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Artifcial intelligence (AI) techniques, such as machine learning (ML), are being developed and applied for the monitoring,
tracking, and fault diagnosis of wind turbines. Current prediction systems are largely limited by their inherent disadvantages for
wind turbines. For example, frequency or vibration analysis simulations at a part scale require a great deal of computational power
and take considerable time, an aspect that can be essential and expensive in the case of a breakdown, especially if it is ofshore. An
integrated digital framework for wind turbine maintenance is proposed in this study. With this framework, predictions can be
made both forward and backward, breaking down barriers between process variables and key attributes. Prediction accuracy in
both directions is enhanced by process knowledge. An analysis of the complicated relationships between process parameters and
process attributes is demonstrated in a case study based on a wind turbine prototype. Due to the harsh environments in which
wind turbines operate, the proposed method should be very useful for supervising and diagnosing faults.

1. Introduction

In the last few years, the increase in energy consumption and
the powerful potential of artifcial intelligence algorithms
have changed the current supervision and fault diagnosis of
the industrial process. In the last 5 years, the wind power
infrastructure has increased wind production by about 80%
around the world [1]. Researchers have developed new
techniques to maintain wind power, combining the tradi-
tional methods of monitoring and supervision with machine
learning (ML) techniques. In the literature [2, 3], there are
several studies combining the methodology of ML for the
maintenance of wind turbines. Several industries are using
predictive maintenance because of its unique processing
characteristics, such as aerospace, oil and gas, nuclear, au-
tomotive, and shipbuilding [3]. It is estimated that the size of
the market for ML in the industrial sector will exceed USD
2000 million in the near future, according to a market survey
[4]. One wind turbine is built with thousands of diferent
components that must be perfectly matched and

synchronized to work and achieve the best possible per-
formance. One of the most critical components that can fail
in a wind turbine are the bearings, blades, and gears. Of-
shore wind farms must detect and diagnose faults early if
they are to be stopped in case of problems, especially those
that have high repair and maintenance costs, especially if
they are ofshore [5]. As well as minimizing downtime and
defect costs, maintenance activities must be managed ef-
ciently. By applying algorithms designed to anticipate and
prevent problems, we developed a prototype that detects,
supervises, and anticipates failures in contrast to existing
systems. Currently, the monitoring and prediction systems
for possible failures in wind turbines focus on vibrations,
shaft speed, noise, and even overheating of some compo-
nents. Using digital and artifcial intelligence technologies,
such as machine learning, to create a fast and accurate
prediction system for wind turbines is an essential research
topic [6]. Digital solutions andmachine learning for rotatory
machines have been the subject of many research endeav-
ours, such as prediction and control of the fast and slow axes
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[7], bearing defect detection [8, 9], or system vibrations
[10, 11].

ML is being applied to wind turbines in several recent
ways. Sun et al. [12] adopted a neural network as the main
method for the yaw angle prediction. To forecast the process
parameters precisely according to the desired blade yaw
angles, the forward neural network model is needed to work
with a backward prediction strategy. Two output process
parameters were obtained using only two input features of
wind speed and air density in the reverse model. Jiménez
et al. [13] designed and developed an ML algorithm for the
real-time maintenance and prediction of a possible blade
failure, comparing diferent supervised MLmethods such as,
for example, decision trees, discriminant analysis, support
vector machines (SVM), or nearest neighbours (KNN).
Compared to the traditional optimisation approach (ML),
bidirectional predictions were considered much more ef-
cient in their research. It is possible to dramatically reduce
maintenance costs by adopting this cutting-edge technology.

Tis paper presents a knowledge-based ML modelling
framework that enables two directions of prediction. In the
forward direction, the basic process parameters pertinent to
a specifc process, such as temperature and axis speed, are
applied as the initial model inputs, while knowledge-based
process factors are added as the advanced model inputs.
Using training data obtained from previous experiments,
knowledge-based ML is then applied to predict process
attributes. Te process parameters are derived from the
knowledge-based features after the process factors are
predicted based on the requirements of the process attri-
butes. For understanding, analysing, designing, and opti-
mizing wind turbine maintenance processes, forward and
backward predictions are important. An evaluation of the
suggested approach is also presented in this paper through a
case study. Tis paper is structured as follows: in Section 2,
the knowledge-based ML modelling framework is intro-
duced. Section 3 displays the prototype and the variables that
are monitored via forward and backward modelling. Te
results, performance, and predictions of the algorithm are
shown in Section 4. Section 5 concludes the research,
highlighting the main conclusion.

2. Methodology

ML models and process factors are combined to propose a
bidirectional modelling approach that predicts the attributes
of the process in this section, such as imbalance and good
stage bearings, and predicts basic process parameters, such
as the temperature and speed of the wind turbine axis.
Figure 1 illustrates the framework. Tis framework defnes
ML models as being both the input and output of basic
process parameters and key process attributes. To enhance
the performance and efciency of ML models, knowledge-
based factors are introduced.

2.1. Process Parameters. As the most important input for
monitoring a wind turbine process, the basic process pa-
rameters always need to be defned carefully to achieve the

required part performance. Depending on the wind turbine
scale and location, various parameters are defned and used.
For instance, temperature and rotor speed are two of the
main process parameters for a wind turbine. Tere are also
some other basic process parameters, like wind speed, wind
direction, and blade radius. When their efects are revealed,
these parameters can also be called basic process parameters.
In this document, these basic process parameters are rep-
resented as Ab (n is the number of process parameters).

Ab � A1, A2, A3, . . . , An􏼂 􏼃. (1)

2.2.ProcessFactorsBasedonKnowledge. Research has shown
that the process attributes are generally determined by
diferent basic process parameters that are fed directly into
the modelling process, as described in the introduction.
Diferent combinations of basic process parameters can,
however, produce the same process attributes. For bidi-
rectional modelling, the basic process parameters need to
have a unique relationship. To link the process attributes
directly, knowledge-based process factors were utilized in
this study. Te process factors can be determined according
to the basic parameters of the process as well as their physical
mechanisms. As a result, the data-driven model will be less
redundant when the ML model is applied.

As a result of applying the process factors, the funda-
mental relationship can be embedded in the model, allowing
for more efcient data analysis and a more generic solution
for diferent types of wind turbines. As an example, several
factors can be used, such as air or density temperature, to
determine the imbalance or good stage variables. Based on
the prior knowledge and basic parameters, new features can
be generated, which are donated as Ak.

Ak � Tk Ab( 􏼁 (2)

where Tk(∗) represents the transfer function based on the
physical mechanism for the axis turn.

2.3. Process Attributes. Many of the attributes of a process
are determined by digital modelling or simulation, but some
can be measured directly from the real-time monitoring of
the process, which can be represented as Xat. Tis type of
digital model is typically computationally demanding and
requires experimental data as input. As a result, we can
express the process attribute as follows:

Xat � Td Dex( 􏼁, (3)

where Td(∗) represents the function of the digital model, and
Dex is the data collected from experiments.

2.4. Bidirectional Prediction with Machine Learning. A
neural network is the main machine learning (ML) tech-
nology used in this research, while other algorithms are
compared in the case study. Data properties and problems
can dictate the type of ANN [14] to be used. Typically,
recurrent neural networks (RNNs) are used for processing
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real-time monitoring data, whereas convolutional neural
networks (CNNs) are used for processing image data.
During this research, the model is both input and output by
using parameters, factors, and attributes. Using a forward
model, we can say,

Xat � TML Tk Ab( 􏼁( 􏼁 � Td Dex( 􏼁, (4)

where TML(∗) is the ML algorithm. According to the
backward model,

Ab � T
−1
k TML Xat( 􏼁( 􏼁. (5)

3. Case Study

An evaluation of the proposed modelling framework is
demonstrated in this section. Several previous experiments
and simulations on a wind turbine prototype have generated
a fault variable dataset that can be used to read the process
attributes (imbalance or good stage). During the experi-
ments, the design of the experimental method was used to
minimise the number of samples required.Te implemented
method was according to [15]. A wide range of process
parameters was adopted, such as air temperature (10–25°C),
wind speed (5–20 km/s), and air density (1.225 km/m3).

3.1. Temperature Model. Te temperature sensors are used
to detect overheating in the components and determine
which faults they correspond to, based on the studies carried
out on the rest of the components. In this study, the tem-
perature above the shaft bearing is monitored. Te selected
temperature sensors are positive temperature coefcient
sensors, that is, PTC-type sensors, specifcally the PT-100.
For the temperature sensors, two NI 9217 modules [16] have
been used. Te NI 9217 RTD Analog Input Module has 4
channels and 24-bit resolution for 100Ω RTD measure-
ments. Te NI 9217 can be confgured for two diferent
sampling modes. Both the NI 9201 and NI 9217 boards
mount on the NI cDAQ-9172module [17], which is an 8-slot
compact DAQ chassis that can support up to eight I/O
modules. It operates from 11 to 30 VDC and includes an AC/
DC power adapter.

3.2. Speed Model. Te measurement of the speed is im-
portant to know the relative movement of the slow and fast
axes and thus check the correct operation of the system, as
well as possible failures, by comparing this signal with others
of the acquired ones. Likewise, the data will be used to check
the status of the machine in case it is stopped. For the speed

measurements, two inductive proximity sensors were se-
lected, specifcally the IG5594 [18], which were installed on
each of the axes, one for the slow axis and one for the fast
axis, as you can see in Figure 2. By their nature, inductive
speed sensors work with pulsed signals, delivering a high
level when the sensor detects metal. Both sensors connect to
the NI 9201 module on top of the NI cDAQ-9172.

3.3. Modelling Bi-Directionally with Machine Learning.
We propose a bidirectional model, which consists of forward
and backward prediction models. An ML model for forward
and backward prediction embeds process knowledge using
two process factors. Mainly, ANNs were used for ML
modelling. It was possible to make three predictions using
two diferent neural networks using both forward and
backward modelling approaches.

3.3.1. Forward Modelling. In Figure 3, we see how the
forward model is structured. A basic process parameter,
such as wind speed and temperature, is the frst input, and a
good stage or imbalance variable is the target. A neural
network structure optimized for each neural network was
designed separately.

3.3.2. Backward Modelling. As shown in Figure 4, the target
parameters of the backward model are the basic process
parameters, while the imbalance or good stage variables are
the input variables. In the frst step, neural networks are used

Knowledge-based process factors

Speed Temperature
Process parameters Machine Learning

Attributes

Imbalance Good stage</>

Figure 1: Bi-directional modelling framework based on knowledge.

Figure 2: Positioning of the speed sensors on the prototype.
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to predict the process factors. Using the relationship between
the process parameters and the process, the basic parameter
values are calculated.

4. Results

We evaluated the proposed modelling approach using a
model correlation coefcient (MCC). Additionally, two
other ML algorithms, namely, decision trees and random
forests, were compared with the results obtained from the
proposed approach based on ANN. All results from ANN
and other ML algorithms, as well as those without knowl-
edge-based process factors, are compared to the results from
ANN and other ML algorithms without process factors. A
good stage and imbalance were predicted by forward
modelling, as described in Section 3.3.1. Figure 5 shows the
predictions for good stages. Direct prediction and process
factors produced the highest MCC, 0.98, according to the
proposed approach. Without incorporating process factors,
random forest modelling made the least accurate predic-
tions. Te MCC of all ML algorithms was also improved by
about 5% when process factors were used as enhanced
inputs.

According to Figure 6, the prediction results of imbal-
ance using ANN, random forest, and decision tree show
similar trends in comparison with the prediction results of
the good stage. Direct prediction with and without process
factors obtained the highest MCC, in this case, 0.92 MCC. A
decision tree algorithm was used to calculate this value.
Using both the random forest algorithm and direct

prediction, the random forest algorithm provided the lowest
MCC (0.802). Most ML models do not show a signifcant
improvement in prediction efciency when knowledge-
based process factors are considered.

Temperature and speed are the primary targets of the
backward model. Te prediction results for temperature are
shown in Figure 7. With an MCC of 0.93, ANN is more

Speed Temperature

Process parameters

Attributes

Imbalance

Good stage

Deep Learning models

Figure 3: Modelling variables using forward process knowledge-based machine learning.

Speed Temperature

Process parameters
Attributes

Imbalance

Deep Learning models

Good stage

Figure 4: Modelling variables using backward process knowledge-based machine learning.
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Figure 5: Modelling performance for good stage prediction.
Forward model.
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accurate than other ML technologies. Based and direct
predictions are very similar to the ANN methodology. Our
lowest MCC (8.85) was obtained using the process knowl-
edge-based prediction algorithm.

Figure 8 shows the prediction results of speed. Te ANN
is also the most accurate in direct prediction, with an MCC
of 0.92, similar to the previous variable. For other ML
technologies in direct prediction, using the decision tree
algorithm, we obtained a 0.89 MCC, while using a random
forest, we scored the lowest MCC (0.86). If we compare the
results with the based predictions, the results are very
similar; just in this case, the lowest MCC (0.837) is obtained
by the decision tree.

When the process of factor-based prediction and direct
prediction in both models (forward and backward) using the
ANN algorithm were compared, this the methodology
produced the best results. Te ANN-based modelling has
improved and shown better results than the other ML
technologies by around 7%. In conclusion, ANNs supported
by process factors are more efective than other ML algo-
rithms when compared with other algorithms. Te ANN is
less sensitive to diferent targets and is better at adapting to
new input features.

5. Conclusions

Supervisory and fault diagnosis of wind turbines can be
accomplished through a data-driven approach. In this ap-
proach, physical and empirical relationships and process
knowledge were integrated for bidirectional modelling.
Based on a review of the state of the art, the proposed
approach combines physics-based and data-driven models.
As a result of both approaches proposed, a very good result
has been achieved. As a result of understanding the fun-
damental relationship embedded in the physical mecha-
nisms, the inputs and outputs of the proposed modelling are
obtained. In this study, ANNs showed better results thanML
algorithms. When basic process parameters are used as
direct outputs for inverse analysis, the nonuniqueness issue
generally arises, which is overcome by the knowledge-based,
data-driven method. Due to its efectiveness, the method-
ology can be applied to other mechanical components of
wind turbine prototypes, thus preventing the breakdown of
other mechanical components.Tis prototype can be used to
study, develop, and validate fault diagnosis and supervision
techniques, with the possibility of replacing defective or
worn parts with alternative components. High-performance
wind turbines are equipped with prototype wind turbines
that are used to test diagnostic algorithms. It also enables the
algorithms to be verifed, adjusted, and corrected, thus
saving time and money.
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Figure 7: Modelling performance for good stage prediction.
Backward model.
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Figure 8: Modelling performance for imbalance prediction.
Backward model.
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Figure 6: Modelling performance for imbalance prediction. For-
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