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Human click behavior prediction is crucial for recommendation scenarios such as online commodity or advertisement rec-
ommendation, as it is helpful to improve the quality and user satisfaction of services. In recommender systems, the concept of
click-through rate (CTR) is used to estimate the probability that a user will click on a recommended candidate. Many methods
have been proposed to predict CTR and achieved good results. However, they usually optimize the parameters through a global
objective function such as minimizing logloss or root mean square error (RMSE) for all training samples. Obviously, they intend
to capture global knowledge of user click behavior but ignore local information. In this work, we propose a novel approach of
retrieval-based factorization machines (RFM) for CTR prediction, which can efectively predict CTR by combining global
knowledge which is learned from the FM method with the neighbor-based local information. We also leverage the clustering
technique to partition the large training set into multiple small regions for efcient retrieval of neighbors. We evaluate our RFM
model on three public datasets. Te experimental results show that RFM performs better than other models in metrics of RMSE,
area under ROC (AUC), and accuracy. Moreover, it is efcient because of the small number of model parameters.

1. Introduction

Human click behavior prediction is important for recom-
mendation scenarios in many online commercial services. In
those scenarios, recommended items such as online com-
modities, advertisements, and videos are often displayed to
end users for clicking. Service providers expect more clicks
from end users on the recommended items because that
means more revenue from advertisers, and it is helpful to
improve user satisfaction [1]. Terefore, it is crucial to ac-
curately predict the click-through rate (CTR) for these
recommendation scenarios [1, 2], as CTR can indicate the
probability that a user will click on a recommended
candidate.

CTR prediction relies on the analysis of historical click
behavior data. Te click behavior data include mostly dis-
crete and categorical features, such as user gender, user id,
commodity category, commodity id, and other location or
demographic information. Tus, it can be highly sparse and
has complicated feature interactions. Generalized linear
models are applied to predict CTR including logistic re-
gression [3] and support vector machines [4], which have
difculties to capture high-order feature interactions. Ten,
factorization machines (FM) [5] were proposed to model
order-2 feature interactions by the inner product of latent
vectors between diferent features and achieve very prom-
ising performance. Based on FM, feld-aware factorization
machines (FFM) [6] divide features with diferent felds and
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extend FM with additional feld-aware feature interactions.
In addition, high-order factorization machines (HOFM) [7]
were presented to model high-order (more than 2) feature
interactions but are limited by high training complexity.

Recently, deep learning has made massive strides in
many research areas obtaining state of art performance in
computer vision [8], natural language processing [9], and
many other domains [10–12]. In order to learn sophisticated
feature interactions, deep neural networks were recently
proposed to predict CTR [13–17]. Based on the feature
embedding, frstly, the features are represented by one-hot
vectors and embedded in low-dimensional dense vector.
Wide&Deep [13] feeds these feature embeddings to a
combination of linear model and DNN to achieve both low-
order and high-order feature interactions. DeepCross [14]
uses a multilayered residual network to prevent gradient
explosion and vanishing problems when the depth of the
network increases. DeepFM [15] combines FM and DNN
through sharing feature embedding vectors. NFM [16]
obtains second-order feature interaction vectors by FM and
feeds them into fully connected layers. AFM [17] applies an
attention mechanism to second-order interaction vectors,
which model the importance of diferent interactions. Tese
deep learning methods can represent low-order and high-
order feature interactions well and thus obtain good per-
formance for CTR prediction.

However, these methods above [5, 13–17], including FM
and FM-based neural models, usually train the models and
optimize the parameters through a global objective function,
such as minimizing logloss or mean square error for all
training samples. Obviously, they intend to capture global
knowledge of user click behavior but ignore local infor-
mation such as the most similar samples. Te local infor-
mation has been considered in collaborative fltering based
on the memory network [18, 19]. But these methods only
utilize user-item interaction information. In the CTR pre-
diction task, there are some content and contextual infor-
mation that they miss such as user demographics, time, and
locations. Also, the training set is usually very large, and the
local information from the training set changes for diferent
testing samples; thus, efciency is critical for retrieving such
local information.

In this work, we propose a novel approach of retrieval-
based factorization machines (namely RFM) for CTR pre-
diction, which enhances FM by retrieving similar samples
from the training set as the neighbor-based local informa-
tion. Specifcally, frstly, we train a standard FM model by
the feature embedding and the second-order feature in-
teraction embedding. Based on the sample representation of
the second-order feature interaction embedding, we can
retrieve similar samples from the training set for one given
testing sample. In order to improve the efciency of re-
trieving similar samples from the large training set, we
preprocess to partition the training set into multiple small
regions by the clustering algorithm K-means. During the
testing phase, we get the most similar region by computing
the similarity between the testing sample and the center
vectors of all regions. Ten, we retrieve the most similar
samples as neighbors from the region and fnally enhance

the FM model by fusing the neighbor-based local infor-
mation and the original FM output via the weighted sum.
We conduct extensive experiments on three public datasets
to evaluate our RFMmethod.Te experimental results show
that RFM outperforms FM and existing studies such as
HOFM [7] and deep learning models including DeepCross
[14], Wide&Deep [13], and DeepFM [15]. In addition, RFM
has the same number of trainable parameters with FM,
which is much smaller than those of other studies.Terefore,
RFM is an efcient and efective approach for CTR pre-
diction. Compared with the black box of deep neural models,
RFM is also more explicable due to its simple and easily
understood architecture.

In summary, this paper makes the following
contributions:

(i) We propose a novel approach of retrieval-based
factorization machines (RFM) for CTR prediction,
which can enhance FM by the neighbor-based local
information

(ii) We use the clustering technique to partition the
large training set into multiple small regions for
efcient retrieval of similar samples

(iii) We conduct extensive experiments to evaluate RFM
on three public datasets, and the experimental re-
sults show that RFM performs better than existing
models and is efcient due to the smallest number of
model parameters

Te remainder of this paper is organized as follows.
Firstly, we discuss related works in Section 2. Section 3

describes the embedding methods for FM. Afterwards, we
describe the details of our approach in Section 4. Section 5
describes datasets, evaluation procedures, and evaluation
results. Finally, we conclude our work in Section 6.

2. Related Work

CTR prediction is an important task of the recommendation
domain [1, 2]. In this section, we discuss the related work
about traditional machine learning methods, deep learning
models, and memory-based models in the recommender
systems.

For CTR prediction, some traditional machine learning
methods have been proposed in the early stage, such as
support vector machine [4], Bayesian model [20], tensor-
based model [21], linear regression [22], and decision tree
[3]. After that, factorizationmachine [5] (FM) is proposed. It
projects each feature into a latent vector and captures the
second-order feature interaction information. Field-aware
factorization [6] (FFM) and high-order factorization ma-
chine [7] (HOFM) are the enhanced factorization machine.
FFM adopts feld to FM, and HOFM models high-order
(more than (2)) feature interactions. For the general rec-
ommendation scene, collaborative fltering [23] (CF) is a
traditional and fundamental method. Matrix factorization
[24] (MF) which projects each user and item into a common
low-dimensional space capturing latent relations is a famous
method based on CF.
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With the wide use of deep learning in various felds,
many deep learning models have been proposed for CTR
prediction [25–29]. Teir bottom-level structure is an em-
bedding layer mapping categorical variables to lower-di-
mension dense vectors. DeepFM [15] combines FM and
DNN through sharing embedding parameters to represent
low-order and high-order feature interactions. AFM [17]
and NFM [16] are based on second-order feature interaction
vectors. NFM feeds these vectors into fully connected layers,
and AFM applies an attention mechanism to these vectors to
model the importance of diferent interactions. HoAFM [30]
encodes high-order feature interactions into feature repre-
sentations in an explicit manner. Besides, the convolutional
click prediction model [25] uses a convolution neural net-
work to process a matrix consisting of embedding vectors,
and deep&cross network [26] combines cross network and
deep network. Its cross network causes the degree of cross
features to grow with layer depth. Product-based neural
network [27, 28] introduces a product layer to capture in-
teraction information. Recurrent neural network for se-
quential click prediction [29], deep interest network [31],
and deep interest evolution network [32] take advantage of
users’ history click behaviors sequence to predict CTR.
Convolution neural network for CTR prediction in display
advertisement [33] combines convolution neural network
processing raw images in display and general deep network.
Several deep learning methods are proposed in recom-
mendation tasks. Tey are used for recommending video
[34], music [35], and movies [36] improving collaborative
fltering via deep learning. Generalized matrix factorization
[37] and neural network matrix factorization [38] improve
MF via deep learning.

Compared with the traditional machine learning
methods and deep learning models above for CTR pre-
diction, we consider the neighbor-based local information to
enhance the FM method.

In the feld of collaborative fltering, there are also some
studies [18, 19, 39] that introduce neighbor-based local
information [40] to improve their methods based on the
memory network [9, 41], including collaborative memory
network [18], multirelational memory network [19], and
collaborative session-based recommendation machine
[39]. Teir main idea is fusing a memory component and
neural attention mechanism as the neighborhood com-
ponent. Also, knowledge enhances the sequential recom-
mendation [42] through integrating RNN-based networks
with key-value memory network [43]. However, they
usually only consider specifc feature interactions such as
the user and item feature interaction, and our RFMmethod
considers the content and contextual information and
leverages the region partition to further improve the ef-
ciency and performance.

Our earlier work entitled “Retrieval-based Factorization
Machines for CTR Prediction” in WISE 2021 presents the
main idea of RFM. In this extended paper, we demonstrate
more details on the design of RFM, including dropout, batch
normalization, and the selection strategy on top-k neigh-
bors. Besides, we analyze our RFM model by comparing
RFM with existing FM-based neural models and

collaborative fltering methods based on the memory net-
work in the aspects of complexity and the cold-start problem
analysis. Moreover, we evaluate the impact of more
hyperparameters including the embedding size, the number
of similar samples, and the similarity threshold via con-
ducting extensive experiments. Finally, we present a more
detailed analysis of related work.

3. Background

In this section, we provide the background of FM and FM-
based neural models, including the feature embedding and
second-order feature interaction embedding.

3.1. Feature Embedding. For the task of CTR prediction, the
features of historical click behavior data typically have
categorical felds (e.g., gender, commodity categories) and
continuous felds after discretization (e.g., cost, age). Tese
felds are usually converted to a set of binary features via
one-hot encoding, making the original feature vectors highly
sparse.

One common practice is encoding the sparse feature
vectors to low-dimensional dense vectors by feature em-
bedding. Given one sample x with n felds and the i-th feld
vector xi(1≤ i≤ n) via one-hot encoding. We map each feld
vector xi to an embedding vector vi ∈ Rd by

vi � We
⊤

xi, i ∈ [1, n], (1)

where We is the latent factor matrix that can be learned in
one end-to-end manner, and d is the embedding size. Ten,
we denote the output of the feature embedding as follows:

V(x) � v1, v2, . . . , vn􏼂 􏼃. (2)

Te feature embedding technique has been adopted in
Wide&Deep [13], DeepFM [15], and DeepCross [14] to
reduce the data sparsity. Such embeddings are treated as the
input of their models.

3.2. Second-Order Feature Interaction Embedding. Besides
the (frst-order) feature embedding described above, the
second-order feature interaction embedding is also widely
used in FM-based neural models including NFM [16] and
AFM [17].Tese methods feed feature embedding V(x) into
the biinteraction layer [16] and obtain the second-order
feature interaction embedding as follows:

S(x) � 􏽘
n

i�1
􏽘

n

j�i+1
xi]i ⊙ xj]j, (3)

where ⊙ denotes the element-wise product of two vectors,
that is, (vi ⊙ vj)k � vikvjk.

Compared with the feature embedding, the second-order
feature interaction embedding can capture more knowledge
of user click behaviors and has been proven to be more
efective in CTR prediction [16, 17]. Tus, we adopt the
second-order feature interaction embedding in this work.
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4. Retrieval-Based Factorization Machines

In this section, we describe the approach of retrieval-based
factorization machines (RFM) for CTR prediction, which
can enhance FM with retrieved neighbor-based local in-
formation. As shown in Figure 1, frstly, we train a standard
FM to obtain the global knowledge of user click behaviors
(Section 3.2) and obtain the second-order feature interaction
embeddings; secondly, we partition the training set to dif-
ferent regions by a clustering algorithm based on the second-
order feature interaction embeddings (Section 4.2). Such
regions can be used to efciently retrieve similar samples
from testing samples and get the neighbor-based local in-
formation (Section 4.3). Finally, we enhance FM for pre-
dicting CTR by fusing the global and local information
(Section 4.4).

4.1. Factorization Machines. Similar to existing FM-based
neural models [15–17] for CTR prediction, frstly, we train
the feature embedding layer and the second-order feature
interaction embedding layer. Instead of feeding the em-
beddings to upper neural models, we use them to build a
standard FM model, as described in Section 3. Given the
sample x as input, the predicted CTR is

􏽢yg(x) � b + 􏽘
n

i�1
wixi + 􏽘

d

i�1
S(x)i, (4)

where wi represents the weights of feld vectors, and b is the
bias. Te frst and second terms are the linear part, which
refects the importance of frst-order features.Te third term

represents the impact of the second-order feature interac-
tions. Similar to FM [5], the third term can be reformulated
by

􏽘
d

i�1
S(x)i �

1
2

· 􏽘
d

f�1
􏽘

n

i�1
vifxi

⎛⎝ ⎞⎠

2

− 􏽘
n

i�1
v
2
ifx

2
i

⎛⎝ ⎞⎠, (5)

which not only reduces the computation complexity to
O(n d) but also can be translated to matrix operation, which
can be accelerated by GPU.

Based on (4), existing works [15–17] usually train FM
and optimize model parameters through a global objective
function such as minimizing the global mean square error.
Tus, obviously, FM intends to capture the global knowledge
of user click behaviors in the training set but ignores the local
information such as the most similar samples in the training
set.

4.2. RegionPartition. In order to obtain the local information
of one given sample in the testing set, we try to retrieve the
similar samples from the training set as its neighbors based on
the second-order feature interaction embedding (section 3.2).
However, the training set is often very large.Tus, it will incur
much overhead to directly compute the similarities among the
training set. To solve this problem, as preprocessing, we adopt
K-means [44], a classical clustering algorithm, to partition the
training set into multiple regions. Ten, we leverage these
regions to accelerate the retrieval of similar samples. Te
clustering algorithm runs only once, and its result can be used
for all testing samples.
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Specifcally, given all samples X in the training set and
the i-th sample Xi, we get the representation of sample Xi

based on the second-order feature interaction embedding by

embi � BN S Xi( 􏼁( 􏼁, (6)

where we adopt batch normalization (BN) [45] to normalize
the embedding S(Xi) and keep the distribution of embi

consistent. Similar to (5), we reformulate S(Xi) to improve
the efciency as follows:

S Xi( 􏼁 �
1
2

· 􏽘
n

j�1
vjXij

⎛⎝ ⎞⎠

2

− 􏽘
n

j�1
v
2
jX

2
ij

⎛⎝ ⎞⎠. (7)

Based on the representation embi, we adopt the popular
clustering algorithm K-means [44] to partition all the
samples in the training set to multiple regions. In the
K-means algorithm, we compute the Euclidean distance
between sample representations and obtain k regions as
follows:

C � c1, c2, . . . , ck􏼈 􏼉, U � u1, u2, . . . , uk􏼈 􏼉

s.t.  c1 ∩ c2 ∩ . . . ∩ ck � ∅, c1 ∪ c2 ∪ . . . ∪ ck � X,
(8)

where C is the set of the sample regions, and U is the set of
center vectors for diferent regions. Each sample in the
region ci is a tuple described as (x, y), where x is the embi

vector representation, and y is the corresponding label. All
the regions are disjoint, and their union is the whole training
set. k is the number of regions and can be manually tuned.

After clustering, we partition all samples in the training
set to k regions, and the center vectors ui can represent the
characteristics of all samples in one same region.We fnd the
most similar region based on the center vectors and then
retrieve the similar samples from the region. In this way, we
reduce the computation complexity of retrieving similar
samples among the whole training set.

Intuitively, our retrieved similar samples may not be the
most similar ones from the whole training set and probably
decrease the performance since we adopt the center vectors
to represent all the samples of same regions. However, the
clustering technique reveals the intrinsic nature and regu-
larity [46, 47] in the training set, and the most similar
samples retrieved from the same region may contain more
efective and generalizable information than those from the
whole training set. Tat is, why partitioning into more than
one region may lead to better performance than not par-
titioning, which is observed in our experiments (section
5.7.1). Terefore, such partitioning not only increases the
retrieval efciency but also improves the performance.

4.3.Neighbor-BasedLocal Information. Based on the disjoint
regions of the training set, we introduce an efcient ap-
proach to retrieve similar samples as the neighbors for one
given testing sample. Instead of computing the most similar
samples directly from the large training set, we get the most
similar sample region by calculating the similarity between
the center vectors of regions and the representation of the
testing sample. Ten, we retrieve the most similar samples as

neighbors from the region. Finally, we choose top-t(t≥ 1)

neighbors with the most similarities to capture more local
information and adopt the similarity threshold to flter out
possible noisy neighbors.

Specifcally, we frst measure the similarity between
sample Xi and Xj based on their representations by

sim embi, embj􏼐 􏼑 �
1

1 + disted embi, embj􏼐 􏼑

disted embi, embj􏼐 􏼑 � embi − embj

�����

�����2
,

(9)

where disted(embi, embj) represents the function comput-
ing Euclidean distance between embi and embj. Te smaller
the distance between two samples is, the higher the similarity
between them is. Ten, we can get the most similar sample
region as follows:

g � argmaxj∈[1,k] sim uj, emb0􏼐 􏼑, (10)

where emb0 is the representation of the given sample, and g

is the index of the most similar sample region in the region
set C.

We fnally show how to retrieve top-t neighbors with the
similarity threshold r from the region cg in Algorithm 1.

As shown in Algorithm 1, the threshold r is used to flter
out possible noisy neighbors (line 2).Te output N is a list of
tuples (sim, y) containing the similarity and labels of
neighbors. Te function selectTop in line 8 selects top-t
similar samples from neighbors, and it will be discussed in
section 4.5.4. Obviously, the more similar the neighbors are,
the more sufcient the information provided by neighbors
will be. Te high similarity threshold will flter out some
useful neighbor-based information. On the contrary, the low
similarity threshold will introduce noise that makes side
efect on prediction. Additionally, the number of selected
neighbors t also infuences the performance. Te impact of
the similarity threshold r and the neighbor number t will be
discussed in Section 5.

Compared with the global knowledge from all the
training sets, the retrieved neighbors are only a small subset.
But they usually represent the common knowledge of these
similar click behaviors, which can be treated as the local
information of the given testing sample.

4.4. Enhancing FM with Local Information. To improve the
FM model, we fuse the retrieved neighbor-based local in-
formation N and the global information 􏽢yg(x) provided in
section 4.1.

Specifcally, we add the weighted sum of neighbor in-
formation to the original FM output and normalize the
result as follows:

􏽢y(x) �
􏽢yg(x) + β􏽐

t
i�1 yi · simi

1 + β􏽐
t
i�1 simi

, (11)

where t is the number of retrieved neighbors, and yi and simi

are the labels and similarities of neighbors, respectively. For
balancing the global and the local efect, we add a factor β to
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control the efect of the local information, which can be
manually tuned. Since the range of similarities between the
given sample and other samples in the training set is between
0 and 1, thus we can also change β from 0 to 1. If the
neighbor similarities are relatively small, we can turn up β.
On the contrary, we turn down β to consider less local
information.

4.5. Training and Testing. Since the joint training for all the
samples in the training set and their corresponding
neighbors are very expensive, we only train a standard FM
model and fuse neighbor-based local information and the
original FM output during testing. In the training phase, we
use one global objective function to update trainable pa-
rameters for standard FM. Ten, we can obtain the second-
order feature interaction embeddings for representing
samples and region partition. Finally, during the testing
phase, we retrieve the neighbors and enhance FM by fusing
the original FM output and the neighbor-based local
information.

4.5.1. Objective Function. FM can be applied to various
prediction tasks, including regression, classifcation, and
ranking. In our task of CTR prediction, we adopt the widely
used objective function square loss:

Lreg � 􏽘
x∈X

􏽢yg(x) − y(x)􏼐 􏼑
2
, (12)

where X represents the set of instances for training, and
y(x) represents the target of instance x.

4.5.2. Dropout. We use embi to represent any sample Xi,
and its dimension is d. If we assign a large value to d, it may
lead to overftting. In order to alleviate this problem, we
introduce the technique of dropout [48] for training.
Dropout is a regularization technique to avoid overftting. Its
idea is to drop neurons randomly during training. Only part
of the model parameters which contribute to the prediction
of 􏽢yg(x) will be updated in each iteration. In the testing
phase, dropout is disabled, and all parameters are used for
estimating 􏽢yg(x).

4.5.3. Batch Normalization. As described in Section 4.2, we
normalize the second-order feature interactions embedding
vectors through batch normalization [45] to keep the dis-
tribution of embi consistent. BN normalizes inputs to a zero-
mean unit-variance Gaussian distribution. Formally, given
an input vector Xi ∈ Rd and all input vectors to the layer of
the mini-batch be B � Xi􏼈 􏼉, the BN normalizes Xi as follows:

BN Xi( 􏼁 � c⊙
Xi − μB

σB

􏼠 􏼡 + β, (13)

where μB, σ2B denote the mini-batch mean and variance
separately, and c and β are trainable parameters to scale and
shift normalized value to restore the representation power of

the model. BN is applied in both the training and testing
phases in our RFM model.

4.5.4. Selection of Top-t Neighbors. In the testing phase, we
fuse neighbor-based local information and the original FM
output online. Te bottleneck is how to efciently select top-
t neighbors from the most similar sample region. We briefy
discuss three alternative methods. Te frst is sorting
neighbors by similarity in the descending order and selecting
the frst t neighbors. Te second is quick selection by
adopting the idea of divide and conquer; that is, we swap
samples by comparing pivots in subinterval recursively until
the length of the subinterval is equal to t. Te elements in the
subinterval are the results. Te third is using the priority
queue implemented by the heap. We can build a priority
queue with t size, push neighbors to the queue, and the
queue will pop neighbors with small similarity dynamically.
When going through all neighbors, the neighbors in the
priority queue are the results. In this work, we adopt the
quick sort algorithm to select the top-t neighbors for good
efciency.

4.6. Comparison with Existing Models. We compare our
RFM model with existing FM-based neural models and
collaborative fltering methods based on the memory net-
work in the aspects of complexity and the cold-start problem
[49].

4.6.1. Complexity Analysis. Te scale of trainable parameters
of our RFM model is much smaller than neural models,
including NFM [16], DeepFM [15], Wide&Deep [13]. Te
parameters’ number of the embedding layers is n × d, and
the linear weights parameters in global output are n. Te bias
in global output and two parameters in batch normalization
are constant; thus, we omit them. In the testing phase, we
need to store neighbors retrieved from similar samples,
which take t × d storage units. Tus, the space complexity of
our model is O((n + t)d + n). Te deep learning models
mentioned above have not only embedding layers but also
plenty of fully connected layers. Tus, the number of
trainable parameters in these models increases exponentially
with the number of layers.

In computation complexity, we reduce the complexity of
computing global output 􏽢yg(x) to O(n d). In the testing
phase, we compute the similarity between a given sample
and samples from the most similar region in O(dN), where
N is the number of samples in the region. After that, we
select the top-t neighbors in O(N logN). Te computation
complexity of our model is O((n + N)d + N logN). In the
deep learning method, the complexity of computation also
increases exponentially with the number of layers.

4.6.2. Cold-Start. It is difcult to conduct personalized
recommendations without enough historical data of users
(i.e., the cold-start problem [49]), which is common in
recommender systems and has been studied for a long time
[50–52].
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Existing memory-based models including collaborative
memory network [18] and multirelational memory network
[19] also leverage the idea of fusing global information and
local information, but both models only use the user and
item interaction information. When a new user comes, they
cannot map it to an efective vector due to the lack of
historical click data for the user. By contrast, our RFMmodel
takes full advantage of user demographics, which can be
easily obtained such as the registry information and the
contextual information like the time and location. Tus, it
can capture efective feature interaction information and
neighbor-based local information for CTR prediction. In
this way, our RFMmodel can adapt to the cold-start scenario
better.

5. Evaluation

In this section, we conduct extensive experiments to evaluate
our RFM approach on three public datasets. We frst show
the superior performance of RFM and analyze the efec-
tiveness of neighbor-based local information. We also in-
vestigate the impact of hyperparameters, in particular, the
number of regions in partitioning (Section 4.2) and
neighbor-based local information (Section 4.3).

5.1. Data Set Description. We evaluate RFM on three public
datasets: Frappe [53], MovieLens (https://grouplens.org/
datasets/movielens/latest/), and Criteo (https://labs.criteo.
com/2014/02/download-kaggle-display-advertising-
challenge-dataset/), which are widely used in CTR
prediction.

(i) Frappe Dataset: Tis dataset is often used in the
context-aware recommendation. It contains 96,203
app usage logs of users under diferent contexts. It
contains eight context variables except for user ID
and app ID, which are all categorical, including
weather, city, and daytime. We convert each log
(user ID, app ID, and context variables) to a feature
vector via one-hot encoding.

(ii) MovieLens Dataset: Tis dataset has been used for
personalized tag recommendation. It contains
668,953 tag applications of users on movies. We also
convert each tag application (user ID, movie ID, and
tag) to a feature vector.

(iii) Criteo Dataset: Tis dataset includes 45 million
users’ click records and has 13 continuous features
and 26 categorical features. It has been widely used
for the display advertising challenges. We discretize
the continuous features and convert them by using a
tool provided in the Kaggle challenge (https://
github.com/ycjuan/kaggle-2014-criteo).

For Frappe and MovieLens, if one log is assigned a label
of value 1, we treat it as “clicked” which means that the user
has used the app under the context or applied the tag on the
movie. We randomly select the logs representing that the
user does not use the app or the tag is not applied on the
movie as negative samples and assign −1 to their labels.

Finally, we get 288,609 and 2,006,859 samples, respectively.
We randomly split each dataset into three parts: 70% for
training, 20% for validation, and 10% for testing. We use the
validation set for tuning hyperparameters and the testing set
for performance comparison. For Criteo, we make random
sampling and get 458,406 samples. We also split them into
training, validation, and testing parts using the same ratio.

5.2. Evaluation Metrics. We adopt root mean square error
(RMSE), area under ROC (AUC), and accuracy to evaluate
the performance, which are popular evaluation metrics in
the tasks of explicit rating commendation [54] and click-
through rate prediction [55].

Equation (14) shows how to calculate RMSE.

Lrmse �

�������������������
1
N

􏽘
x∈X

(􏽢y(x) − y(x))
2
,

􏽳

(14)

where X represents the set of instances for testing, N is the
number of instances, and 􏽢y(x) and y(x) represent the
predicted value and the ground-truth label of a instance x. A
lower RMSE score indicates a better performance.

AUC is insensitive to the classifcation threshold and the
positive ratio. AUC’s upper bound is 1, and a larger value
indicates a better performance. It refects the sorting quality
of the model.

Accuracy is the proportion of the samples that are
predicted correctly. A larger value indicates a better
performance.

In addition, we use the number of trainable parameters
(Param#) to measure the complexity of diferent models and
the training efciency. If a model has a smaller number of
parameters, the training time will cost less.

5.3. Implementation Environment. We develop the RFM
model by using Python programming language, and Table 1
demonstrates the specifcations of the environment in which
the model was trained.

5.4. Baselines. We compare RFM with the following com-
petitive methods that are designed for sparse data and CTR
prediction in recommender systems.

(i) FM [5]: FM has shown a good performance for
personalized recommendation and context-aware
prediction, and it can efectively capture second-
order feature interaction information. Tis is the
infrastructure of many deep neural network
models. We use the ofcial C++ implementation
(https://www.libfm.org/) for FM.

(ii) HOFM [7]: Tis is the enhanced version of FM,
which can capture high-order feature interaction
information. We use the TensorFlow implementa-
tion of the high-order factorization machines.

(iii) Wide&Deep [13]: Tis model consists of wide
component and deep component. Te wide com-
ponent is a linear regression model, and the deep

Computational Intelligence and Neuroscience 7

https://grouplens.org/datasets/movielens/latest/
https://grouplens.org/datasets/movielens/latest/
https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://github.com/ycjuan/kaggle-2014-criteo
https://github.com/ycjuan/kaggle-2014-criteo
https://www.libfm.org/


component frst concatenates embedding vectors
and is followed by an MLP [13] to model feature
interactions.

(iv) DeepCross [14]: Tis model concatenates embed-
ding vectors, followed by a multilayered residual
network. With the residual structure, the network
can prevent gradient explosion and vanishing
problem when the network deepens.

(v) DeepFM [15]: Tis model consists of one FM
component and one deep component. It combines
the power of factorization machines and deep
learning to emphasize both low- and high-order
feature interactions. Two components share the
embedding parameters.

(vi) HoAFM [30]: It uses a cross interaction layer to
update a feature’s representation by aggregating
other cooccurred features and performs a bit-wise
attention mechanism on the granularity of
dimensions.

(vii) PIN [28]: Tis method extends FM with kernel
product methods to learn feld-aware feature in-
teractions and adopts a feature extractor to explore
feature interactions to tackle the insensitive gra-
dient issue.

5.5. Performance Comparison. Based on our investigation
about parameters in the validation set, we set the default
values of parameters in our RFM method. We set the em-
bedding size d to 256 and the factor β to 1 by default in three
datasets. Te default value of the similarity threshold r in
Frappe andMovieLens is 0.8, and it is 0.2 in Criteo.Te top-t
values are set as 6, 1, and 11 by default in the datasets of
Frappe, MovieLens, and Criteo, respectively. Te default
value of the region number is 2 in Frappe and MovieLens,
and it is 26 in Criteo. We will demonstrate how to obtain
those values in Section 5.7.

We set the initial learning rate as 0.01 and use Adagrad
[56] as the model optimizer for RFM since Adagrad can
adapt the learning rate during the training phase and ease
the work of assigning a proper learning rate. For the other
methods or models, we use the default learning rate con-
fguration referred in their source codes or their articles.

We compare the performance of our RFM method and
diferent baselines. Table 2 summarizes the performance and
the scale of trainable parameters obtained on embedding size
256.

According to Table 2, we have the following
observations:

(i) RFM has the same scale of trainable parameters as
FM. However, RFM performs better than FM by a
7.8%, 7.0%, and 1.6% average improvement in
RMSE, AUC, and accuracy separately. Tis dem-
onstrates the efectiveness of neighbor-based local
information which enhances the original FM.

(ii) HOFM uses a separated set of embeddings to model
high-order feature interactions and achieves better
performance than FM in the dataset of MovieLens
and Criteo. However, the performance of HOFM is
worse than that of FM in the dataset of Frappe. Te
reason is probably that although the high-order
(more than 2) feature interactions can provide
useful information, they also introduce noisy in-
formation simultaneously. Also, HOFM doubles the
scale of parameters and incurs more training
overhead.

(iii) Wide&Deep and DeepCross take the feature em-
bedding (Section 3.1) as the input of deep neural
networks, which may miss the second-order feature
interaction information if the embedding parame-
ters are not initialized by pretrained FMmodel [16].
Tus, both of them almost have the worst perfor-
mance. Furthermore, Wide&Deep and DeepCross
have the most parameters.

(iv) DeepFM can combine the knowledge from the
feature embedding (Section 3.1) and second-order
interactions embedding (Section 3.2) in the FM
component, as well as high-order feature interaction
from the deep component with sharing embedding
parameters. Tus, generally, DeepFM has a good
performance in the three datasets. However,
sometimes, it performs poorly especially for the
metric of RMSE in the MovieLens dataset, because
MovieLens has only three felds and DeepFM may
not capture enough useful feature interaction in-
formation. Besides, the deep component of DeepFM

Input: cg, emb0, r, t

Output: the list of (yi, simi): N

(1) initialize a container neighbors;
(2) for (x, y) in cg do
(3) α � sim(x, emb0)
(4) if α≥ r then
(5) add (y, α) to neighbors;
(6) end
(7) end
(8) N � selectTop(neighbors, t);
(9) return N;

ALGORITHM 1: Te algorithm of neighbor retrieval.
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will lead to more training parameters and decreases
the efciency.

(v) HoAFM captures the high-order feature interac-
tions in an explicit manner with the attentive FM,
which is comparable to our RFM in the metric of
AUC and accuracy for the dataset of MovieLens, but
has a worse performance in other datasets.

(vi) PIN obtains a good performance in the dataset of
Criteo but performs poorly in the datasets of Frappe
and MovieLens, which shows that sometimes the
adaptive embeddings learned by the kernel product
may be not efective.

Overall, our proposed RFM model achieves the best
performance among these models in RMSE and AUC due to
the enhancement of neighbor-based local information. RFM
also has the same number of parameters with FM, which can
achieve the best training efciency.

5.6. Te Efectiveness of Local Information. We take four
examples from the testing sets to qualitatively analyze the
efectiveness of neighbor-based local information in our
approach. Table 3 shows the four examples. In addition, we
also show the percentages of testing samples where neigh-
bors correct or worsen the output of FM for the three
datasets in Table 4.

In Table 3, the frst column is the ground-truth label of
the given samples, and the second column is the original FM
output of 􏽢yg(x).Te third column represents the similarities
between given samples from testing sets and their corre-
sponding neighbors retrieved from the training set. Te
forth column is labels of neighbors. Te last column is the
fnal output by fusing the local knowledge and the original

FM output. Obviously, the original FM outputs 􏽢yg(x) de-
viates from the true labels for the four examples, which
means that the global knowledge learned by FM cannot
model the click behavior correctly for these four examples.
However, the neighbors from the training set, whose sim-
ilarities are more than 0.8 (in the third column), can provide
useful local knowledge with correct labels (as shown in the
fourth column). Ten, we use such local knowledge to
correct the original FM output 􏽢yg(x) and obtain the fnal
results (as shown in the last column). Intuitively, in the real
scenario, original FM may predict that a user would not like
to click one item because most of users in the training set
dislike to click. But several other users who have similar
characteristics to the user clicked the item, and the user also
intends to click it with a high probability. In this way, the
neighbor-based local information can represent the personal
and preference knowledge and is efective to enhance the FM
model.

Besides, we further record the percentages of three types
of results from the testing sets, as shown in Table 4. Te
keywords “Better” and “Worse” mean that the fusion result
is better or worse than 􏽢yg(x), and the symbol “Equal”
represents that the fusion result is the same as 􏽢yg(x). We can
see that RFM corrects most of the mistakes of 􏽢yg(x) in the
testing sets and has a small negative impact at the same time.
In the datasets of Frappe and MovieLens, the percentages of
the worse cases are much smaller. In Criteo, the percentage
of the worse cases is relatively higher than the other two
datasets. However, the degree of positive cases (better,
63.17%) is much bigger than that of negative ones (worse,
35.87%). Terefore, RFM enhances the overall performance
of FM in Criteo. Te percentages of three types of results
further illustrate that the neighbor-based local information
captured by RFM is efective.

Table 2: RMSE, AUC, accuracy, and number of parameters for diferent models. Te symbol M means “million.”

Model
Frappe MovieLens Criteo

RMSE AUC Accuracy
(%) Param# RMSE AUC Accuracy

(%) Param# RMSE AUC Accuracy(%) Param#

FM 0.3452 0.9829 96.32 1.38M 0.4735 0.9512 91.10 23.24M 0.4679 0.6051 74.20 12.43M
HOFM 0.3331 0.9218 95.53 2.76M 0.4636 0.9582 91.47 46.40M 0.4637 0.6505 75.12 24.86M
Wide&Deep 0.3661 0.9720 96.27 4.59M 0.5313 0.9341 85.04 24.71M 0.4703 0.6371 72.96 23.58M
DeepCross 0.4071 0.9660 95.00 8.95M 0.5130 0.9352 87.90 29.01M 0.4671 0.6881 74.93 35.15M
DeepFM 0.3305 0.9815 96.82 4.15M 0.4812 0.9591 91.89 24.58M 0.4648 0.6671 75.27 27.33M
HoAFM 0.3466 0.9829 97.02 1.54M 0.4518 0.9694 93.27 23.37M 0.4255 0.7201 76.38 13.82M
PIN 0.3729 0.9707 96.35 2.10M 0.5207 0.9424 91.09 23.29M 0.4221 0.7191 76.30 49.55M
RFM 0.322 0.9832 97.0 1.38M 0.4 09 0.9611 93.24 23.24M 0.4113 0.7262 76.40 12.43M

Table 1: Details of the implementation environment.

Environment Specifcations
Operating system Ubuntu 20.04.5 LTS
Processor Intel (R) xeon (R) silver 4116 CPU
Architecture 64-Bit
Memory 128GB
GPU NVIDIA V100 PCIe 32GB
Programming language Python
Framework Tensorfow
Main libraries used Pandas, numpy, sys, os
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5.7.Hyperparameter Investigation. We explore the impact of
four important hyperparameters including the number of
regions k, the embedding size d, the number of similar
samples t, and the similarity threshold r. Since the results of
RMSE are similar to that of AUC, we only show RMSE in the
following discussion. When investigating the efect of one
hyperparameter, we remain other hyperparameters stable.

5.7.1. Te Number of Regions. We partition samples in the
training set into multiple regions for the sake of efciency
and performance. It can not only accelerate the process of
retrieving similar samples but also introduce the better
region features. Te former increases the efciency, and the
latter improves the efectiveness. We assign 2n to the region
number k, where n is from 0 to 7 with step size 1.

Figure 2 shows the infuence of the region number on the
performance of RFM for diferent datasets. We can see that
the region partition can infuence the performance, and it
may improve the performance to some extent with the
proper numbers of regions. Without region partition (i.e., n

� 0 and the region number is 1), the model will retrieve
neighbors by traversing all samples in the training set. We
can observe that the performance is always not the best.

When partitioning samples into multiple regions, each re-
gion has its own center vector for representing the common
characteristics of samples in it. Figures 2(a) and 2(b) show
that partitioning samples into two regions can have the best
performance. Continuing to increase the region number will
reduce the efectiveness, since dividing samples into too
many regions may weaken the ability of a region to represent
common characteristics of samples belonging to it. In
Figure 2(c), we have the best performance when n � 6, and
the curve fuctuates frequently, which indicates that the
characteristics of samples in Criteo are highly diverse. In-
tuitively, the retrieved similar samples may not be the most
similar ones from the whole training set when the region
number is more than 1 and probably decreases the per-
formance. However, we can see that the region partition can
improve the performance as well. Tat is because the
clustering technique can reveal the intrinsic nature and
regularity in the training set [46, 47], the most similar
samples retrieved from the same region may contain more
efective and generalizable information than those from the
whole training set.

We also measure the efciency of our RFM method for
diferent region numbers. In Figure 3, we show the average
prediction time (APT) for diferent region numbers, where
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Figure 2: RMSE for diferent region numbers.
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APT is the average time to predict one sample in the testing
set. For clarity, we take the natural logarithm of APT. As
shown in Figure 3, the increase of the region number reduces
APT roughly in a linear relationship, since the region par-
tition can decrease the target samples for the retrieval of
neighbors by the rate of the region number. If the region
number keeps the same, generally, the APT depends on the
sizes of the training sets in diferent datasets. For example,
the size of Movielens dataset is the largest, and then, it needs
more time to retrieve neighbors than the other two datasets.
When the region’s number is more than 25, the APT of
Criteo is less than that of Frappe, which is probably because
diferent regions have diferent numbers of samples. In
Criteo, the number of samples in the most similar region is
smaller than those in Frappe, although it has more samples
in the whole training set.

In summary, when considering the performance and
prediction efciency together, we can fnd the best choice of
the region number that has a good trade-of between the
performance and efciency for one specifc dataset. For
example, we can choose n � 6 as the best region partition for
the Criteo dataset since it has the best performance with
much high prediction efciency.

5.7.2. Embedding Size. Te size of second-order feature
interaction embedding may have an impact on the per-
formance. As shown in Figure 4, we evaluate our RFM
model and baselines in the Frappe dataset with diferent
embedding sizes. For highlighting the sensitivity, we set a
small step by 16 and show a small range of embedding sizes
around 256 when RMSE changes. We fnd that RFM
achieves the best performance compared to other methods
for all experimental embedding sizes. Among them, when
the embedding size is 256, RFM can have the best per-
formance. We only show the RMSE for diferent embed-
ding sizes in the Frappe dataset since the other two datasets
have the similar trend.

5.7.3. Top-t Similar Neighbors. Te hyperparameter t de-
termines the number of neighbors as the local information
for fusion. Figure 5 shows the RMSE of our model with
regard to diferent top-t values.

As shown in Figure 5, the impact of top-t values on
diferent datasets is diferent. Te curve in Figure 5(a) is
overall convex and local oscillating. Too small t cannot
introduce enough local knowledge from neighbors, and too
large t may introduce noisy neighbors. Ten, we have Top-6
as an optimal value. Figure 5(b) shows that RMSE increases
with the rise of top-t. Tis is because the number of felds in
Movielens is only three, and neighbors contain less feature
interaction information. When the number of neighbors
increases, it may introduce more noisy data. By contrast,
RMSE decreases with the rise of top-t in Figure 5(c), since
the number of felds in Criteo is the most, and neighbors
contain the richest and useful interaction information for
the following fusion. Te curves in Figures 5(b) and 5(c)
become horizontal near the end due to the limitation in-
troduced by the similarity threshold.

5.7.4. Te Similarity Treshold. Te similarity threshold r is
a key hyperparameter to flter out noisy neighbors. We
investigate the infuence of r on RMSE. Figure 6 shows the
result.

As shown in Figure 6, if the similarity threshold is too
low, it will introduce more noisy data and decrease the
efectiveness of our model. If the similarity threshold is too
high, it will flter out some valuable knowledge and decrease
the efectiveness as well. In Frappe and Movielens, 0.8 is the
best similarity threshold, which has a good trade-of between
fltering out noisy data and introducing valuable knowledge.
Te RMSEs before 0.8 are stable since we always select the
same top-t neighbors. For the curve of Criteo, 0.2 is the best
similarity threshold since the sample similarities are rela-
tively small.
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6. Conclusion

How to predict click-through rate (CTR) accurately is an
important problem in many recommendation scenarios. In
this work, we proposed a novel solution called retrieval-
based factorization machine (RFM), which aims to predict
CTR by combining global knowledge learned from the FM
model with the neighbor-based local information. We
conducted experiments on three public datasets to evaluate
RFM, and the experimental results show that our RFM
model outperformed existing models with a simple and
efcient architecture. Te results also indicate that using
local information properly can enhance the overall per-
formance of CTR-predicting tasks.

More generally, the idea of fusing global and local in-
formation in this paper can be applied in other domains,
including some dense data tasks. Tere are two interesting
directions for the future study. One is exploring strategies to
retrieve efective neighbors and flter out noisy data more
efciently and accurately. Te other is how to combine the
local information with the original FM model better to
predict human click behavior more efectively.
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