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Breast cancer is the primary health issue that women may face at some point in their lifetime. �is may lead to death in severe
cases. A mammography procedure is used for �nding suspicious masses in the breast. Teleradiology is employed for online
treatment and diagnostics processes due to the unavailability and shortage of trained radiologists in backward and remote areas.
�e availability of online radiologists is uncertain due to inadequate network coverage in rural areas. In such circumstances, the
Computer-Aided Diagnosis (CAD) framework is useful for identifying breast abnormalities without expert radiologists. �is
research presents a decision-making system based on IoMT (Internet of Medical �ings) to identify breast anomalies. �e
proposed technique encompasses the region growing algorithm to segment tumor that extracts suspicious part. �en, texture and
shape-based features are employed to characterize breast lesions. �e extracted features include �rst and second-order statistics,
center-symmetric local binary pattern (CS-LBP), a histogram of oriented gradients (HOG), and shape-based techniques used to
obtain various features from the mammograms. Finally, a fusion of machine learning algorithms including K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA are employed to classify breast cancer using
composite feature vectors. �e experimental results exhibit the proposed framework’s e�cacy that separates the cancerous lesions
from the benign ones using 10-fold cross-validations. �e accuracy, sensitivity, and speci�city attained are 96.3%, 94.1%, and
98.2%, respectively, through shape-based features from the MIAS database. Finally, this research contributes a model with the
ability for earlier and improved accuracy of breast tumor detection.

1. Introduction

�e cells in the body that tend to change their natural form
properties cause cancer. Breast cancer is a widespread
syndrome in females around the globe. According to ACS
(American Cancer Society), around 42,170 females expired
due to breast malignancy in the USA in 2020 [1]. �is report
reveals breast cancer’s second major cause of demise among
females. �e chances of breast cancer and death rates usually

tend to increase with age. But it is also observed that the
survival rate is much higher if cancer is found only in the
breast part of the body. �us, an early �nding of breast
malignancy is signi�cant for survival. Usually, mammog-
raphy is considered a highly reliable and low-cost procedure
for early breast cancer diagnosis [2]. Modern screening
procedure of mammography used in Canada and Europe
reveals that approximately 40% chance of death due to breast
cancer is reduced among females that are exposed [3]. To
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lessen the workload of radiologists, CAD system was
brought into action. It is utilized as a “second opinion” for
radiologists to investigate anomalies from mammogram
images through computational methods [4]. Various studies
have suggested that a cloud-based CAD system benefits
patients in remote and rural areas, especially in breast cancer
[5]. (e development of smart technologies created our
everyday life more comfortable than earlier. (e innovation
of the IoMTdevices and the cloud services provided another
direction for the system’s effectiveness. (e E-health care
systems allow specialists to examine the patient data re-
motely with minimum cost [6, 7]. (ere are several other
reasons for implementing E-health care systems to find
breast malignancy, such as lack of specialist radiologists.

Pakistan is an underdeveloped country and most of the
population resides in rural areas, where no proper ar-
rangement of health services is made. Similarly, lack of
education is another reason females are unaware of their
health conditions. (us, it is essential to cover the disparity
between urban and rural areas. For this reason, teleradiology
has been employed to assist rural communities and over-
come the distance barriers as far as medical services [8]. In
rural and remote areas, connectivity issues frequently occur
and limit the advantages of mobile mammography devices.
In such environments, a CAD system is a sound that could
be deployed with the mammography device to detect breast
anomalies with or without human interference.

2. Background

Several researchers have proposed breast tumor detection
using different techniques based on texture and shape fea-
tures [9, 10]. (e idea of the E-healthcare system is also
emerging with time. (e following section provides detailed
literature about breast tumor classifications, detection, and
the E-healthcare system.

2.1. Breast Tumor Detection and Classifications. An assort-
ment of CAD systems is discussed in the literature. Most of
the systems vary in terms of extracting features from the
imageries. A concise review of preprocessing, segmentation
methods, and texture-based feature extraction procedures of
CAD are highlighted in this portion. In the preprocessing
stage, the artifacts in the mammogram images, including
noise and pectoral muscles, are eliminated. (e presence of
such factors can stimulate the extraction of imprecise fea-
tures that may cause misclassification [4]. (e cropping
strategy has been found proficient in numerous studies to
expel unwanted parts and acquire the region of interest
(ROI). (e ROI is chosen by taking the expected circle’s
radius encompassing the tumor part.

Segmentation is the most crucial phase of a CAD system
and essential features are retained through efficient seg-
mentation. (e approaches used for segmentation can
generally be partitioned into two groups: edge-based and
region-based techniques. Edge-based techniques look for
discontinuity in an image region and region-based splits an
image into regions in the fashion that all resultant regions

become similar where each contains at least one common
property or feature (such as surface, reflectivity, shading,
color, and so forth) [11, 12]. Usually, the region growing
[13], FCM [14], and K-means [15] algorithms are used for
breast tumor localization.

(e feature extraction step is accepted as another sig-
nificant part of CAD systems. A variety of frameworks is
assembled for this procedure. Grey-Level Co-occurrence
Matrix (GLCM) is a well-known scheme applied for feature
extraction. Several studies proposed the GLCM technique to
define texture-based features in the mammogram CAD
system [16]. LBP is another unique texture extraction
mechanism that separates benign masses from malignant
ones. However, the recognition speed of LBP is slowed down
due to long histograms and alsomissed actual intensity levels
during computation at some point. (us, advancements in
LBP like LBP Variance (LBPV) and Completed LBP (CLBP)
descriptors are applied to solve the problems of LBP [17].

Lahoura et al. [2] proposed a cloud computing-based
model for remote breast cancer detection and used ELM
(variants of ANN) to diagnose breast cancer on the Wis-
consin Diagnostic Breast Cancer (WBCD) dataset. (e ac-
curacy, recall, precision, and F1-score were claimed at
98.68%, 91.30%, 90.54%, and 81.29%. Shao et al. [18] used
S-WAVE data to classify breast cancer in 40 patients. Bi-
spectral and Wigner spectrum features were extracted and
classified using fusion of Random Forest and Support Vector
Machine. Different feature sets have been experimented and
the highest accuracy of 95% is reported. Sadad et al. [19]
automatically identified breast density (BD) from mam-
mogram images utilizing IoMT environments. Two deep
convolutional neural network models, DenseNet201 and
ResNet50, were implemented using a transfer learning
strategy. (e Mammogram Image Analysis Society collec-
tion had a total of 322 mammogram images, including 106
fatty, 112 dense, and 104 glandular instances. (e Dens-
Net201 model achieved a classification accuracy of 90.47%
for BD detection. Hamed et al. [20] performed breast cancer
recognition using You Only Look Once (YOLO) and Ret-
inaNet models and attained 91% accuracy. However, no
benchmark datasets were experimented. Li et al. [21] inte-
grated the highly interconnected UNet (DenseNet) with
Attention Gates (AG). (e model was trained using the
cross-entropy loss function and claimed 82.24%, 77.89%,
and 78.38% of F1-score, sensitivity, and accuracy. Saba et al.
[22] produced a cloud-based decision support system for the
identification and categorization of malignant cells in breast
cancer by extracting shape-based information from a breast
cytology images. To identify breast cancer, naive Bayesian
and artificial neural networks are used and 98% accuracy is
reported. However, they did not use benchmark datasets and
medium-size local dataset experimented.

Finally, a summary of related work on breast cancer
diagnosis is presented in Table 1.

2.2. Mobile Devices for E-Healthcare. Cloud computing is
necessary for E-healthcare systems because computational
power, storage space, and network bandwidth are often
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needed in most image processing methodologies [24, 25].
Literature reveals that there are numerous cloud-based
systems available for E-healthcare. (e purpose of such
models is to use precious resources efficiently. Currently, the
idea of IoMT is employed mainly for remote patient
monitoring. (erefore, efficient machine learning models
are still highly demanded practical image analyses and
cancer diagnosis remotely [26].

(e main contributions of the proposed model are
summarized below.

(i) IoMT-based decision support architecture for re-
motely identifying breast tumors and the quality of
healthcare facilities is proposed.

(ii) A region-growing algorithm for mammography
tumor segmentation is implemented.

(iii) Explored novel textural analysis techniques to
precisely describe segmented tumours, i.e., First and
Second-Order Statistics features, CS-LBP, HOG,
and Shape-based features extraction methods are
applied to segmented masses to obtain the powerful
features.

(iv) Exhibited high classification performance using
sensitivity, specificity, accuracy, and MCC and
achieved higher classification accuracy.

(e rest of the study is structured as such: Section 3
exhibits proposed design of IoMT mammography unit.
Section 4 explores the proposed CAD system. Results and
discussions are presented in Section 5 and finally, research is
concluded in Section 6.

3. Proposed Method for IoMT
Mammography Unit

A cloud-based approach for mobile devices is an emerging
technique for the E-health care system [27]. (e proposed
research model is presented in Figure 1. In the proposed
method, the operation of CAD system for the classification
and detection of the tumor can be performed locally. (en,
the decision of the CAD system and the mammography
images are uploaded to the cloud. (e radiologists can re-
trieve the images and diagnostic results (obtained through
CAD system) from anywhere and anytime by using their
credentials to verify whether the case is benign or malignant.
Integration of CAD system with mobile mammography unit
provides an initial diagnosis of breast abnormality if present.
(is finding will provide an early intimation to the patient

because there is always a delay in obtaining investigation
reports due to a lack of expert radiologists in remote areas
[28]. Tele-radiology through IoMTmammography machine
can be used in areas with a deficiency of medical experts.
(us, implementing a CAD system with a mobile mam-
mography system will facilitate computer radiographers to
judge the tumor status and further inform the radiologist/
physician through the cloud system about abnormality.

4. Proposed Method for IoMT
Mammography Images

In this section, the proposed system CAD for breast ma-
lignancy has been explained. (e proposed system com-
prises preprocessing, segmentation features extraction, and
classification of masses as depicted in Figure 2.

4.1. Dataset. (e Mammographic Image Analysis Society
(MIAS) dataset has experimented in this research and made
accessible online [29]. (is database encompasses 322
mammogram images of 161 patients and provides com-
prehensive information about the position, severity, and
abnormalities. (e purpose of employing this database is to
comprise mammogram imageries with a high noise level,
making the task of lesion classification very tough [30].

4.2. Preprocessing. It is crucial and is exercised before any
procedure to achieve the appropriate accuracy [31]. (e
mammographic images encompass different sorts of noise
and also include pectoral muscles. So, the concentration is to
expel undesirable areas such as pectoral muscles, labels, etc.
(ese undesirable components can enforce the extraction of
inaccurate features, leading to misclassification. A cropping
technique is utilized to dispense the undesirable segments
and get regions of interest (ROIs). (is procedure begins
from the center of the tumor part and takes the approxi-
mated radius around the tumor region [9, 13]. (e mam-
mogram images are cropped according to theMIAS dataset’s
parameters to attain ROI.

4.3. Segmentation. Image segmentation is a core part of
tumor detection in medical imaging analysis [32]. During
mammogram image segmentation, the parts of the tumor
are separated from the background tissues to detect masses,
micro-calcifications, and speculated lesions. An assortment
of techniques is available for segmentation. Still, none of
those can produce consistent performance. Not every

Table 1: Summary of related work on breast cancer diagnosis.

Ref. Dataset Classifiers Accuracy (%)
[2] WBCD ANN 98.68
[18] S-WAVE Random forest and support vector machine. 95
[19] MIAS CNN models 90.47
[20] — YOLO and RetinaNet models 91
[21] MIAS UNet (DenseNet) with attention gates (AG) 78.38
[22] — Naive bayesian and artificial neural networks 98
[23] OASBUD Decision tree, KNN, 97
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method is universally accepted for all images because every
imaging technology and procedure have specific limitations
[33]. (e region growing method is used for tumor seg-
mentation in the proposed technique.

(is technique groups pixels into regions built on a pre-
defined growing principle. (e growing starts with a seed
point or a set of seed points and the region is iteratively

grown by adding nearby elements to the seed point having
similar properties. (is procedure continues until no further
adjacent pixels satisfying the growing condition are left [34].

(e following steps are performed for region-growing
segmentation:

(i) Input image�ROI;

Image Acquisition

Classification

DT LDA SVM KNN Ensemble

MalignantBenign

Pre-processing

Region-Growing

Feature Extraction

1. 1* and 2nd Order
2. HOG
3. CS-LBP
4. Shaped based

Figure 2: Proposed CAD system.

Input Image
CAD Server

Screen

System’s
recommendation

Doctor’s
recommendation

Patient’s data for
cloud

Cloud
System

Segmentation
Features Extraction Model Training Benign

Malignant

Operation in CAD Server

Figure 1: Proposed research framework.
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(ii) Select the seed point;
(iii) Ensure the adjacent elements and append them to

the area similar to the seed point;
(iv) Reiterate step (iii) for more newly elements;
(v) Discontinue if no further points can be added;

4.4. Feature Extraction. It presents a means to transform an
image array into informative dimensions for the consequent
phase. Texture features are the standard extraction methods
of a CAD system. In this CAD system, different sorts of
feature extraction are First and Second-order Statistics
features, CS-LBP, HOG, and Shape-based features.

4.4.1. First and Second-Order Statistics Features.
Statistical approaches consider the spatial distribution of
gray levels by calculating local characteristics at every object
element. Statistical methods may be further categorized into
first-order, second-order, and higher-order statistics rep-
resenting one pixel, two pixels, and three or more pixels to
describe the local features [35]. (e first-order statistics
estimate the pixel characteristics (e.g., mean and variance);
ignoring the spatial relationship. While second-order sta-
tistics evaluate the relationship among two values of pixel
happening at particular positions.(e higher-order statistics
(considering the relationships among three or more pixels)
are theoretically possible but not implemented practically
due to interpretation and complexity in calculation time.

First-order statistics-based approach: (e image’s pixel
values, such as mean, were considered first-order texture
features.(e histogram-based approach is founded on the gray
level distribution on all or part of an image [35].(e first-order
histogram estimate P(vi) is calculated as depicted in (1) [36].

P vi( 􏼁 �
N vi( 􏼁

S
, (1)

N(vi)is the number of pixels used to represent gray levels in
the object, S is the size of the image, i � 0, 1, 2, 3, . . . . . . ., L −

1 and L are distinct gray levels of the histogram. (e feature
extraction from the histogram is used in this work, including
Energy, Mean, Variance, Entropy, Skewness, and Kurtosis.

Mean:(e mean provides the average gray level of each
region, as shown in equation (2).

Mean � 􏽘 L−1
i�0 viP vi( 􏼁. (2)

Variance: Several grey-level variations from the mean
are presented in equation (3).

Variance � 􏽘 L−1
i�0 vi − m( 􏼁

2
P vi( 􏼁. (3)

Skewness is an amount of the gray levels’ asymmetry
around the mean as shown in equation (4).

Skewness � 􏽘 L−1
i�0 vi − m( 􏼁

3
P vi( 􏼁. (4)

Kurtosis: It describes the histogram sharpness as il-
lustrated in equation (5).

Kurtosis � 􏽘 L−1
i�0 vi − m( 􏼁

4
P vi( 􏼁. (5)

Energy: Energy describes the homogeneity of the tex-
ture. So, the energy will be high when its value is
uniform and vice versa, as shown in equation (6).

Energy � 􏽘 L−1
i�0 viP vi( 􏼁

2
. (6)

Entropy: It describes the uncertainty of gray value
distribution. So, the entropy will be high when gray
values are randomly distributed in the image, as pre-
sented in equation (7).

Entropy � − 􏽘

L−1

i�0
vilog2 P vi( 􏼁. (7)

Second-order statistics-based approach:(e features can
be obtained from the co-occurrence that assesses the image’s
properties associated with second-order statistics. (e re-
lationships among pixels are considered in pair [37]. Usu-
ally, the co-occurrence matrix is processed based on two
parameters: relative distance among the pixel pair and their
relative orientation. (e orientation θ is approximated in
four different directions, which are θ � [0°, 45°, 90°, 135°]
horizontal, diagonal, vertical and anti-diagonal respectively.
For every feature, four values were calculated according to
the four directions of θ. (e average of these four values is
estimated to obtain 7 features of GLCM, including Corre-
lation, Inertia, Inverse Difference, Angular second Moment,
Absolute Value, Maximum Probability, and Entropy.

4.4.2. Histogram of Oriented Gradient (HOG). HOG is a
robust descriptor that denotes gradient orientation, i.e., the
angle and magnitude of an image [38]. In HOG, the local
object’s characteristics (shape and appearance) are described
via the distribution of edge directions or intensity gradients.
(e operation to obtain shape and appearance can be ac-
complished by splitting the object into cells and computing a
histogram of each cell’s edge orientations or gradient di-
rections. (e combination of these histograms obtains the
descriptor. It is suitable for better shadowing and outcome to
contrast-normalize the local responses before employing
them. Such achievement is achieved by calculating the in-
tensity through a larger region (“blocks”), then utilizing this
value to normalize all cells in the block. (e normalized
descriptor blocks are known as HOG descriptors.

(1) Algorithm Implementation: (e HOG is computed in the
following three steps.

Step 1 (Gradient Computation): (e first phase cal-
culates the gradient values. (is is done in two stages.
(e first stage of gradient computation calculates a
centered mask to smoothen the intensity data or color
of the image. (e most well-known technique to
achieve this goal is to apply a 1-D derivative mask
[−1, 0, +1] and [−1, 0, +1]T in one or both of the vertical
and horizontal directions. (e second stage of gradient
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computation is to compute the gradient magnitude
(u, v)and gradient angle θ(u, v)utilizing u- and v-di-
rectional gradients ∇u(u, v)and ∇v(u, v) for every pixel
in a cell.

m(u, v) �

������������������

∇u(u, v)
2

+ ∇v(u, v)
2

􏽱

,

θ � arctan
∇v(u, v)

∇u(u, v)
.

(8)

Step 2 (Orientation Binning): (e orientation binning
process makes the cell histograms. Every pixel in the
cell emits a weighted vote for a direction binning on the
first step’s values (i.e. Gradient Computation). For
example, the cells could be radial or rectangular, and
orientation bins are distributed equally over 0 to 180°
(“unsigned” gradient) or 0 to 360° (“signed” gradient).
Higher magnitude values are considered part of edge
directions while lighter magnitude values are disposed
of. A 9-bin histogram relating to every pixel orientation
is formed using weighted magnitude for each cell.
Step 3 (Descriptor Blocks): Features are extracted from
every cell and cells are linked to each other to build a
block descriptor. Finally, a final descriptor of a block is
created after concatenating the histograms of cells.

4.4.3. Center-Symmetric Local Binary Pattern (CS-LBP).
(e CS-LBP is an improved form of the LBP and Scale-
Invariant Feature Transform (SIFT) descriptor to get the
appropriate features (based on texture and gradient). In CS-
LBP, the extractions of features are like that of the LBP
operator and the creation of the descriptor is the same as in
SIFT. (is approach comprises several properties: robust-
ness, computational simplicity, and tolerance to illumina-
tion changes [39]. Heikkilä et al. [40] express that a long
histogram is created in the LBP, making it hard to employ it
for an image descriptor. A review for comparing the
neighborhood pixels with the center one is needed to resolve
this dilemma. As a substitute, the CS-LBP approach com-
pares symmetric center pairs of pixels as shown in Figure 3.
As it can be seen that for 8 adjacent points, LBP creates 256
distinctive binary values while CS-LBP delivers just 16
different binary patterns. To create the descriptor, the ROI
image is split into cells with a location grid and a histogram
of CS-LBP is then constructed for each cell. (e feature
extraction process of CS-LBP for every image pixel is
achieved using equation (9).

CS LBPR,D,T(X, Y) � 􏽘

(D/2)−1

i�0
M di − di+(D/2)􏼐 􏼑2i

, (9)

M(di − di+(D/2))2i �
1, if x≥T

0, if x<T
􏼨 Where, di and di+(D/2) are

the values of the center-symmetric pair. D is the number of
adjacent elements (size of 8 is used), R is the radius (R � 2)

of uniformly spared pixels on a circle and T is the threshold
value (0.1). (e reason for using a small threshold value is
that it obtains robustness on flat image regions.

4.4.4. Shape-Based Features/Geometric Analysis. (emasses
are categorized according to their shapes, sizes, distortions,
and margins (borders) and are compared based on BI-RADS
(Breast Imaging Reporting and Data System) [41]. To il-
lustrate whether a tumor is benign or malignant. (e shapes
are usually oval, round, irregular lobular, or architecturally
distorted in appearance. Tumors having round and oval
shapes are usually benign. (e tumors having irregular
shapes exhibit the likelihood of malignancy. (e margins of
masses are micro-lobulated circumscribed, ill-defined,
speculated, and obscured [42]. Shape features can explain
certain characteristics of the geometry of a specific feature.
Various regional descriptors are used to show the attributes
of segmented masses [23]. (ese are area, eccentricity, so-
lidity, perimeter, major axis length, convex area, and minor
axis length [43].

Area: (e Area of a region is the number of pixels in the
object.
Convex Area: (e convex hull or convex envelope area
encloses the object depicted in Figure 4.
Perimeter: It is the number of pixels in the shape’s
boundary. If v1, v2, v3,. . . . .., vN is an edge, its perimeter
is formulated in equation (10).

Perimeter � 􏽘 N−1
i�1 di � 􏽘

N−1
i�1 vi − vi+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (10)

Major Axis length: (e major axis is the (x, y) end-
points of the lengthiest line that can be sketched across
the shape. (e major axis length of a shape is the pixel
distance between the major axis endpoints portrayed in
Figure 5 and is calculated by the formula as shown in
equation (11).

Major axis length �

�������������������

x2 − x1( 􏼁
2

+ y2 − y1( 􏼁
2

􏽱

. (11)

Minor Axis length: (e minor axis is the (x, y) end-
points of the lengthiest line that can be sketched
through the shape while remaining perpendicular to
the major axis.
Eccentricity: (e minor axis length is the ratio of the
major axis length of a shape. (e outcome measures
object eccentricity, which ranges between 0 and 1.
Eccentricity is also called ellipticity.

Eccentricity �
axislengthshort
axislengthlong

. (12)

Solidity: It calculates the density of an object. Solidity
can be achieved as the ratio of an object’s area to the
convex hull area of the shape.

Solidity �
area

convex area
. (13)

4.5. Classification. In this stage, a supervised classification
technique is employed to differentiate the objects of concern
based on features into an exceptional or normal class. (e
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architecture of the classification process for training and
testing is presented in Figure 6. Based on First and Second-
Order Statistics Features, HOG, CS-LBP, and shape-based,
the entity is categorized into two classes: benign (0) and
malignant (1). (e features are assessed to perform a clas-
sification by applying Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), Ensemble, Decision Tree
(DT), and K-Nearest Neighbor (KNN) classifier to distin-
guish the cancerous lesions from the benign ones.(eK-fold
method is chosen for cross-validation to avoid overfitting
the classification in the suggested approach. We used 10-fold
cross-validation for classifiers evaluation [44].

4.5.1. Classification Algorithms. A classifier is an algorithm
that has to be trained using labels to distinguish new un-
labeled data among a fixed set of classes. (erefore, selecting

a classifier is a significant step for the breast tumor detection
system.

(1) K-Nearest Neighbor (KNN): It is a nonparametric tech-
nique that considers all available observations and separates
new observations based on their resemblance.(e neighbors
are chosen from a set of observations for which the exact
class is identified. Next, the unknown observation is allo-
cated to the utmost common class among its KNN through
distance function. Finally, the Euclidean distance is calcu-
lated between the known and unknown cases using equation
(14) [45].

d �

�����������

􏽘
K

j�1
uj − vj􏼐 􏼑

2

􏽶
􏽴

, (14)

where u and v are instances and K is a constant value defined
by the user. In KNN, a sample is classified by a majority vote
to attain a suitable class for a given k-values. KNN is easy to
implement but vulnerable to irrelevant or redundant fea-
tures.

(2) Support Vector Machine (SVM): It is a kernel-based
supervised learning technique employed for regression and
classification. SVM provides fast learning capability on large
feature sets [46]. (e differentiation is performed on a
hyper-plane (line) design that splits the true and false

(a) (b) (c)

Figure 4: Region of interest. (a) Area. (b) Perimeter. (c) Convex hull.
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Figure 3: LBP and CS-LBP features comparison.

Figure 5: Minor axis and major axis.
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training cases with a maximum margin to minimize the
error in the multidimensional space. (e training cases that
define the line are support vectors [47]. (e line can be
computed as presented in equation (15).

W.r + v � 0, (15)

where r indicates the input vector,v is the model’s bias, W is
termed the weight vector and expressed asW1, W2, . . . , Wn.

(3) Decision Tree:Decision trees classify the instances
through a top-down approach by organizing them based on
feature values. Each node signifies a case to be categorized and
each branch designates a feature of that instance.

(4) Linear Discriminant Analysis (LDA): LDA is a classifi-
cation technique developed by R. A. Fisher [48]. LDA finds
the linear arrangement of the features that distinguish two or
more categories of the data more accurately. In LDA, scatter
matrices are used to find the efficacy of the classification:
between-class and within-class. In addition, it determines the
discriminant dimension in which the variance proportion of
within-class and between-class is maximized [49].

(5) Ensemble Classifier: It employs multiple learning methods
to improve performance than any single method.

4.5.2. Performance Measure of Classification. (e proposed
architecture is assessed through 109 ROIs images of the
MIAS database using statistical parameters: accuracy,
Matthews’s correlation coefficient (MCC), sensitivity, and
specificity to measure the performance of classification
results.

Accuracy is the amount of true negative (TN) and true
positive (TP) values among the total number of samples [50],
as stated in equation (16).

Accuracy �
TP + TN

(TP + TN + FP + FN)
. (16)

Sensitivity is the proportion of positive samples correctly
detected by the classifier, as shown by equation (17).

Sensitivity �
TP

(TP + FN)
. (17)

Specificity is the number of negative cases accurately
identified by the classifier and formulated in equation (18).

Specificity �
TN

(TN + FP)
. (18)

MCC is an amount of the brilliance of two class orders
and is demonstrated in equation (19).

MCC �
TP x TN − FP x FN

��������������������������������������
((TP + FN)(TP + FP)(TN + FN)(TN + FP))

􏽰 .

(19)
Kappa statistic (κ) is the measurement of information

applied to compute the understanding among ground truth
and classification results [51]. (e state of κ is presented in
equation (20).

κ �
g0 − ge( 􏼁

1 − ge
, (20)

Where g0is the experiential understanding between the
ground truth and classification results, and ge is the ap-
proximate likelihood of agreement, employing the relative
information to determine each class’s likelihood.

Testing Sample

Machine Learning
Classifier

Training Sample Label

Reak Data Predicted Data

VS=

Figure 6: General framework of the classification process.
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5. Results and Discussion

For experimental purposes, the above-mentioned statistical
measures are used to accomplish the goodness of the pro-
posed architecture. In addition, these features have been
used to classify mammography images. SVM, KNN, Deci-
sion Tree, LDA, and ensemble classifiers have been utilized
for classification.

5.1. PerformanceMeasure of First and Second-Order Statistics
Features. (e performance results are displayed in Table 2.
(ese values indicate that first and second-order statistics
features can isolate two instances with remarkable accuracy
(�94.5%) through the SVM classifier. Furthermore, a better
rate of sensitivity (�94.1%) and specificity (�94.8%) ascer-
tain that intensity histogram features can accurately isolate
malignant and normal cases.

5.2. Performance Measure of HOG Features. (e perfor-
mance results of several classifiers for HOG features are
exhibited in Table 3.(ese values indicate that HOG features
yield an accuracy of 95.4% for mammographic images using
the Ensemble classifier. Furthermore, HOG features achieve
excellent sensitivity values (�96%) and specificity (�94.8%),
demonstrating that HOG features can equally identify
normal and malignant cases.

5.3. Performance Measure of CS-LBP Feature Sets. In this
portion, an illustration of the assessment of CS-LBP features
has been used. (e performance is evaluated using SVM,
KNN, decision tree, LDA, and ensemble classifier. Table 4
presents classification accuracy for CS-LBP features.

5.4. Performance Measure of Shape Features. (e classifica-
tion performance of shape features using KNN, SVM, De-
cision Tree, LDA, and Ensemble classifier is displayed in
Table 4. (ese values specify that shape-based features ob-
tained an accuracy of 96.3%. Such accuracy is marginally
higher than that of First and Second-Order Statistics
(�94.5%), HOG (�95.4%), and CS-LBP (�94.5%) as shown
in Figure 7. Furthermore, shape-based features achieve
excellent sensitivity values (�94.1%) and specificity
(�98.2%), revealing that they can accurately distinguish
between malignant and normal cases. Further, higher MCC
values (�92.68%) demonstrate that they have high decency
for classifying mammography images as delineated in
Table 5.

5.5. Statistical Examination of Features against Classifiers.
(is part assesses the classification results’ effectiveness and
ground truth of the related features by Kappa statistics [51].
(e classification performance for proposed features has

Table 2: Performance-based on first and second-order statistics.

Classifiers Accuracy % Sensitivity % Specificity % MCC %
Decision tree 88.1 86.27 89.66 76.03
LDA 53.2 37.25 67.24 4.71
SVM 94.5 94.12 94.83 88.95
KNN 93.6 90.20 96.55 87.19
Ensemble 92.7 90.20 96.55 87.18

Table 3: Performance-based on HOG features.

Classifiers Accuracy % Sensitivity % Specificity % MCC %
Decision tree 93.6 96.08 91.38 87.28
LDA 72.5 70.59 74.14 44.73
SVM 94.5 88.24 100 89.42
KNN 94.5 92.16 96.55 88.98
Ensemble 95.4 96.08 94.83 90.81

Table 4: Performance-based on CS-LBP features.

Classifiers Accuracy % Sensitivity % Specificity % MCC %
Decision tree 88.1 86.27 89.66 76.03
LDA 53.2 37.25 67.24 4.71
SVM 94.5 94.12 94.83 88.95
KNN 93.6 90.20 96.55 87.19
Ensemble 92.7 90.20 96.55 87.18

Chart of Accuracy

Shape-based

CS-LBP HOG

First and second order

96.30 94.50

94.50 95.40

Figure 7: Comparison of classifiers performance.

Table 5: Performance-based on shape features.

Classifiers Accuracy % Sensitivity % Specificity % MCC %
Decision tree 92.7 84.31 100 86.08
LDA 60.6 56.86 63.79 20.68
SVM 94.5 88.24 100 89.42
KNN 95.4 94.12 96.55 90.79
Ensemble 96.3 94.12 98.28 92.68
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been demonstrated in Table 6. (ese feature sets display
amazing performance achieved via kappa statistics
employing SVM, KNN, and ensemble classifier. Further-
more, the Kappa statistic of shape-based features through
the ensemble classifier is 0.92, demonstrating nearly a perfect
agreement with the ground truth.

In the proposed CAD system for the mobile unit, all the
steps are performed in a sequence without manual inter-
vention. Various existing methods for tumor detection and
their performance results are provided in Table 7. Some
common results of the suggested strategy are also compared
with existing ones.

6. Conclusions and Future Work

In this research, the IoMT mammography CAD system’s
architecture for identifying breast abnormalities has been
presented. (e proposed model used the concept of IoMT
with the help of cloud computing. (e processing of the
CAD system is completed locally, and the decision of the
CAD system and the mammography images are uploaded to
the cloud for further assessment by the radiologist. De-
ployment of such a system in remote areas will facilitate the
patient to start her treatment immediately. (e proposed
CAD system employs the region-growing algorithm to
segment mammograms. After tumor segmentation first and
second-order statistics, HOG, CS-LBP, and shape-based
features are extracted. (ese features are fused into a feature
vector to classify masses as benign or cancerous using dif-
ferent algorithms, including Decision Tree, SVM, KNN,
LDA, and ensemble classifier. A noteworthy accuracy of
96.3% is obtained with geometrical analysis onmammogram
images of the MIAS dataset. (e result portrays that shape-
based features improve classification accuracy, sensitivity,
and specificity through ensemble classifiers. (e proposed
strategy has also been compared with previous mammogram
tumor detection methods. Higher classification accuracy is
observed as a result of this study. (e main limitation of this
research work is the use of conventional machine learning
methods. Future research may focus on using deep learning,
which is recently used in diagnostics and predictions.
Moreover, classifying mammogram images into more than

two classes corresponding to BI- RADS level is also a good
research direction.
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