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Tis paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psy-
chometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efciency for pa-
rameter estimations. When the experimental trial goes on, the uncertainty of the parameters decreases dramatically and the space
between the maximal mutual information and the theoretical bound gets narrower, so the advantage of classical Bayesian adaptive
estimation algorithm diminishes. Tis approach tries to trade of the exploration (parameter posterior uncertainty) and the
exploitation (parameter mean estimation). Te experimental results show that the proposed E-E approach estimates parameters
for psychometric functions with same convergence and reduces the computation time by more than 34.27%, compared with the
classical Bayesian adaptive estimation.

1. Introduction

Bayesian adaptive estimation plays an important role in
certain parameter estimations of psychometric functions
[1–5]. In psychophysics, psychometric function refects the
quantitative relationship between physical stimulation and
subject’s psychological perception [2]. Watson and Pelli frst
applied the QUESTmethod in psychophysics [4]. Gradually,
Bayesian adaptive estimation has been developed and widely
used in psychophysics, behavioral and neural sciences [1, 6],
clinical felds [7, 8], etc. It sequentially selects the stimulus, in
the way of minimizing the uncertainty of parameters, and
then updates the parameter prior distribution, to efectively
estimate the parameters.

More and more practical experiments are undertaken
online [9] (e.g., the research of driving behaviors [6, 10],
clinical [7, 8, 11], and visual perception [12–14]). Terefore,
the challenge faced by the researchers is the computation
efciency in optimizing the stimulus after collecting subject’s
data during typical psychophysical experiments [10]. One
way is to estimate multidimensional parameters simulta-
neously. Kontsevich and Tyler proposed the Ψ method to

estimate two-dimensional parameters [5], and Kujala and
Lukka applied this method to more general psychometric
functions [1, 2, 10]. Ten, psychometric functions with
higher dimensional parameters were estimated, such as four-
dimensional parameters in the contrast sensitivity function
and driving gap acceptance function [6, 13]. Furthermore,
Watson extended the QUEST method to estimate psycho-
metric parameters with multiple dimensions [15]. On the
other hand, it is well known that the optimization algorithm
of Bayesian adaptive estimation considers to make full use of
the information contained in parameter distribution and
emphasizes the convergence of the estimation. Kuss et al.
discussed the importance of parameter prior distributions to
extract the information contained in experimental data [3].
Te authors in [16–20] considered the estimation deviation
of parameters by efectively using the limited measurement
information to improve the estimation efciency.

However, in each implementation trial of Bayesian
adaptive estimation, the optimization algorithm selects the
most informative stimulus, by searching the parameter space
of the psychometric function [1, 6, 13]. If the parameter
dimension increases, the time complexity of the stimulus
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selection increases exponentially. Te upper bound of the
information gained from the optimization algorithm [21, 22]
has not been well studied, and how the theoretical bound
impacts the stimulus selection as well as the computation
efciency needs further investigation. Furthermore, theMSE
curves of the estimated parameters in experiments usually
become almost level after some trials [6], which is also
desirable to be explained.

Tis paper investigates the theoretical upper bound of
the information gain of the parameters resulting from the
optimization algorithm of Bayesian adaptive estimation.
Tis bound theoretically decides how much information the
estimation algorithm can gain trial by trial and explains why
the advantage of information gain from Bayesian adaptive
estimation diminishes with the decrease of the uncertainty of
the parameter distribution. Terefore, this paper proposes
the exploration-exploitation (E-E) approach to improve
classical Bayesian adaptive estimation by selecting the
stimulus randomly once the low-parameter uncertainty is
detected, from the perspective of machine learning
[21, 23–25]. Te proposed approach tries to trade of the
exploration (parameter posterior uncertainty) and the ex-
ploitation (parameter mean estimation). It is not necessary
for the exploitation trials to search the stimulus space and
parameter space to calculate the maximal mutual infor-
mation repeatedly and thus to improve the computation
efciency substantially. Te proposed E-E approach is ap-
plied to two parameter estimation instances, contrast sen-
sitivity function (CSF) and heterogeneous gap acceptance
function (GAF). Experiment simulation results demonstrate
that the computation time is saved by 34.74% for CSF and
34.27% for GAF with same MSE convergence. Tus, the
proposed algorithm, compared to the classical Bayesian
adaptive estimation, is more suitable for the practical online
experiment implementations.

2. Problem Statement

2.1. Psychometric Function. In psychophysics, the psycho-
metric function is used to describe the probability of psy-
chological feedback after a certain stimulus is applied to the
individual subject [2]. Usually, the psychometric function
with multidimensional parameter θ ∈ Rl is represented as
Φ(y, d, θ), where d is the stimulus and y is the random
binary feedback which indicates that the subject “rejects” or
“accepts” the given stimulus. When given the stimulus d, the
conditional probability p(y | θ, d) of the subject’s feedback y

can be expressed as

p(y | θ, d) �
Φ(y, θ, d), y � 1,

1 − Φ(y, θ, d), y � 0.
 (1)

Te objective is to estimate the subject’s true parameter θ
of the psychometric function in as few steps as possible, due
to the cost of collecting the individual subject’s data.

Parameter estimation problems exist in many felds such as
visual [12, 13], olfactory [26, 27], and behavioral [6, 28]
research.

2.2. Bayesian Adaptive Estimation. Bayesian adaptive esti-
mation is mainly used to estimate the subject’s parameter θ
in psychometric function Φ(y, d, θ). Let Y be the random
variable of the subject’s feedback and Θ be the random
variable of the parameters. Given the feedback space Y �

0, 1{ }, stimulus space D⊆Rl′ , and parameter space Ξ⊆Rl, it
selects the most informative stimulus

dt � argmax
d∈D

I Θ; Y | d, pt(θ)( , (2)

where pt(θ) is the parameter prior distribution for trial t and
mutual information I(Θ; Y | d, pt(θ)) measures the infor-
mation gain between parameter Θ and observation Y of the
subject [1, 10]. Observe the subject’s feedback yt after ap-
plying stimulus dt. According to Bayes rule, update the
parameter posterior probability:

pt+1(θ) �
pt(θ)p yt | θ, dt( 

Ξpt(θ)p yt | θ, dt( dθ
, (3)

which is the prior probability for trial t + 1. Te details of
Bayesian adaptive estimation algorithm can be found in
[1, 5], and the fowchart is shown in Figure 1 [6].

Te basic idea of Bayesian adaptive estimation is to fnd
the most informative stimulus dt to gain the maximal in-
formation in each trial t and thus to reduce the parameter
posterior uncertainty maximally trial by trial, according to
equation (3). Currently, Bayesian adaptive estimation adopts
the gridding method to discretize the parameter space [29].
Te parameters of psychometric function are estimated by
mathematical expectation (MEAN) or maximum a posterior
probability (MAP) of the parameter posterior [6, 13, 29, 30].

3. Theoretical Bound of Information Gain

Previous experiments indicate that the parameter pos-
terior tends to be peaky and the uncertainty of the pa-
rameters decreases, when the implementation of Bayesian
adaptive estimation converges. Te parameter posterior
distribution is concentrated towards the mean of the
distribution. Moreover, Kujala [31] and Paninski [32]
presented the asymptotic theory about the convergence of
Bayesian adaptive estimation, i.e., the parameter poste-
rior distribution is asymptotically normal [31]. Bayesian
adaptive estimation selects the most informative stimulus
dt to gain the maximal information. However, this
maximal mutual information has the upper bound, which
decides that the space for the information gained from the
trial t is limited. It is important to measure theoretically
how much parameter uncertainty reduction or space for
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information gain can be anticipated by using this opti-
mization strategy [1, 10, 21].

Given the psychometric function Φ(y, θ, d) and the
conditional probability p(y | θ, d) in equation (1), the mu-
tual information can be formulated as [1, 2, 6, 32]

I(Θ; Y | d, p(θ)) � B
Θ,Y

p(θ, y | d)log
p(θ | d)p(y | d)

p(θ, y | d)
dydθ, � 

Ξ

Y

p(θ, y | d)log
p(θ | d)p(y | d)

p(θ, y | d)
dydθ. (4)

For the symmetry, the mutual information can be re-
written as [2, 33]

I(Θ; Y | d, p(θ)) � I(Y;Θ | d, p(θ)) � H(Y | d) − H(Y |Θ, d)

� H(Y | d) − 
Ξ
p(θ | d)H(Y | θ, d)dθ,

(5)

where

H(Y | d) � h(p(y � 1 | d))

� h 
Ξ
p(θ | d)p(y � 1 | θ, d)dθ ,

(6)

H(Y | θ, d) � h(p(y � 1 | θ, d)), (7)

where h(p) � − p  logp − (1 − p)log (1 − p) is defned as the
entropy of the binary distribution with probability p and
1 − p [6].

Theorem 1. Let d be the stimulus and p(θ) be the prior
distribution of parameter θ; then,

max
d∈D

I(Θ; Y | d, p(θ)) ≤H(Θ), (8)

where H(Θ) � − 
θ∈Ξ

p(θ)logp(θ) is the entropy of parameter
θ.

Proof. For stimulus d, the following holds:

I(Θ; Y | d, p(θ)) ≤H(Θ | d), (9)

Bayesian 
adaptive 

design
Stimulus dt

Feedback yt

pt (θ) pt+1 (θ)

Figure 1: Flowchart of Bayesian adaptive estimation.

Input: parameter space Ξ, initial parameter prior p0(θ), stimulus space D, threshold ε, experiment trial T.
Output: estimated parameter θ.
Step 1: Set t � 1.
Step 2: For all d ∈ D, computept(y � 1 | d) � θpt(y � 1 | θ, d)pt(θ) by (1). Compute binary posterior entropy
Ht(Y | d) � h(pt(y � 1 | d)) and binary conditional posterior entropy Ht(Y |Θ, d) � θpt(θ)h(pt(y � 1 | θ, d)) by equations (5)
and (7). Calculate mutual information It(Θ; Y | d, pt(θ)) � Ht(Y | d) − Ht(Y |Θ, d).
Step 3: Select dt � argmaxd∈D It(Θ; Y | d, pt(θ)) and compute parameter entropy Ht(Θ). Apply the stimulus dt to the subject and
observe the subject’s response yt. Update the parameter prior distribution pt+1(θ) � (pt(θ)p(yt | θ, dt)/Ξpt(θ)p(yt | θ, dt)dθ), and
then let t � t + 1. If Ht(Θ)> ε; go to Step 2. Else, go to Step 4.
Step 4: Select dt ∈ D randomly. Apply the stimulus dt to the subject and observe the subject’s response yt. Update the parameter
prior distribution pt+1(θ) � (pt(θ)p(yt | θ, dt)/Ξpt(θ)p(yt | θ, dt)dθ). If t≤T, let t � t + 1 and go back to Step 4. Else, output the
parameter estimator θ � θ∈Ξpt(θ) × θ.
End

ALGORITHM 1: Exploration-exploitation Bayesian adaptive estimation (EE-BAE).
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by the theory of information [31]. In fact, p(θ | d) � p(θ)

holds given any stimulus d; then, H(Θ | d) � H(Θ). Also,

max
d∈D

I(Θ; Y | d, p(θ))≤H(Θ). (10)
□

Proposition 1. Let d be the stimulus and Y be the random
variable of the subject’s feedback; then, in Bayesian adaptive
estimation,

H(Θ | d)≥H(Θ | Y, d), (11)

where H(Θ | Y, d) is the conditional entropy of parameter θ.

Proof. By the theory of information cannot hurt [33, 34], we
can get

H(Θ|d)≥H(Θ|Y, d). (12)

Teorem 1 indicates that the mutual information
I(Θ; Y | d, p(θ)) for any stimulus d will never be greater than
the entropy H(Θ) of parameter θ, i.e., the information
gained from the trial t will be less than the uncertainty of
parameter θ, in the sequential decision of Bayesian adaptive
estimation. Proposition 1 indicates that under the obser-
vations of the random subject’s feedback Y, the parameter
entropy H(Θ) can be reduced for any stimulus d and H(Θ)

decreases monotonically and sequentially.
In the implementation of Bayesian adaptive estimation,

the parameter posterior becomes peaky and asymptotically
normal [31, 32], i.e., the parameter posterior distribution is
asymptotically normal such that the determinant of the
posterior covariance in a certain neighborhood of the true
subject parameter value is asymptotically minimal [32]. Tis
can be explained by Proposition 1 that the uncertainty of
parameters decreases monotonically. When the parameter
uncertainty is low enough, the maximal mutual information
will be close to the current parameter entropy. Te infor-
mation gained from the maximal mutual information de-
creases gradually, and the advantage obtained from Bayesian
adaptive estimation diminishes continuously. Tis can
clarify why the MSE curves of the estimated parameters
become almost level after some trials, which is mentioned in
Introduction. On the other hand, the space to reduce the
parameter uncertainty is narrow and the parameter un-
certainty H(Θ) will continuously decrease with diferent
stimulus from Proposition 1. So, diferent stimuli do not
create much diference in the information gain from the
Bayesian inference, especially in the MSE curves of the
parameters. In this case, we can use the other strategy to
select the stimulus instead of the most informative stimulus
without hurting the accuracy of parameter estimation. □

4. Exploration-Exploitation Approach for
Bayesian Adaptive Estimation

It should be noticed that the optimization algorithm of
classical Bayesian adaptive estimation searches the param-
eter space and stimulus space to compute the maximal
mutual information max

d∈D
I(Θ; Y | d, pt(θ)) for each trial t, by

calling psychometric function repeatedly. According to
Teorem 1, when the entropy of the parameters in the
implementation of Bayesian adaptive estimation is low
enough, the space to gain the information gets narrow
dramatically. In this case, we can try the other strategy to
select the stimulus to avoid the large computation. Tis
paper proposes the exploration-exploitation (E-E) approach
to generate the stimulus randomly to enhance the compu-
tation efciency, instead of the most informative stimulus in
Bayesian adaptive estimation, when the low-parameter
entropy is detected. Terefore, this proposed approach tries
to trade of the exploration (parameter posterior uncer-
tainty) and the exploitation (parameter mean estimation).

4.1. Exploration Based on Maximal Mutual Information.
For trial t, when the parameter distribution is still highly
uncertain and Bayesian adaptive estimation has great ad-
vantages to explore the stimulus space, the maximal mutual
information max

d∈D
I(Θ; Y | d, pt(θ)) is far away from the

current bound H(Θ) and the algorithm chooses
dt � max

d∈D
I(Θ; Y | d, pt(θ)) to gain the information maxi-

mally. Ten, observe the subject’s response and update the
parameter prior distribution by Bayesian inference.

4.2. Exploitation Based on Random Stimulus. For trial t,
when the parameter distribution has low uncertainty and the
maximal mutual information is close to the bound, we carry
out the exploitation strategy by randomly selecting one
stimulus dt ∈ D, observe the subject’s response, and update
the parameter prior distribution. Because no searching in the
stimulus space and parameter space is required, such strategy
greatly improves the computation efciency. According to
Proposition 1, this exploitation strategy will continuously
reduce the parameter uncertainty H(Θ) and gradually
sharpen the parameter distribution after Bayesian inference.

4.3. Algorithm for Exploration-Exploitation Approach.
Based on the above analysis, we propose the algorithm of the
proposed E-E approach, the exploration-exploitation
Bayesian adaptive estimation. To implement the algorithm,
we adopt the threshold ε> 0 to the bound H(Θ) of the
maximal mutual information. If H(Θ)> ε, the proposed
algorithm selects stimulus through maximal mutual infor-
mation; otherwise, the algorithm selects stimulus randomly.

To estimate the parameters of given psychometric
function Φ(y, d, θ), all inputs of Algorithm 1 are initialized.
Step 2 of Algorithm 1 calculates the mutual information for
all stimulus d in the current experimental trial. Step 3 selects
the most informative stimulus, by using exploration strategy
to update the parameter prior for the next trial, and cal-
culates the parameter entropy to decide whether to go to
Step 4. Step 4 selects stimulus randomly, by using exploi-
tation strategy to update the parameter prior. Te parameter
estimator θ is calculated by the MEAN of the parameter
posterior.
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Te asymptotic theory presented by Paninski shows that
the Bayesian adaptive estimation converges for psycho-
metric functions [32]. It is well known that the convergence
holds when choosing the stimulus dt randomly [32]. Tus,
the E-E approach will fnally converge, no matter when to
switch from the exploration procedure based on the max-
imal mutual information to exploitation procedure based on
the random stimulus.

5. Experiment Simulations

To demonstrate the performance and computation efciency
of the proposed E-E approach for Bayesian adaptive esti-
mation, we conduct experiment simulations for the parameter
estimation problems of contrast sensitivity function (CSF)
and heterogeneous gap acceptance function (GAF). Te CSF
and GAF are classic empirical models from the felds of vision
[35] and transportation [28], respectively, and the Bayesian
adaptive estimation method for CSF and GAF models was
studied by Lesmes et al. [13] and Zhu and Zhang [6]. In this
paper, we conduct computer simulations instead of real-word
experiments. At each trial of the simulated experiment, the
most informative design or random design for the parameter
estimation is computed, and the subject’s feedbacks are ob-
served. Te performance of the proposed EE-BAE algorithm
is compared with the classical Bayesian adaptive estimation
algorithm, and both algorithms are implemented in MAT-
LAB R2018a with CPU i5-10400F, RAM (16GB DDR4), and
GPU Nvidia GeForce RTX 2060s (8G).

In Bayesian adaptive estimation, the choice of parameter
initial prior distribution greatly infuences the estimation
convergence [2, 3, 6, 13]. Tis paper focuses on the per-
formance and computation efciency of the E-E approach
with the theoretical bound. Terefore, to avoid the infuence
of parameter initial prior distribution, the paper adopts the
non-informative uniform prior [6] as the initial prior

distribution for both the proposed E-E approach and the
classical Bayesian adaptive estimation. To reduce the ran-
domness efect in the simulations, each experiment is re-
peated for 5000 times. In order to make fair comparisons, all
initial settings and gridding settings are set the same.

Te mean square error (MSE) [6, 13] between the es-
timated parameter value and the true value is assessed as the
criterion for both algorithms. Te MSE for the true pa-
rameter θture in the psychometric function is defned as

MSEt �

����������

θt − θture 
2



, (13)

where θt � 
θ∈Ξ

pt(θ) × θ is the estimator of parameter θture in
trial t.

5.1.ContrastSensitivityFunction. Contrast sensitivity (CS) is
a clinical measure to predict the functional vision. Te
parameter estimation problem of the contrast sensitivity
function (CSF) mainly investigates how grating sensitivity
varies with spatial frequency and contrast in the visual
perception [13, 35]. CSF can be represented as [13, 35].

Φ � min 1 − μ, 1 − 0.5∗ 1 − 102 − S(f)− log10(c)[ ]   ,

(14)

where μ � 4% and

S(f) �
S′(f), f≥fmax,

log10 cmax(  − δ1, f<fmax  and S′(f)< cmax − δ1,

⎧⎨

⎩

(15)

with the logarithmic sensitivity

S′(f) � log10 cmax(  − κ
log10(f) − log10 fmax( 

β′/2
 

2

, (16)

where κ � log10 (2), β′ � log10 (2β1). f and c are the stimuli,
where f is the grating frequency and c is the grating contrast.
θ � cmax, fmax, β1, δ1  is the parameter vector to be esti-
mated. Te subject has binary feedback y ∈ 0, 1{ }, where y �

1 indicates the correct response for the grating of frequency f

and contrast c and y � 0 indicates the wrong response.
Te ranges of the parameters in CSF are set as

cmax ∈ [2, 2000], fmax ∈ [0.2, 100], β1 ∈ [2, 128], and
δ1 ∈ [0.2, 3]. Te ranges of stimuli are set as
f ∈ [log10 0.2, log10 36] and c ∈ [log10 0.001, log10 1] [13, 35].
Te experiments are conducted by the grid searching. 20 grid
points are set for each parameter, and 20 points are set for
each stimulus (f and c. Te parameter estimation experi-
ment simulations are conducted for 250 trials, and the
threshold of the E-E approach value in the simulations is
given as ε � 1.5 to apply the exploitation strategy in 110
trials. Te parameter entropy curves for Ht(Θ) by the
proposed E-E approach and classical Bayesian adaptive
estimation can be seen in Figure 2.TeMSE performances of
two approaches are compared (as shown in Figure 3).

Figure 2 shows that Ht(Θ) curves of two methods de-
crease monotonically as discussed in Proposition 1. Curves
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Figure 2: Ht(Θ) curves of CSF. Te red line is the Ht(Θ) curve
using the proposed E-E approach, and the black line is the Ht(Θ)

curve using the classical Bayesian adaptive estimation.
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of the E-E approach and classical Bayesian adaptive esti-
mation decrease quickly. Tis means that the proposed E-E
approach can efectively reduce the uncertainty of param-
eters. It is reasonable to see that the red line is a little higher
than the black line after the exploitation strategy is applied
because classical Bayesian adaptive estimation selects the
most informative stimulus for all trials.

Both the proposed E-E approach and the classical
Bayesian adaptive estimation select the most informative
stimulus when Ht(Θ)> ε, and the E-E approach selects the
stimulus randomly after Ht(Θ)≤ ε. Te MSE curves of the
E-E approach and the classical Bayesian adaptive estimation
converge and almost overlap as shown in Figure 3. Tis is
slightly diferent from the Ht(Θ) curves because we take the
mean to compute the parameter estimator. Terefore, the
proposed E-E approach trades of the parameter posterior
uncertainty and the parameter mean estimation.

Figure 3 shows that both the proposed E-E approach and
the classical Bayesian adaptive estimation can accurately
estimate all parameters in the CSF estimation, and the
diference between their MSE performance is marginal. For
250 trials, the experiment of the E-E approach runs for 7.57
seconds, but the classical Bayesian adaptive estimation runs
for 11.60 seconds. Te computation time of the E-E ap-
proach is substantially shortened by 34.74%.

5.2. Heterogeneous Gap Acceptance Function. Te hetero-
geneous gap acceptance studies the driver’s response (ac-
ceptance or rejection) to diferent driving gaps when
crossing a trafc stream, to provide the driving propensity of
the individual driver [6, 28]. Miller’s heterogeneous gap
acceptance function with two parameters is represented as
[6, 28].
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Figure 3: MSE curves of CSF, with the true value of parameters θture � 100, 2.5, 2.5, 0.25{ }: (a) MSE of parameter cmax, (b) MSE of parameter
fmax, (c) MSE of parameter β1, and (d) MSE of parameter δ1. Te red line is the MSE curve using the proposed E-E approach, and the black
line is the MSE curve using the classical Bayesian adaptive estimation.
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Φ � Φ
d − Tcr

σ
 . (17)

Te stimulus d is the gap which driver faces, and Φ(∙)
is the standard cumulative normal probability function.
Binary feedback y � 1 indicates that the driver accepts the
gap d when facing it, and y � 0 indicates that the driver
rejects d. θ � Tcr, σ  are the driver’s parameters to be
estimated.

Te ranges of the parameters of GAF are set as
Tcr ∈ [5, 10], σ ∈ [1, 4]. Te range of stimuli d is set as
d ∈ [4, 12] [6, 28]. Te experiment simulations are

conducted by the grid searching. 20 grid points are set for
each parameter, and 25 points are set for the stimulus d.
Te experiments are taken for 300 trials, and the threshold
of the E-E approach is set as ε � 6.4 to apply the exploi-
tation strategy in 160 trials. Te parameter uncertainty is
compared in each experimental trial by the E-E approach
and classical Bayesian adaptive estimation, as shown in
Figure 4. Te MSE comparisons for GAF parameter es-
timation by two methods are shown in Figure 5.

Figure 5shows that Ht(Θ) in the parameter entropy of
CSF between two methods decreases monotonically and
quickly. Similar to the explanation for the results of CSF,
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Figure 4: MSE curves of heterogeneous gap acceptance function, with the true parameter θture � 7.3, 2.2804{ }: (a) MSE of parameter Tcr; (b)
MSE of parameter σ. Te red line is the MSE curve using the proposed E-E approach, and the black line is the MSE curve using the classical
Bayesian adaptive estimation.
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Figure 5: Ht(Θ) curves of GAF. Te red line is the Ht(Θ) curve using the proposed E-E approach, and the black line is the Ht(Θ) curve
using the classical Bayesian adaptive estimation.
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the red E-E approach line diverts a little higher from the
black classical algorithm line.

Figure 4 shows the performance comparisons of the
parameter estimation of GAF between the E-E approach
and the classical Bayesian adaptive estimation. Similar to
the results of CSF experiments, the MSE curves of both
E-E approach and classical Bayesian adaptive estimation
converge and the MSE diference between two methods is
minor (as shown in Figure 4). Te parameter estimation of
Tcr converges faster than parameter σ obviously. GAF has
two parameters, and CSF has four parameters to be es-
timated. Te true parameter values for CSF are selected far
away from the mean of initial prior distribution, and the
true parameter values for GAF are selected close to the
mean of initial prior distribution. So, the shapes of MSE
curves of GAF are diferent from CSF, and the conver-
gence of the estimations takes more trials. For 300 trials,
the experiment of the E-E approach runs for 2.11 seconds,
but the classical Bayesian adaptive estimation takes 3.21
seconds. Te computation time of the E-E approach is
saved by 34.27%.

6. Conclusion

Te paper investigates the theoretical bound of the in-
formation gained from Bayesian adaptive estimation for
the parameter estimation in psychometric functions. Te
advantage to gain the information from classical Bayesian
adaptive estimation is limited when the parameter pos-
terior distribution gets peaky. Especially, the bound of the
information gain gradually decreases when the estimation
experimental trial goes on. Tus, the paper proposes the
exploration-exploitation approach to accelerate the
computation by selecting the stimulus randomly once the
low-parameter uncertainty is detected and trades of the
parameter posterior uncertainty and the parameter mean
estimation. Te experiment simulation results, from the
parameter estimations of psychometric functions CSF and
GAF, indicate that the proposed approach improves the
computation efciency by 34.74% for CSF and 34.27% for
GAF with the same accuracy for estimations. Tis com-
putation efciency is well suitable for online experiments.
Te proposed exploration-exploitation approach for
Bayesian adaptive estimation can be applied in parameter
estimations of various psychometric functions in psy-
chophysics. It can be also extended to behavioral and
neural sciences and clinical and more felds using the idea
of Bayesian adaptive estimation.
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