoded
based on the previous encoding to predict trajectory. When
the epoch is less than 25% in the process of training, the
model is encoding and has not predicted the trajectory. In
this case, the displacement error between the predicted
trajectory and the ground truth cannot be calculated. +e
error is calculated by ADE and FDE. +erefore, when the

epoch is less than 25%, ADE and FDE have no curves in
Figure 7.

4.2.Ablation Study. In this section, the ablation experiments
of FUM and residual connection are carried out. For FUM,
the intimacy function and FU blocks are studied. For re-
sidual connection, the experimental performance of TSG-
LSTM and P-LSTM is verified, and the influence of residual
connection on the model is compared on all datasets.

4.2.1. Ablation Study of FUM. To evaluate the effectiveness
of FUM, the ablation experiments are as follows.

(1) Baseline. STGAT-20V-20 is directly applied to pre-
dict pedestrian trajectory without FUM and LSTM
residual connection, and the prediction length is 8.

Table 1: Setting of learning rate.

Dataset
Learning rate

Initialization Epoch proportion ≥25%
ETH 1e − 6 5e − 3
HOTEL 1e − 6 9.5e − 3
UNIV 1e − 5 5e − 3
ZARA1 1e − 5 5e − 3
ZARA2 1e − 5 1e − 2
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Figure 6: FUM is a stack of many FU blocks. Residual connection is added between blocks. It is better to show in color.
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(2) Intimacy Function. Table 2 compares effects of
d(hi, hj) with different structures on the model
performance. Because embed-Gaussian uses softmax
function, it can directly give the fraction between
[0,1], and its experimental effect is the best.

(3) FU Blocks. In each layer of FUM, multiple FU blocks
can be set to calculate extended features.+e ablation
experiments in Table 2 based on embed-Gaussian
function show that the model performs best when
the number of blocks is 4. As blocks increases, the
performance decreases. +is is because the node
information can be transmitted back and forth in a
long distance. After more blocks, the feature infor-
mation becomes smooth.

4.2.2. Temporal Residual. In the output of TSG-LSTM and
P-LSTM, residual connection is designed separately to en-
hance the transmission and combination of feature infor-
mation. Six methods are compared in Table 3.

(1) Baseline. STGAT-20V-20.
(2) FUM (4,embed-Gaussian). Add FUM to STGAT-

20v-20. +e number of FU blocks is 4, and the in-
timacy function is embed-Gaussian. +e following
abbreviation is FUM.

(3) FUM+TS-LSTM. TS-LSTM adds residual con-
nection to LSTM to encode the trajectory of a
single pedestrian in the temporal domain. How-
ever, TS-LSTM ignores pedestrian interaction
information.

(4) FUM+TG-LSTM. TG-LSTM adds residual con-
nection to LSTM to encode the historical trajectory
of a pedestrian loaded with interactive features. Due
to the complex and changeable nature of pedestrian
movement, interactions appear particularly impor-
tant in trajectory prediction. As shown in Table 3,
experimental results of TG-LSTM are better than TS-
LSTM, but the personal information is lost.

(5) FUM+TSG-LSTM. TSG-LSTM is a combination of
TS-LSTM and TG-LSTM. It contains not only
personal information but also interactive informa-
tion, so the experimental performance is further
improved. +e ablation results in Table 3 prove the
significance of TSG-LSTM.

(6) FUM+TSG-LSTM+P-LSTM (EGAT). After adding
FUM and residual connection, as can be seen from
the last row of Table 3, our model EGAT applies
P-LSTM to enhance the current information
transmission of pedestrians in prediction process, so
the experimental performance is the best.

4.2.3. Residual Connection for All Datasets. For all datasets,
Table 4 compares differences between design (EGAT) and
no-design residual connections (UN-EGAT). Experimental
results show that the average value of ADE and FDE can be
reduced by 20% and 17% by adding residual connection.+e
lower the value, the better the network performance.

4.3. Comparison with the State-of-the-Art. +e comparison
between EGAT and other models is based on five scenarios
of ETH and UCY, using evaluation metrics ADE and FDE
with prediction length of 12. +e experimental results show
that the performance of the proposed EGATmodel is better
than most of the methods.

4.3.1. Evaluation Metrics Analysis. +e proposed model is
compared with the state-of-the-art models in Table 5.
STGAT-20V-20 is considered as the baseline model. EGAT
is superior to STGAT-20V-20 in all datasets. +e values of
ADE and FDE in ETH and HOTEL, ADE in ZARA2, and
AVG ADE are the best among the models listed in Table 5.
+e other values are close to the optimal values. +ere are
two reasons why the optimal value is not reached. In UNIV,
pedestrians are dense, and the environment is complex. +e
interaction between pedestrians is affected by many factors,
such as motion speed, motion direction, motion state, and so
on.+ese factors affect the prediction accuracy of the model.
In ZARA1, the trajectory of pedestrians is often affected by
the surrounding pedestrians and obstacles, which may
change or limit human activities, resulting in the model
being unable to capture more social interactions.

4.3.2. Inference Time and Parameters. +e results of all
models are run on two NVIDIA GeForce GTX-1080 GPUs.
As can be seen from Table 6, EGAT is superior to some
models. When calculating inference time (in seconds),
EGAT uses residual connection to concatenate individual
state and interactive state, which makes the inference time
increase. As for parameters, EGAT’s parameters are slightly
higher than STGAT, because the intimacy with all nodes on
a graph needs to be calculated.

Table 2: Ablation study of FUM.

Metrics Baseline
Intimacy function FUM blocks (embed-Gaussian)

Gaussian Embed-Gaussian Dot-product Concatenation 2 4 6 10 16
ADE↓ 0.20 0.22 0.20 0.21 0.22 0.21 0.19 0.20 0.21 0.22
FDE↓ 0.40 0.45 0.40 0.44 0.44 0.41 0.39 0.39 0.41 0.41

Table 3: Ablation study of temporal residual.

Methods ADE↓ FDE↓
Baseline 0.2035 0.4047
FUM (4,embed-Gaussian) 0.1942 0.3933
FUM+TS-LSTM 0.1920 0.3914
FUM+TG-LSTM 0.1896 0.3842
FUM+TSG-LSTM 0.1830 0.3751
FUM+TSG-LSTM + P-LSTM (EGAT) 0.1805 0.3713
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4.4. Analysis of Experimental Results. In this section, the
visualization results of attention and prediction trajectory
are analyzed, the existing problems are described, and the
future research direction of this paper is prospected.

4.4.1. Attention Visualization. It is found that the differ-
ence of attention allocation between EGATand STGAT is
mainly reflected in the last four time steps. +erefore,
Figure 8 compares the changes of attention in four time
steps. +e purple star annotates the difference between
EGATand STGAT. +rough comparison, it can be found
that EGAT can more successfully reflect the importance
of pedestrians, which is closer to a social reality scene. In
(a) and (b), the pedestrian marked by a purple star of
EGAT has the greatest impact on the target pedestrian
trajectory, which is more accurate than STGAT. In (c),
STGAT pays more attention to a stationary pedestrian,
which is contrary to reality. However, EGAT correctly
judges the stationary pedestrian (left purple star), allo-
cates small attention to it, and focuses on the movement
of adjacent pedestrians (right purple star). Visualization

shows that the EGAT can expand receptive field, get
global feature information, and enhance information
transmission.

4.4.2. Predicted Trajectory. +e visual results of trajectory
prediction for EGAT, STGAT, and S-LSTM are shown in
Figure 9. Four scenarios are compared. It can be seen that
the prediction performance of EGAT is the best among the
three models. Group (a) compares the movement of two
pedestrians. According to the coincidence of the ground
truth and the predicted trajectory, EGAT achieves better
prediction whether the two pedestrians are parallel or
cross. In group (b), both EGAT and STGAT can produce
reasonable trajectories to avoid collision. If the trajectory is
carefully observed, EGAT’s predicted trajectory is closer to
the real trajectory. However, S-LSTM performed poorly.
Group (c) introduces the scene of group walking, including
parallel walking and meeting. Although the scene is
complex, EGAT gives more accurate prediction. Group (d)
focuses on the scene of nonlinear walking. In the first three
pictures, from top to bottom, the second trajectory turns.
EGATsuccessfully captures the intention of pedestrian and
accurately realizes turning. STGAT and S-LSTM only re-
alize local interaction between pedestrians, and the pre-
dicted trajectory is still straight, which makes the results
different from the real trajectory. Similarly, in the following
three pictures, two pedestrians next to the car can turn
smoothly in EGAT, while STGAT has a certain realization,
but it is not as accurate as EGAT. +e trajectory generated
by S-LSTM is not satisfactory. In a word, the proposed
model EGAT can not only predict linear motion success-
fully, but also capture nonlinear motion reasonably, and its
performance is better.

Table 4: Ablation study of residual connection for all datasets.

Dataset ETH HOTEL UNIV ZARA1 ZARA2 AVG
Metrics ADE↓ FDE↓ ADE↓ FDE↓ ADE↓ FDE↓ ADE↓ FDE↓ ADE↓ FDE↓ ADE↓ FDE↓
UN-EGAT 0.64 1.19 0.40 0.75 0.33 0.67 0.22 0.44 0.20 0.41 0.36 0.69
EGAT 0.50 0.95 0.26 0.49 0.31 0.65 0.20 0.41 0.18 0.37 0.29 0.57

Table 5: Comparison with the state-of-the-art. Top-1, Top-2, and Top-3 results are shown in red, green, and blue.

Dataset ETH HOTEL UNIV ZARA1 ZARA2 AVG
Metrics ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
Linear∗ [3] 1.33 2.94 0.39 0.72 0.82 1.59 0.62 1.21 0.77 1.48 0.79 1.59
SR-LSTM-2∗ [4] 0.63 1.25 0.37 0.74 0.51 1.10 0.41 0.90 0.32 0.70 0.45 0.94
S-LSTM [3] 1.09 2.35 0.79 1.76 0.67 1.40 0.47 1.00 0.56 1.17 0.72 1.54
S-GAN-P [5] 0.87 1.62 0.67 1.37 0.76 1.52 0.35 0.68 0.42 0.84 0.61 1.21
SoPhie [6] 0.70 1.43 0.76 1.67 0.54 1.24 0.30 0.63 0.38 0.78 0.54 1.15
CGNS [17] 0.62 1.40 0.70 0.93 0.48 1.22 0.32 0.59 0.35 0.71 0.49 0.97
PIF [30] 0.73 1.65 0.30 0.59 0.60 1.27 0.38 0.81 0.31 0.68 0.46 1.00
STSGN [26] 0.75 1.63 0.63 1.01 0.48 1.08 0.30 0.65 0.26 0.57 0.48 0.99
GAT [8] 0.68 1.29 0.68 1.40 0.57 1.29 0.29 0.60 0.37 0.75 0.52 1.07
Social-BiGAT [8] 0.69 1.29 0.49 1.01 0.55 1.32 0.30 0.62 0.36 0.75 0.48 1.00
Social-STGCNN [10] 0.64 1.11 0.49 0.85 0.44 0.79 0.34 0.53 0.30 0.48 0.44 0.75
STGAT-20v-20 [9] 0.65 1.12 0.35 0.66 0.52 1.10 0.34 0.69 0.29 0.60 0.43 0.83
EGAT 0.57 1.03 0.30 0.58 0.50 1.09 0.33 0.65 0.26 0.57 0.39 0.78

Table 6: Inference time and parameters in different models.

Methods Inference time (s) Parameters (K)
S-LSTM [3] 1.4736 264
SR-LSTM [4] 0.1973 64.9
S-GAN-P [5] 0.1210 46.3
PIF [30] 0.1431 360
Social-STGCNN [10] 0.0025 7.6
STGAT [9] 0.0310 44.63
EGAT 0.0492 44.7
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Figure 8: Comparison of attention in EGAT and STGAT. +e line without circle is a target pedestrian, black solid points on the line
represent different time steps, and the arrow indicates the direction of pedestrian movement. +e circled lines are other pedestrians
associated with the target pedestrian. +e larger the circle, the more attention given to the pedestrian in the current time step, and the more
influence on the target pedestrian’s trajectory. It is better to show in color.
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Figure 9: Visualization of predicted trajectory. Red solid line is the observed trajectory, blue solid line is the ground truth, and yellow dotted
line is the predicted trajectory. +e higher the coincidence between yellow dotted line and blue solid line, the better the prediction
performance of the model. It is better to show in color.
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4.4.3. Problems and Research Direction. First, the shallow
structure of GCN: experimental results show that if network
layers of GCN are greater than two, the performance will
decline [31]. +e reason is that if layers stack too deep,
features of each node in the graph will be excessively smooth.
+erefore, the number of graph convolution layers is usually
only two to three, the network structure cannot be deepened
vertically. Second, the extension of attention is not sufficient.
Due to single-feature information in datasets, although the
proposed model improves receptive field, the model still
focuses attention on spatial distance, and fusion of infor-
mation such as walking direction and speed of pedestrians is
not enough. In Figures 10(a) and 10(b), the target pedestrian
generally pays more attention to pedestrians in front, while
pedestrians marked by a red triangle get more attention,
although they are all located behind the target pedestrian.
+is is mainly because the model does not combine direction
information. Moreover, when there is a great number of
pedestrians at the same time, the calculation of node inti-
macy reduces the difference between pedestrians, and it is
easy to have a uniform distribution of attention, as shown in
Figure 10(c). +erefore, the future research focuses on the
deep exploration of graph convolution, fusion application of
information, and improvement of the model generalization
ability.

5. Conclusion

A novel EGAT framework is proposed in this paper, which
can predict pedestrian trajectory in different scenes. EGAT
not only improves the receptive field of the model, but also
improves the prediction performance when the prediction
length increases. During encoding, Graph Attention Net-
work is extended to model human-human interactions in
the spatial domain, and the historical trajectory of pedes-
trians is encoded by TSG-LSTM in the temporal domain.
When decoding, P-LSTM predicts the pedestrian trajectory
based on observed trajectories. EGAT is superior to STGAT

on two public datasets. +e experimental results show that
EGAT can allocate reasonable weights to pedestrians
according to their motion states, and the model can get more
accurate trajectories.
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