
Research Article
Network Architecture for Optimizing Deep Deterministic Policy
Gradient Algorithms

Haifei Zhang ,1 Jian Xu,2 Jian Zhang,3 and Quan Liu3

1School of Computer and Information Engineering, Nantong Institute of Technology, Yongxing Road 211, Nantong 226002, China
2School of Information Science and Technology, Nantong University, Seyuan Road 9, Nantong 226019, China
3School of Computer Science and Technology, Soochow University, Shizi Street 1, Suzhou 215006, China

Correspondence should be addressed to Haifei Zhang; 46462490@qq.com

Received 7 September 2022; Revised 17 September 2022; Accepted 27 September 2022; Published 18 November 2022

Academic Editor: D. Plewczynski

Copyright © 2022 Haifei Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te traditional Deep Deterministic Policy Gradient (DDPG) algorithm has been widely used in continuous action spaces, but it
still sufers from the problems of easily falling into local optima and large error fuctuations. Aiming at these defciencies, this
paper proposes a dual-actor-dual-critic DDPG algorithm (DN-DDPG). First, on the basis of the original actor-critic network
architecture of the algorithm, a critic network is added to assist the training, and the smallest Q value of the two critic networks is
taken as the estimated value of the action in each update. Reduce the probability of local optimal phenomenon; then, introduce the
idea of dual-actor network to alleviate the underestimation of value generated by dual-evaluator network, and select the action
with the greatest value in the two-actor networks to update to stabilize the training of the algorithm process. Finally, the improved
method is validated on four continuous action tasks provided by MuJoCo, and the results show that the improved method can
reduce the fuctuation range of error and improve the cumulative return compared with the classical algorithm.

1. Introduction

As artifcial intelligence continues to thrive, reinforcement
learning (RL), which is a learning process that combines
exploration and action, has been well developed in discrete
action spaces focusing on decision control. By letting the
agents learn continuously in a way of trial and error, RL
pursues the overall maximum return while seeking the
optimal action policy [1, 2]. However, when high-dimen-
sional inputs or continuous action tasks are involved, tra-
ditional RL that relies on maximizing expected returns by
performing trial and error may not work well. To tackle these
kinds of problems, the concept of deep reinforcement
learning (DRL) has been presented. In 2013, DeepMind
proposed a method of using deep neural networks to play
Atari games. It is the frst successful and versatile DRL al-
gorithm, although its scope of application is still limited to
low-dimensional discrete action spaces. Te topics dealing
with continuous action tasks have become a new set of
research interests [3, 4].

Te basic idea of deep reinforcement learning is to ft the
value function and policy function in reinforcement learning
through a neural network. Typical algorithms include Deep
Q-Network (DQN) [5] based on discrete action tasks and
Deep Deterministic Policy Gradients (DDPG) [6] based on
continuous action tasks. DDPG and DQN have very high
similarities in algorithms. Te main diference is that DDPG
introduces a policy network to output continuous action
values. DDPG can be understood as an extension algorithm
of DQN in continuous action. DDPG algorithm has been
studied extensively with a series of outcomes obtained. Mnih
et al. [7] proposed the concept of two-layer BP neural
network and hence improved the DDPG algorithm. Te
search efciency of BP network was improved by using
Armijo-Goldstein-based criterion and BFGS method [8].
Nikishin et al. [9] reduced the infuence of noise on the
gradient by averaging methods under the premise of random
weights. Parallel actor networks and prioritized experience
replay are used and tested in the continuous action space of
bipedal robots [10]. Te experimental results show that the

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1117781, 10 pages
https://doi.org/10.1155/2022/1117781

mailto:46462490@qq.com
https://orcid.org/0000-0002-9881-8489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1117781

revised algorithm can efectively improve the training speed.
In addition, the storage structure of experience in DDPG is
optimized, which improves the convergence speed of the
DDPG algorithm through binary tree [11–13].

To sum up, the above methods propose improvements to
address the shortcomings of DDPG, and all have achieved
good results. Although the performance of the improved
algorithms has been signifcantly improved, the faws of local
optimal solutions and large error fuctuations need to be
further addressed.

Te main content of this paper is as follows: Firstly, the
basic principle of DDPG is introduced, and then, combined
with the description of the network structure and its as-
sociated parameters, the existing shortcomings are also
analyzed. Secondly, an improved algorithm is proposed to
tackle the shortcomings of DDPG. Te improvement
method is mainly divided into two aspects. First, in order to
reduce the probability of local optimal solutions, a critic
network is added to assist training, and the smallest Q value
in the two critic networks is taken as the estimated value of
the action. Second, the dual-critic network will select the
suboptimalQ value to update each round, and the suboptimal
Q value also corresponds to the suboptimal action, which
leads to the continuous underestimation of the action value of
the agent. In response to this problem, this work introduces a
dual-actor network based on the dual-critic network archi-
tecture; that is, the most valuable action in the two action
networks is selected for training under the minimumQ value,
so as to improve the robustness of the network structure.
Finally, the efectiveness of the improvedmethod is verifed in
eight simulated, experimental environments.

Te rest of this paper is organized as follows: Te basics
of DDPG are introduced in Section 2. In Section 3, the idea
of improving the algorithm is elaborated. Section 4 includes
experimental results and analysis. Section 5 summarizes the
work and refers to the future works.

2. Deep Deterministic Policy Gradients

Te problem that reinforcement learning needs to solve is
how to let the agent learn what actions to take in an en-
vironment, so as to obtain the maximum sum of reward
values [12–14]. Te reward value is generally associated with
the task goal defned by the agent. Te DDPG algorithm is
used to solve the reinforcement learning problem in con-
tinuous action space [6, 15–17]. Te main process is as
follows: Firstly, the experience data generated by the in-
teraction between the agent and the environment is stored in
the experience recall mechanism. Secondly, the sampled data
is learned and updated through the actor-critic architecture,
and fnally the optimal policy is obtained. Te structure of
the DDPG algorithm is shown in Figure 1 [15].

Based on the deterministic policy gradient, the DDPG
algorithm uses a neural network to simulate the policy
function and theQ function and combines the deep learning
method to complete the task training [16]. Te DDPG al-
gorithm continues with the organizational structure of the
DQN algorithm and uses actor-critic as the basic archi-
tecture of the algorithm [17]. Te combination of the

concepts of the online network and the target network in the
DQN algorithm with the actor-critic method makes both
actor and critic modules in the DDPG have access to the
structure of the online network and the target network
[6, 18, 19].

During the training process, the agent in the current
state S decides the action A that needs to be performed
through the current actor network and then calculates the Q
value of the current action and the expected return value
yi � R + cQ′ according to the current critic network. Ten,
the actor target network selects the optimal action A′ among
the actions that can be performed according to the previous
learning experience, and the Q′ value of the future action is
calculated by the critic target network.Te parameters of the
target network are periodically updated by the online net-
work parameters of the corresponding module.

DDPG adopts a “soft” method to update the target
network parameters; that is, the magnitude of each update of
the network parameters is very small, which improves the
stability of the training process [20–22]. Te update coef-
fcient is denoted as τ, then the “soft” update method can be
expressed as

w′ � τw +(1 − τ)w′θ′ � τθ +(1 − τ)θ′. (1)

DDPG makes the decision of using action at by the
deterministic policy π. It approximates the state-action
function via a value network, with the defnition of the target
function as the accumulated reward with a discounted factor
[23, 24] as shown in the following equation:

J(θ) � Eθ r1 + cr2 + c
2
r3 + (2)

In the online network of the critic, the update of the
network parameters is based on the minimal value of the
mean square error of the loss function [10], which can be
expressed as

J(w) �
1
m

m

j�1
yj − Q � Sj , Aj, w

2
. (3)

For the actor online network, the network parameters
are updated according to the loss gradients of the policy [10]
as shown in the following equation:.

∇J(θ) �
1
m

m

j�1
∇aQ sj, aj, w ∇θπ . (4)

3. The DDPG Based on Dual-Actors and Dual-
Critics

3.1. Error Analysis. It is an inevitable problem for Q-
Learning to tend to overestimate errors [25–28]. In Q-
Learning, the update of the estimated value of an action by
the learning algorithm is conducted by the ε-greedy policy
yt � r + cmax (Q(st+1, at+1)), hence the actual maximal
value of an action is usually smaller than the estimated

2 Computational Intelligence and Neuroscience

maximal value of this action as shown in the following
equation:

Eϵ max
a′

Q S′, a′(+ ϵ(≥ max
a′

Q S′, a′(. (5)

Equation (5) has already been proved for its establish-
ment [29, 30]. Even the zero mean error of the initial state
will lead to an overestimation of the action value due to the
update of the value function, and the adverse efect of this
error will be gradually enlarged by the calculation of the
Bellman equation.

In the structure of actor-critic, the update of the actor
policy depends on the critic value function [31–33]. Given
the online network parameter φ, ϕapprox denotes the updated
parameter of the actor network calculated by the estimated
maximal value function max (Qθ(s, a)), ϕtrue denotes the
parameter obtained by using the actual value function
Qπ(s, a), where Qπ(s, a) is unknown in the training process
which represents the value function in an ideal state, then
ϕapprox and ϕtrue can be expressed in the following equation:

ϕapprox � ϕ +
α

Z1
Es∼pπ
∇ϕπϕ(s)∇aQθs, a | a�πϕ(s) ,

ϕtrue � ϕ +
α

Z2
Es∼pπ
∇ϕπϕ(s)∇aQ

π
s, a | a�πϕ(s) .

(6)

In Equation (6), Z−1
1,2||F[·]|| � 1, which normalizes

gradients by using Z1 and Z2. Otherwise, highly estimated
errors would have been a certain case in a strict constraint if
gradient normalization had not been used [34, 35].

Since the gradient is updated in the direction of the local
maximum, there is a very small number k1, so that when the
learning rate of the neural network is less than k1. Te
parameter πapprox based on ϕapprox and the parameter πtrue
based on ϕtrue converge to the local optimal value of the
corresponding Q function, at this time, the estimation of
πapprox is restricted to be below πtrue as shown in the fol-
lowing equation:

E Qθ s, πapprox (s) ≥E Qθ s, πtrue (s)(. (7)

On the contrary, there is an extremely small number k2,
so that when the learning rate of the neural network is less
than k2, the parameter πapprox and the parameter πtrue also
converge to the local optimal value of the corresponding Q
function, and the estimation of πtrue is limited below πapprox.

E Qθ s, πtrue (s)(≥E Qπ s, πapprox (s) . (8)

If the training efect of the critic network is satisfying, the
estimation of the policy value will be at least similar to the
actual value of φtrue as shown in the following equation:

E Qθ s, πtrue (s)(≥E Qπ s, πtrue (s)(. (9)

At this time, if the learning rate of the network is smaller
than the smaller one of k1 and k2, we know by combining
Equations (8) and (9), the action value will be overestimated
as shown in the following equation:

E Qθ s, πapprox (s) ≥E Qπ s, πapprox (s) . (10)

Environment state
Current Action

Future state parameters

Actor

Optimizer

Parameters
 update Policy gradient

Online Network

′Soft Update′

Target Network

Optimizer

Parameters
 update

Online Network

′Soft Update′

Target Network

Gradient

Current Action

Future Action

Critic

Value function
gradient

Store experience data Experience
Replay Memory

Sampling strategy

Sampling

Sample data

Figure 1: Te structure of DDPG algorithm.

Computational Intelligence and Neuroscience 3

Te existence of errors will lead to inaccurate estimation
of the action value, making the suboptimal policy be taken as
the optimal policy output of the online network, thereby
afecting the performance of the algorithm.

3.2. Dual-Actors andDual-Critics Network Structure. Due to
the existence of the overestimated error, the estimation of
the value function can be used as an approximate upper limit
of the estimated value of the future state. If there is a certain

error in everyQ value update, the accumulation of errors will
result in a suboptimal policy. Aiming at this kind of problem,
an additional critic network is used in this work.Te smallest
Q value of the two networks is taken as the estimated value of
the action in each update, so as to reduce the adverse efect of
the overestimated error.

Te process of obtaining the smallest Q value via the
dual-critic network is shown in the following equation:

y1 � rt+1 + cQ1′ st+1, μ′ st+1|θ
μ′

 y2 � rt+1 + cQ2′ st+1, μ′ st+1|θ
μ′

 y � min y1, y2(. (11)

Although the dual-critic network can reduce the over-
estimated error of the algorithm and reduce the probability
of generating a local optimal strategy, in the actual training
process, it is rare for the learning rate of the neural network
to be less than the minimum value of k1 and k2. Combined
with Section 3.1 analysis, that is, the probability of overes-
timation is very low. Te dual-critic network will select the
suboptimalQ value to update in each round.Te suboptimal
Q value also corresponds to the suboptimal action, which
leads to the continuous underestimation of the action value
of the agent, and in turn afects the rate of convergence of the
critic network [36–38].

Aiming at the problem of underestimation of the dual-
critic network, in this work a dual-actor network is pre-
sented for training on the basis of the dual-critic network
architecture. Te network selects the action with the highest
value among the two actions under the minimum Q value,
which is used to reduce the infuence of the Q value

underestimation and improve the robustness of the network
structure.

Te network structure of the dual-actors and dual-critics
is shown in Figure 2.

For a two-actor network, the training of this network is
subject to the same issues upon the use of the same sample
data and processing methods. In order to ameliorate this
kind of problems, the update of the parameters of the two-
actor network is based on diferent policy gradients, which
helps to reduce the coupling between the two-actors and
further improves the convergence rate of the algorithm
[39, 40].

If the policies of the two-actors are defned as π1 and
π2, and the parameters of the dual-critic network are θ1
and θ2, we will have two actions a1 � μ (s| π1) and a2 � μ (s|
π2), then we can select the action with the maximal value
based on this dual-actor network by using the following
equation:

Next State Next StateCurrent State

Actor Target
network 1

Actor Target
network 2

Critic target
network 1

Critic target
network 1

Critic target
network 2

Critic target
network 2

Mn Mn

Estimated Q1 Estimated Q2

TD-error 1 TD-error 2

R + Υ*Estimated Q1-Q1 R + Υ*Estimated Q2-Q2

Q1 Q2

Critic online
network 1

Actor online
network 1

Critic online
network 2

Actor online
network 2

action 1 action 2

Minimizing
loss function

Minimizing
loss function

Figure 2: Architecture of dual-actors and dual-critics.

4 Computational Intelligence and Neuroscience

a � argmaxa max Q1 s, μ s | π1(; θ1(, Q2 s, μ s⌋π2(; θ2(. (12)

3.3. Modeling the Algorithm. Combining the ideas proposed
in Section 3.2, this paper proposes a dual-actor and dual-
critics based DDPG algorithm (DN-DDPG). Te process of
the DN-DDPG algorithm is shown in Algorithm 1.

4. Experiments

4.1. Software and Hardware Setup. Te software environ-
ment used in this work is Anaconda3 4.8.3 (Python 3.8), the
integrated development environment (IDE) is Pycharm,
TensorFlow-GPU 1.8.0 is used as the learning framework.
Python virtual environment is run in Anaconda3. NVIDIA
GeForce GTX 1650 +CUDA 11.1 is the hardware
environment.

4.2.Experimental Setup. In this paper, the Arm environment
is written based on the Pyglet module. Two classical controls
on the OpenAI GYM [20] platform and four continuous
control tasks in the Mujoco physics simulator [21] are used
as the experimental environment. OpenAI GYM is an open
source toolkit that provides a variety of game environment
interfaces to facilitate the research and development of ar-
tifcial intelligence experiments.

Te Arm environment used in this work includes the
following items:

(1) Arm_easy. 400 ∗ 400 2-dimensional space is con-
structed in the Arm environment. One end of a robot
arm is fxed in the middle of the environment. Te
goal of the training is to make the other end of the
robot arm fnd the blue target point as shown in
Figure 3.

(2) Arm_hard. Tis is similar to the Arm_easy envi-
ronment, the only diference is that the target point is
randomly generated in each round.

Two classical, continuous control task used in this work
are shown below.

(1) Pendulum. Te pendulum starts at a random posi-
tion, the aim is to push it swing upwards and keep
erected.

(2) Mountain Car Continuous. Tis task is to drive a car
to reach the top of a hill; however, the power of the
car is not sufcient to drive it directly to reach the
top, it needs to rise and drop on the left and right
sides repeatedly so that it can accumulate power to
reach the top. It is shown in Figure 4.

Te 4 Mujoco continuous control tasks include:

(1) Half Cheetah. Train a bipedal agent to learn running
as shown in Figure 5.

(2) Hopper. Train a single legged robot to learn jumping
forward.

(3) Humanoid. Train a 3-dimensional bipedal agent to
learn standing without falling down.

Input: (θ1Q, θ2
μ, θ2Q, θ2

μ, D, Nt, c)

Output: (θQ
′, θμ′)

(1) Randomly initialize the actor-critic network for their parameters θ1Q, θ2
μ and θ2Q, θ2

μ

(2) Initialize the target network Q′ and μ′, and copy the online network parameters to the target network
(3) Initialize the experience playback bufer D, noise coefcient Nt, and discount rate c

(4) Set up external loop, the round number� 1, M
(5) Initialize State S as the current state, and obtain the start state s1
(6) Set up internal loop, the round number� 1, T
(7) Select action at: at � argmaxa[Q1(st, at, θ1

μ), Q2(st, at, θ2
μ)] + Nt

(8) Conduct action at, and obtain the reward rt and the new state st+1
(9) Save the experience data (st, at, rt, st+1) in an experience pool
(10) Randomly select a certain number of samples (si, ai, ri, si+1) from the experience pool
(11) Calculate the target value Q: y1 � rt+1 + cQ1′(st+1, μ′(st+1|θ

μ′))y2 � rt+1 + cQ2′(st+1, μ′(st+1|θ
μ′))y � min (y1, y2)

(12) Calculate the square error of the loss function and update the critic network: J(w) � 1/m
m
j�1 (yj − Q(�(Sj), Aj, w))2

(13) Update the actor network via the gradients of the sample data: ∇θ μJ ≈ 1/N
i

∇aQ(s, a | θQ) | s�si ,a�μ(si)
∇θμμ(s | θμ)|si

(14) Regularly update the parameters of the target network: θQ
′ � τθQ + (1 − τ)θQ

′∙θμ′ � τθμ + (1 − τ)θμ′
(15) End internal loop
(16) End external loop.

ALGORITHM 1: Te DN-DDPG process.

Computational Intelligence and Neuroscience 5

(4) Walker2d. Train a 3-dimensional bipedal agent to
walk forward as fast as possible.

Tis work compares the performance of DN-DDPG and
the original DDPG algorithm. In order to study the im-
provement efect of the dual-critic network and the dual-
actor network, the DCN-DDPG algorithm which is the
single-actor and dual-critic network is included for com-
parison. Te outcomes of the comparison are shown intu-
itively through experiments.

4.3. Parameter Setting. To ensure the accuracy and fairness
of the experimental results, the common parameter values of
diferent algorithms are the same. Te training rounds for
both the Arm environment and the two Gym classic control
tasks are set to 2000 times, and the maximum number of
training steps per round is 300 times. Te training rounds of
4 kinds of Mujoco continuous control tasks are set to 5000
times, and the number of training steps per round is the
maximum number of round steps in the Gym environment.
Te agent continuously learns and explores in the envi-
ronment. If the preset task in the environment is successfully
completed or the number of training times per round ex-
ceeds the maximum number of times, the scene will be reset
and a new round will be started. Some parameters in the
MuJoCo task are shown in Table 1.

4.4. Experimental Outcomes. In this work, the performances
of three algorithms, DN-DDPG, DCN-DDPG and original
DDPG, are compared in terms of their performance in two
Arm environments, two Gym classical control environ-
ments, and four continuous tasks in Mujoco. DN-DDPG
and DCN-DDPG are both based on the improvement of the
DDPG method, the diference is that DCN-DDPG is based
on the original DDPG with addition of an extra critic
network, while DN-DDPG is based on the DCN-DDPGwith

Figure 3: Arm_easy environment and task.

Figure 4: Mountain car continuous.

Figure 5: Half cheetah.

Table 1: Mujoco environment model hyperparameters.

Order Parameter Value
1 Decay rate 0.9
2 Actor net learning rate 0.0001
3 Critic net learning rate 0.0001
4 Neuron number in 1st layer 400
5 Neuron number in 2nd layer 300
6 Experience pool volume 100000
7 Batch data size 256
8 Soft update coefcient 0.01
9 Action reward discount rate 0.99
10 Critic net output distribution low limit −20
11 Target net parameters update round number 10

6 Computational Intelligence and Neuroscience

DN-DDPG
DCN-DDPG
DDPG

2000500 750 17501250 150010002500
Episode

-60

-40

-20

0

20

40

60

Av
er

ag
ed

 re
w

ar
d

Arm_easy

(a)

DN-DDPG
DCN-DDPG
DDPG

-60

-40

-20

0

20

40

60

80

Av
er

ag
ed

 re
w

ar
d

2500 1250 1500750 1000500 20001750
Episode

Arm_hard

(b)

DN-DDPG
DCN-DDPG
DDPG

2000500 750 1250 1500 175010002500
Episode

-2000

-1750

-1500

-1250

-1000

-750

-500

-250

Av
er

ag
ed

 re
w

ar
d

Pendulum

(c)

DN-DDPG
DCN-DDPG
DDPG

2000500 750 1250 1500 175010002500
Episode

0

20

40

60

80

100

Av
er

ag
ed

 re
w

ar
d

MountainCarContinuous

(d)

Figure 6: Continued.

Computational Intelligence and Neuroscience 7

addition of an extra actor network to optimizing training.
Te comparison of these three algorithms can make a more
intuitive display of the two improved methods mentioned in
this article: dual-critics and dual-actors. Te experimental
results are shown in Figure 6.

Te shaded part in the fgure represents the standard
deviation during training, that is, when using the same
hyperparameters and network model, diferent random
number seeds are used to achieve random exploration. Te
shaded upper limit is the optimal result. Te x-axis repre-
sents the number of rounds of agent training, the y-axis

represents the cumulative reward obtained per round, and
the experiment recorded the average reward value per 100
rounds.

In the environments of Arm easy and Arm hard, the
average rewards from three algorithms stay around a same
value. In some cases, the rewards from both DCN-DDPG
and DDPG are superior to that of DN-DDPG. However,
from the point of view of overall training efects, DN-DDPG
performs better than the other two algorithms, while DCN-
DDPG is slightly better than DDPG. In Pendulum experi-
ment, the overall performance of the DN-DDPG is the best,

DN-DDPG
DCN-DDPG
DDPG

1000 2000 3000 4000 50000
Episode

-1000

0

1000

2000

3000

4000

Av
er

ag
ed

 re
w

ar
d

HalfCheetah

(e)

DN-DDPG
DCN-DDPG
DDPG

50002000 30001000 40000
Episode

200

400

600

800

1000

1200

1400

Av
er

ag
ed

 re
w

ar
d

Humanoid

(f)

DN-DDPG
DCN-DDPG
DDPG

Hopper

0

400

800

1200

1600

2000

2400

-2800

Av
er

ag
ed

 re
w

ar
d

3000 4000 50001000 20000
Episode

(g)

DN-DDPG
DCN-DDPG
DDPG

Walker2d

1000 400030002000 50000
Episode

0

500

1000

1500

2000

2500

Av
er

ag
ed

 re
w

ar
d

(h)

Figure 6: Comparative experiments of three algorithms in eight diferent continuous action tasks. (a) Arm_easy. (b) Arm_hard. (c) Pendulum.
(d) Mountain car continuous. (e) Half cheetah. (f) Humanoid. (g) Hopper. (h) Walker2d.

8 Computational Intelligence and Neuroscience

which is due largely to the fact that dual-critics network is
able to reduce the error while dual-actors network selects the
action of higher value. In cases of Mountain Car Contin-
uous, the average rewards from these three algorithms tend
to be the same. However, during the process of 200 time
steps, DN-DDPG has a better convergence speed than the
rest two algorithms. In addition, in Half Cheetah, Hu-
manoid, Hopper and Walker2d, DN-DDPG has a worse
starting performance than DCN-DDPG and DDPG, which
could be due to the fact that DCN-DDPG and DDPG have
relatively simpler network structure able to deal with
complex environment easier than DN-DDPG. Te DN-
DDPG needs a period for training, and after this initial
training period the average reward from DN-DDPG be-
comes obviously better than the rest two algorithms. Again,
the overall performance of DCN-DDPG is better than
DDPG. Finally, the shaded areas of diferent algorithms are
compared, with the outcomes that the area of DN-DDPG is
smaller than those of DCN-DDPG and DDPG, which re-
fects that the training of DN-DDPG is more stable.

From the experimental results in Figure 6, the dual-
critics method is able to increase the performance of DDPG
algorithm, but to a limited extent. By introducing dual-
actors method, the DN-DDPG network, based on the DCN-
DDPG, is able to further increase the overall performance
and training stability of the algorithm. Hence, compared to
the original DDPG, the DN-DDPG which is based on dual-
actors and dual-critics, has the best increased performance.

5. Conclusion

A deep deterministic policy gradient algorithm is proposed
based on a dual-actors and dual-critics network. In order to
reduce the overestimated error in the original actor-critic
network, a dual-critics target network is introduced into
the algorithm, and the minimum action estimate generated
by the two networks is selected to update the policy net-
work. In order to alleviate the problem of underestimation
caused by the dual-critics network, a dual-actors network is
added on the basis of the original network, and the action
with the highest value among the two actions generated by
the dual-actors network is selected. Te experimental re-
sults show that, compared with the original DDPG algo-
rithm, and the DDPG algorithm based on the single-actor
and two-critics network, the novel DN-DDPG algorithm
based on the dual-actors and dual-critics network has a
higher cumulative reward and a smaller standard deviation
of training.

Tere is more to be explored in future work. First, in
order to improve the optimization ability of the algorithm,
more suitable deep learning methods can be explored and
applied to neural networks. Second, for the experience replay
mechanism in the DDPG algorithm, it is viable to explore
whether there is a better method to determine the sample
priority to improve the convergence speed during training.

Data Availability

Te dataset can be accessed upon request.

Conflicts of Interest

Te authors declare that there are no conficts of interest to
report regarding the present study.

Acknowledgments

Tis work was supported by (1) Training Project of Top
Scientifc Research Talents of Nantong Institute of Tech-
nology (XBJRC2021005); (2) the Universities Natural Sci-
ence Research Projects of Jiangsu Province (17KJB520031,
21KJD210004, 22KJB520032, 22KJD520007, 22KJD520008,
and 22KJD520009); and (3) the Science and Technology
Planning Project of Nantong City (JC2021132, JCZ21058,
JCZ20172, JCZ20151, and JCZ20148).

References

[1] M. Dörpinghaus, R. É, I. Neri, H. Meyr, and F. Jülicher, “An
information theoretic analysis of sequential decision-mak-
ing,” in Proceedings of the 2017 IEEE International Symposium
on Information Teory (ISIT), pp. 3050–3054, IEEE, Aachen,
Germany, September 2017.

[2] Q. Liu, J. W. Zhai, Z.-Z. Zhang, S. Zhong, Q. Zhou, and
P. Zhang, “A survey on deep reinforcement learning,” Chinese
Journal of Computers, vol. 41, no. 1, pp. 1–27, 2018.

[3] H. V. Hasselt and M. A. Wiering, “Using continuous action
spaces to solve discrete problems,” in Proceedings of the In-
ternational Joint Conference on Neural Networks, pp. 1149–
1156, Atlanta, GA, USA, October 2009.

[4] W. Zhang, Q. Chen, J. Yan, S. Zhang, and J. Xu, “A novel
asynchronous deep reinforcement learning model with
adaptive early forecasting method and reward incentive
mechanism for short-term load forecasting,” Energy, vol. 236,
Article ID 121492, 2021.

[5] Y. Yang, L. Juntao, and P. Lingling, “Multi-robot path
planning based on a deep reinforcement learning DQN al-
gorithm,” CAAI Transactions on Intelligence Technology,
vol. 5, no. 3, pp. 177–183, 2020.

[6] Q. Zhou, “A novel movies recommendation algorithm based
on reinforcement learning with DDPG policy,” International
Journal of Intelligent Computing and Cybernetics, vol. 13, no. 1,
pp. 67–79, 2020.

[7] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with
deep reinforcement learning,” 2013, https://arxiv.org/abs/
1312.5602.

[8] M. Zhang, Y. Zhang, Z. Gao, and X. He, “An improved DDPG
and its application based on the double-layer BP neural
network,” IEEE Access, vol. 8, no. 99, pp. 177734–177744,
2020.

[9] E. Nikishin, P. Izmailov, and B. Athiwaratkun, “Improving
stability in deep reinforcement learning with weight aver-
aging,” in Proceedings of the Conference on Uncertainty in
Artifcial Intelligence, Monterey, USA, July 2018.

[10] X. Wu, S. Liu, and T. Zhang, “Motion control for biped robot
via DDPG-based deep reinforcement learning,” in Proceed-
ings of the 2018 WRC Symposium on Advanced Robotics and
Automation (WRC SARA), pp. 40–45, IEEE, Beijing, China,
June 2018.

[11] J. Tang, L. Li, and Y. Ai, “Improvement of End-To-End
Automatic Driving Algorithm Based on Reinforcement
Learning,” in Proceedings of the 2019 Chinese Automation

Computational Intelligence and Neuroscience 9

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

Congress (CAC), pp. 5086–5091, IEEE, Hangzhou, China,
November 2019.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT press, Cambridge, MA, USA, 2018.

[13] Y. Zhang, B. Zhao, and D. Liu, “Deterministic policy gradient
adaptive dynamic programming for model-free optimal
control,” Neurocomputing, vol. 387, pp. 40–50, 2020.

[14] Y. Chu, J. Fei, and S. Hou, “Adaptive global sliding-mode
control for dynamic systems using double hidden layer re-
current neural network structure,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 4,
pp. 1297–1309, 2020.

[15] H. Zhang, J. Xu, and L. Lei, A Manipulator Control Method
Based on Deep Deterministic Policy Gradient with Parameter
NoiseChina, 2021.

[16] J. Liu, F. Gao, and X. Luo, “Survey of deep reinforcement
learning based on value function and policy gradient,”Chinese
Journal of Computers, vol. 42, pp. 1406–1438, 2019.

[17] E. Mizutani and S. Dreyfus, “Totally model-free actor-critic
recurrent neural-network reinforcement learning in non-
Markovian domains,”Annals of Operations Research, vol. 258,
no. 1, pp. 107–131, 2017.

[18] Y. Xiang, J. Wen, W. Luo, and G. Xie, “Research on collision-
free control and simulation of single-agent based on an
improved DDPG algorithm,” in Proceedings of the 2020 35th
Youth Academic Annual Conference of Chinese Association of
Automation (YAC), pp. 552–556, IEEE, Zhanjiang, China,
October 2020.

[19] S. Trun and A. Schwartz, “Issues in using function ap-
proximation for reinforcement learning,” in Proceedings of the
Fourth Connectionist Models Summer School, pp. 255–263,
Stanford, CA, June 1993.

[20] G. Brockman, V. Cheung, and L. Pettersson, “OpenAI gym.
CORR,” 2016, https://arxiv.org/abs/1606.01540.

[21] E. Todorov, T. Erez, and Y. T. MuJoCo, “A physics engine for
model-based control,” in Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 5026–5033, IEEE, Vilamoura-Algarve, Portugal, October
2012.

[22] X. Fu, J. Zhu, Z. Wei, H. Wang, and S. Li, “A UAV pursuit-
evasion strategy based on DDPG and imitation learning,”
International Journal of Aerospace Engineering, vol. 2022,
Article ID 3139610, pp. 1–14, 2022.

[23] L. Li, J. Hang, H. Sun, and L. Wang, “A conjunctive multiple-
criteria decision-making approach for cloud service supplier
selection of manufacturing enterprise,” Advances in Me-
chanical Engineering, vol. 9, no. 3, 2017.

[24] L. h Li, J. c Hang, Y. Gao, and C. Y. Mu, “Using an integrated
group decision method based on SVM, TFN-RS-AHP, and
TOPSIS-CD for cloud service supplier selection,” Mathe-
matical Problems in Engineering, vol. 2017, Article ID
3143502, pp. 1–14, 2017.

[25] P. Li, X. Ding, H. Sun, S. Zhao, and R. Cajo, “Research on
dynamic path planning of mobile robot based on improved
DDPG algorithm,” Mobile Information Systems, vol. 2021,
Article ID 5169460, 12 pages, 2021.

[26] L. Li, B. Lei, and C. Mao, “Digital twin in smart
manufacturing,” Journal of Industrial Information Integration,
vol. 26, no. 9, Article ID 100289, 2022.

[27] L. Li, C. Mao, H. Sun, and B. YuanLei, “Digital twin driven
green performance evaluation methodology of intelligent
manufacturing: hybrid model based on fuzzy rough-sets AHP,
multistage weight synthesis, and PROMETHEE II,” Com-
plexity, vol. 2020, no. 6, Article ID 3853925, p. 1–24, 2020.

[28] Y. Du, X. Zhang, Z. Cao et al., “An optimized path planning
method for coastal ships based on improved DDPG and DP,”
Journal of Advanced Transportation, vol. 2021, Article ID
7765130, p. 1–23, 2021.

[29] Z. Yao, Y. Wang, L. Meng, X. Qiu, and P. Yu, “DDPG-based
energy-efcient fow scheduling algorithm in software-de-
fned data centers,” Wireless Communications and Mobile
Computing, vol. 2021, Article ID 6629852p. 1–10, , 2021.

[30] R. Wu, F. Gu, H.-L. Liu, and H. Shi, “UAV path planning
based on multicritic-delayed deep deterministic policy gra-
dient,” Wireless Communications and Mobile Computing,
vol. 2022, Article ID 9017079, p. 1–12, 2022.

[31] L. Zhang, Z. Pan, Yu Pan et al., “A hidden attack sequences
detection method based on dynamic reward deep deter-
ministic policy gradient,” Security and Communication Net-
works, vol. 2022, Article ID 1488344, 2022.

[32] Y. Li and L. H. Li, “Enhancing the optimization of the se-
lection of a product service system scheme: a digital twin-
driven framework,” Strojniški vestnik - Journal of Mechanical
Engineering, vol. 66, no. 9, pp. 534–543, 2020.

[33] L. H. Li and H. G. Wang, “A VVWBO-BVO-based GM (1, 1)
and its parameter optimization by GRA-IGSA integration
algorithm for annual power load forecasting,” PLoS One,
vol. 13, no. 5, p. e0196816, May 16 2018.

[34] H. Zhang, J. Xu, and J. Qiu, “An automatic driving control
method based on deep deterministic policy gradient,”
Wireless Communications and Mobile Computing, vol. 2022,
Article ID 7739440, pp. 1–9, 2022.

[35] W. Yuan, Z. Xiwen, Z. Rong, T. Shangqin, Z. Huan, and
D. Wei, “Research on UCAV maneuvering decision method
based on heuristic reinforcement learning,” Computational
Intelligence and Neuroscience, vol. 2022, Article ID 1477078, p.
1–17, 2022.

[36] J. Chen, Y. Wang, J. Ou et al., “ALBRL: automatic load-
balancing architecture based on reinforcement learning in
software-defned networking,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 3866143, p. 236, 2022.

[37] L. Li, T. Qu, Y. Liu, and C. ZhongXuSunGaoLeiMaoPanWangMa,
“Sustainability assessment of intelligent manufacturing sup-
ported by digital twin,” IEEE Access, vol. 8, pp. 174988–175008,
2020.

[38] L. Li and C. Mao, “Big data supported PSS evaluation decision
in service-oriented manufacturing,” IEEE Access, vol. 8,
no. 99, pp. 154663–154670, 2020.

[39] Zi-J. Wang, X.-M. Chen, P. Wang, M.-Xi Li, Y.-J.-X. Ou, and
H. Zhang, “A Decision-making model for autonomous ve-
hicles at urban intersections based on confict resolution,”
Journal of Advanced Transportation, vol. 2021, Article ID
8894563, pp. 1–12, 2021.

[40] Xi-L. Chen, L. Cao, Z.-X. Xu, J. Lai, and C.-Xi Li, “A study of
continuous maximum entropy deep inverse reinforcement
learning,” Mathematical Problems in Engineering, vol. 2019,
Article ID 4834516, 36 pages, 2019.

10 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1606.01540

