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As an important part of the education system, college physical education directly a­ects the comprehensive development of
college students’ physical and mental quality. It is necessary to build a scienti�c and e�cient evaluation index of college physical
education teaching quality. Physical �tness monitoring is an important indicator for the quality evaluation of physical education.
However, how to achieve lightweight, portable, and high-accuracy quantitative physical �tness monitoring is currently a major
challenge. In order to solve the above challenges, this paper proposes a method of constructing a physical education quality
evaluation index based on wearable devices. �e wearable device collects human ECG signals, calculates the exercise intensity of
participating students, and realizes quantitative evaluation of the quality of physical education teaching. Aiming at the problems of
complex equipment and low accuracy of the existing exercise intensity detectionmethods, this paper proposes an ECG signal wave
group detection algorithm based on a one-dimensional convolutional neural network (1D-CNN) to obtain the heart rate
variability signal more accurately. After obtaining the ECG feature vector, the SVM classi�er is used to predict the exercise
intensity. In order to verify the e­ectiveness of the method in this paper, the real data collected from students of one university and
a public available dataset are selected for experiments. �e experimental results show that the method proposed in this paper
achieves a good performance.

1. Introduction

Physical education [1] plays an important educational role in the
education and training goals of colleges and universities. As an
indispensable and important educational link, the quality of
physical education teaching directly a­ects the training of tal-
ents’ comprehensive quality. �e quality evaluation system
should be conducive to the healthy and harmonious develop-
ment of college students. Physical �tness monitoring is an
important indicator of physical education quality evaluation [2].
Lightweight, portable, and highly accurate quantitative physical
�tness monitoring is very important for building a scienti�c
physical education quality evaluation system. In the process of
sports training, it is an important part of scienti�c physical
education to e­ectively monitor the physiological parameters of
athletes and objectively assess the physical function state of
athletes: excessive exercise will cause loss of organs and internal
organs, causing irreversible damage to athletes. Insu�cient

exercise will not achieve the e­ect of exercise, making sports
ine�cient.

Heart rate [3] is a technical term used to describe the
cardiac cycle and also refers to the number of times the heart
can contract per minute during exercise. Heart rate is one of
the easiest indicators to measure the cardiovascular system.
It can re�ect not only cardiovascular function but also the
degree of energy saving and recovery of the body and has
high reliability. Heart rate variability is an index to evaluate
the function of the autonomic nervous system, which can
re�ect the activity and coordination of sympathetic and
parasympathetic nerves. With the deepening of research, it
has been gradually introduced into the monitoring indica-
tors of physical �tness in the process of physical training.
Changes in heart rate are the most reliable indicators for
monitoring exercise load.

Easy to wear, scienti�c records, etc. are the issues that
should be paid attention to in physical exercise monitoring.
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With the development of electronic information technology,
the continuous reduction of chip size, the diversification of
sensor data collection, and the continuous improvement of
computing speed, wearable exercise monitoring equipment
can well meet this challenge. *is paper proposes a method
for constructing a physical education quality evaluation
index based on wearable devices. *e wearable device col-
lects human ECG signals, sends them to the computer
through Bluetooth for processing, and calculates the exercise
intensity of the participating students. It can help physical
education teachers to grasp the students’ physical fitness,
functional state, and fatigue.*us, this collected information
can favor scientific control and adjustment of curriculum
development, to achieve quantitative assessment of the
quality of physical education. *e ECG signal will inevitably
be interfered by various noise signals during the acquisition
process, which will seriously affect the detection efficiency in
the automated testing process. In addition, the accuracy of
R-wave detection is the key problem for heart rate variability
signal extraction that should be solved first. In order to solve
this problem, this paper proposes an ECG signal wave group
detection algorithm based on a one-dimensional convolu-
tional neural network to obtain the heart rate variability
signal more accurately. After obtaining the ECG feature
vector, the SVM classifier is used to predict the exercise
intensity.

*emain contributions of our paper can be concluded as
follows:

(1) A novel physical education quality evaluation
method based on wearable devices is proposed. By
collecting ECG signals and monitoring students’
physical fitness, the quantitative evaluation of
physical education quality is realized.

(2) An ECG signal processing method based on a one-
dimensional convolutional neural network is
proposed.

(3) A exercise intensity prediction algorithm based on
an SVM classifier is proposed tomonitor the physical
fitness of participants.

(4) *e experimental evaluation is launched on the data
collected from students of one university and public
available dataset. *e results show that the proposed
method in this paper has good performance.

*e following paper is organized as follows: Section 2
details the related work. Section 3 provides the detail de-
scription about our proposed method. Section 4 evaluates
our method based on data collected from the participants as
well as data from the public available datasets. Finally,
Section 5 concludes our paper.

2. Related Work

At present, China is actively exploring the combination of
smart wearable devices and school sports work. With the
advanced technical support, portability, and interactivity of
smart wearable devices, it is applied to school sports work to
serve school sports. *e study [4] pointed out that the

current physical condition of students is on the decline. By
developing a wearable intelligent human body exercise in-
tensity monitoring system, the physical exercise process of
students can be monitored so that the physical exercise of
students is in a reasonable intensity process [5]. Besides, it
can effectively improve the sports efficiency and improve the
physical health of students. *e American College of Sports
Medicine conducts an annual survey of 2,800 fitness experts
in the United States, and the results show that the use of
smart wearable devices has become the first of seven fitness
trends. Accurate data, considerate services, and portability
provide strong support for the popularization of smart
wearable devices. With the improvement of people’s living
standards, more and more attention is paid to their physical
health. Wearable devices provide users with all-weather
services, which can motivate users to choose a healthier
lifestyle.

Heart rate is an important indicator for health assess-
ment and disease diagnosis, which can be continuously and
dynamically monitored by wearable physiological sensing
technology [6]. Heart rate can be used as an objective
evaluation index of the physiological load of human exercise,
and it is of great significance in preventing the injury of high-
intensity physical training and helping to formulate a per-
sonalized fitness plan [7]. Since most algorithms calculate
heart rate by extracting the time interval between adjacent
R-wave peaks, accurate heart rate detection relies on ac-
curate localization of the QRS complex [8].

Deep learning is a branch of artificial neural networks in
machine learning. It allows computers to learn data rep-
resentations with multiple levels of abstraction using
computational models with multiple processing layers [9]. It
has been used in many disciplines such as computer vision,
speech recognition, natural language processing, and bio-
informatics [10, 11]. More and more deep learning-based
methods are used to study the problem of arrhythmia di-
agnosis. Mathews et al. [12] proposed a deep learning-based
arrhythmia classification algorithm, using single-lead ECG
signals with a sampling rate of 114Hz for arrhythmia
classification. Pławiak and Acharya [13] used 10s ECG signal
segments to enhance features through power density esti-
mation and proposed a novel 3-layer deep genetic classifier
for arrhythmia classification. *e study [14] proposed a data
augmentation technique using Generative Adversarial
Networks (GAN) to balance the dataset and effectively
improve the performance of the same model for ECG
classification. Li et al. [15] proposed an intelligent recog-
nition algorithm for ECG arrhythmia signals based on
wavelet adaptive threshold filtering and deep residual
convolutional neural network (DR-CNN), which effectively
improved the overall recognition accuracy rate, sensitivity,
and specificity of ECG arrhythmia signals.

Šarlija et al. [16] proposed a QRS complex detection
algorithm based on a one-dimensional convolutional neural
network (1D-CNN). Xiang et al. [17] applied the attention-
based two-level 1D-CNN method for QRS complex detec-
tion. First, the differential signal and the average differential
signal of the ECG signal were obtained through data pre-
processing, and then the different signals were sent to the
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object level. CNN and part-level CNN are used to extract
features of di­erent granularities of ECG signals. Finally, the
morphological features extracted by object-level CNN and
part-level CNN are fused and provided to multilayer per-
ceptron for QRS complex detection. However, the above
algorithm needs to perform multiple preprocessing opera-
tions on the signal, which is equivalent to �ltering the signal,
which will �lter out useful information in the ECG signal
and increase the computational complexity of the algorithm.

3. Our Method

�e overall architecture of the method proposed in this
paper is shown in Figure 1. First, the ECG signals of the
students participating in the course are collected through the
wearable device. �en, the wearable device transmits the
data to the computer through Bluetooth. Next, the collected
data are preprocessed. In this phase, a one-dimensional
convolutional neural network (1D-CNN) model is exploited
to analyze the data and extract features of QRS complex.
Finally, the ECG feature vector obtained in the previous
stage is input into the SVM classi�er as training data A
classi�er with three levels of exercise intensity is obtained.
During the running phase, the test data are fed into the
trained SVM classi�er to detect the exercise intensity of the
participating students. It can be helpful for physical edu-
cation teachers to grasp the physical function state and
fatigue of students. �us, the course can be controlled and
adjusted scienti�cally and quantitatively to improve the
quality of physical education teaching.

3.1. ECG Signal Acquisition Based on Wearable Devices.
In this paper, the IREALCARE2.0 �exible remote ECG patch
is used as a wearable device to monitor heart conditions and
collect ECG signals. It has the characteristics of small size,

light weight, and accurate and reliable measurement data. Its
core electrical signal measurement chip is ADS1291, which is
a low power 2-channel 24 bit analog front end for bio-
potential measurement. After the signal acquisition is
completed, through �ltering, ampli�cation, and other op-
erations, the signal is input to the ADC, converted into a
digital signal, and �nally transmitted to the back-end
computer through Bluetooth for data analysis and pro-
cessing. �e work�ow diagram of the wearable device can be
seen in Figure 2.

3.2. 1D-CNN Based ECG Feature Vector Output Algorithm.
In this paper, the QRS complex detection algorithm based on
a one-dimensional convolutional neural network (1D-CNN)
is exploited to analyze and process the data transmitted by
the wearable device and to obtain the ECG feature vector.
�e speci�c process is as follows.

3.2.1. Data Preprocessing. �ere are threemain types of ECG
signal noise, namely EMG interference, power frequency
interference, and baseline drift [18]. For these three kinds of
noise signals, di­erent �lters are used to �lter out these three
kinds of noise signals, respectively. �e frequency of the
ECG signal is between 0.01Hz and 100Hz [19], generally
concentrated in 0.25–40Hz. However, the frequency dis-
tribution of EMG signals is wide, usually between 40Hz and
tens of thousands of Hz. For example, the EMG noise of a
single �ber is between 500Hz and 10000Hz [20]. Relatively
speaking, the ECG signal is located in the low-frequency
band, so a low-pass �lter is used to �lter out the EMG
interference signal. �e power frequency interference usu-
ally includes 50Hz or 60Hz sine wave and its harmonic
signal [21]. �erefore, the 50/60Hz notch �lter is designed
by the window function method; that is, a low-pass �lter is
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Figure 1: Overall architecture of our method.
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Figure 2: Work�ow diagram of the wearable device.
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used to superimpose a high-pass �lter to �lter out. �e
baseline drift noise is generally between 0.05Hz and 2.0Hz,
which is close to the frequency of the ECG signal [22], and
IIR digital �lter is used to correct it as much as possible.

3.2.2. Residual Connection. CNN has the characteristics of
local connection and weight sharing [23], parameter sharing
can e­ectively reduce the problem of over�tting, and sparse
connection can allow the network to learn local features.
One-dimensional convolutional neural network [24] is a
convolutional neural network that uses one-dimensional
convolution to extract features from one-dimensional time
series sequences, which can ensure the extraction of local
features without losing time series features.

Existing studies have found that the deeper the network
is built, the easier it is to have gradient disappearance and
network over�tting. Residual connections can e­ectively
solve the problems of network degradation and gradient
disappearance. �e idea of residual connection is derived
from the gating idea of LSTM, which transforms the input
nonlinearly and then performs linear superposition output
with the input.

One layer of the network can usually be regarded as y�H
(x), and the output of the residual block of the residual
network can be expressed as H (x)� x+ F (x), that is to say,
the residual is the predicted value. �e di­erence between H
(x) and the observed value y� x, that is, F (x)�H (x)− x. �e
learning objective of the residual network is changed from
learning H (x) to learning residual F (x). �e network only
needs to learn the di­erence between input and output,
thereby reducing the di�culty of learning. �e output
formula of the residual block is as follows:

xl+1 � xl + F xl, wl( ). (1)

In the formula, xl+1 is the output of the l+ 1th layer; xl is
the input of the lth layer; and F(xl, wl) is the residual of the lth
layer. Skip connections can quickly feed back to another
layer or even deeper layers after a network layer is activated,
thereby avoiding the loss and loss of information in tradi-
tional convolutional layers and fully connected layers during
information transfer. Using skip connections can build a
deep network to train a deeper network, which can ensure

that the network parameters remain unchanged and the
amount of computation does not increase, while ensuring
that the network has su�cient capacity to process more
complex data.

3.2.3. 1D-CNN Model. �e common two-dimensional
convolutional neural network is often used for image
classi�cation.�e ECG signal to be processed in this paper is
a one-dimensional discrete sequence. So, the two-dimen-
sional convolutional neural network is �rst modi�ed to a
one-dimensional convolutional neural network [25] to be
suitable for ECG signal feature extraction. �e one-di-
mensional convolutional neural network structure used in
this paper is shown in Figure 3.

It consists of 1 input layer, 6 convolutional layers, 3
pooling layers, 1 fully connected layer, a Softmax layer, and
an output layer. First convolve the input once and then
divide the convolution output into two parts: one part is
saved as identity and the other part continues to be input to
the residual block part. �e result of 2 convolutions is added
to the saved identity to obtain the residual output. Use 2
residual blocks and perform two skip connections to form
the entire residual connection part. �e obtained results go
through a convolutional layer and a pooling layer to �nally
get the extracted features. Finally, the output of the pooling
layer is passed through a fully connected layer and a Softmax
layer to obtain the �nal output result.

�e convolution layer performs a convolution operation
between the feature vector of the upper layer and the
convolution kernel of the current layer. Relu is used as the
activation function to enhance the characteristics of the
original signal and reduce noise. �e parameters of the
convolution layer include the length of the convolution
kernel, the sliding step length, and padding; the three to-
gether determine the length of the output feature vector of
the convolutional layer.�e length of the convolution kernel
can be speci�ed as any value smaller than the input feature
vector. �e larger the convolution kernel, the more complex
the features that can be extracted. �e sliding step size is the
sliding length of the convolution kernel in the horizontal
direction of the feature vector each time. For example, if the
sliding step size is 2, the convolution kernel moves once
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Figure 3: Overall architecture of 1D-CNN model.

4 Computational Intelligence and Neuroscience



every other point. As the convolutional layers are stacked,
the length of the feature vector gradually decreases. For this
reason, the purpose of padding is to artificially increase the
length of the feature vector to offset the reduction in the
length of the feature vector in the calculation. Common
padding methods are Same and Valid. *e padding method
used in this paper is Valid, which is nonpadding, and P is 0.
*e formula for calculating the lengthX of the output feature
vector after each convolutional layer is as follows:

X �
W − F + 2P

S
+ 1. (2)

In the formula,W is the length of the input data, F is the
length of the convolution kernel, the value of P is determined
according to the type of all 0 padding, and S is the sliding
step size of the convolution kernel.

Pooling, also known as downsampling, does not change
the number of input feature vectors, but only changes the
length of each feature vector, mainly to reduce model
complexity and reduce overfitting.*emost commonly used
pooling methods are maximum pooling and average pool-
ing. In this paper, maximum pooling is used to reduce the
dimension of ECG data, compress features, and extract
effective features. In the feature vector area covered by the
pooling kernel, the maximum value is selected to replace all
values in the current area [26]. *e formula for calculating
the length Y of the output feature vector after each pooling
layer is as follows:

Y �
W − F

S
+ 1, (3)

whereW is the length of the input data, F is the length of the
pooling kernel, and S is the sliding step size of the pooling
kernel. Finally, the output of the fully connected layer is
passed through Softmax to obtain the probability value to
calculate the classification result.

3.3. SVM Classifier-Based Exercise Intensity Classification
Method. *e SVM classifier [27] is adopted as the classi-
fication and discrimination mechanism of different exercise
intensities. In the previous stage, the 1D-CNNmodel is used
to extract the ECG feature vectors. Next, the ECG feature
vectors are fed into the SVM classifier to train the classi-
fication model to achieve the goal of classification of the
exercise intensity.

In this paper, exercise intensity is divided into three
levels, namely low intensity, moderate intensity, and high
intensity. According to the sports intensity classification
standard issued by the Institute of Sports Science of the
General Administration of Sport of China (Table 1), the
metabolic equivalent of task (MET) value is 3 for low-in-
tensity exercise, 3 to 6 for moderate-intensity exercise, and
greater than 6 for high-intensity exercise. For example, the
MET value obtained from ActiGraph wGT3X-BT should be
moderate in intensity after comparing with Table 1. At the
same time, the relevant features of the ECG signal are
calculated and input into the SVM as a feature vector to
judge the motion level.

SVM multiclassification construction [28, 29]: Since the
SVM pair initially appeared as a binary classifier, the
multiclassification effect is not good. In this paper, the voting
method of pairwise classification is adopted, and the SVM
classifier is changed to a multiclass classifier. After many
experiments, the Radial Basis Function (RBF) is selected as
the kernel function of SVM classification, the c value is set to
1, and the penalty factor coefficient is 2.

4. Experimental Evaluation

4.1. Experimental Settings. Considering that the physical
education quality evaluation method proposed in this paper
first uses the 1D-CNN model to calculate the collected ECG
data and then uses the SVM classifier to evaluate the exercise
intensity, this paper conducts experimental evaluations on
these two parts, respectively. In this section, we first show the
experimental results of the proposed method on exercise
intensity evaluation under different sports. *e performance
of the 1D-CNN model is then evaluated using public
datasets. *e metrics to evaluate our method are listed as
follows, which are Accuracy, Precision, Recall, and F-Score,
respectively:

Accurcy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F − score � 1 + β2􏼐 􏼑
Precision · Recall

β2(Precision + Recall)
.

(4)

Among them, β is used to balance the weights of Pre-
cision and Recall in the F-score calculation. In general, β
takes 1. TP is the number of positive samples predicted as
positive samples, TN is the number of negative samples
predicted as negative samples, FP is the number of negative
samples predicted as positive samples, and FN is the number
of positive samples predicted as negative samples.

4.2. Evaluation onExercise Intensity underDifferent Exercises.
In our work, 32 college students aged 22 to 28 from a
university were selected, including 22 boys and 10 girls. *e
32 people were evenly divided into 2 groups according to
age, gender, and physical fitness, and each group had 16
people, namely Group 1 and Group 2. *e data of Group 1
were used as training data, and the data of Group 2 were used
as test data. All students were asked to carry out 4 sports
training of uniform running, table tennis, badminton, and
basketball.

Table 1: *e standards of exercise intensity.

Exercise intensity Low intensity Medium intensity High
intensity

MET value ≤3 3∼6 ≥6

Computational Intelligence and Neuroscience 5



�e tester wears the ActiGraph wGT3X-BT device [30]
and the wearable device on the front chest at the same time.
ActiGraph wGT3X-BTprovides metabolic equivalent of task
values and collects ECG signals through wearable devices.
ActiGraph wGT3X-BT is a human motion energy con-
sumption detector, which provides MET data, and MET is
the metabolic equivalent of task.

�e results are shown in Figure 4. �e experimental
results of di­erent sports are di­erent. �e accuracy rate of
these four kinds of sports (the order is: run, ping pong,
badminton, and basketball) are 87.5%, 90.625%, 100%, and
93.75%, respectively. �e average accuracy among these
results is 92.97%. �e false-negative rates are 9.375%, 6.25%,
0%, and 6.25%, respectively, while the false-positive rates are
3.125%, 3.125%, 0%, and 0%, respectively. �e average false-
negative rate and the average false-positive rate are 5.47%
and 1.56%.

Among the results we can see that, badminton has the
highest accuracy rate, which can accurately evaluate the
exercise intensity of all participating objects. Basketball is the
next most accurate, then ping pong. �e recognition ac-
curacy of uniform running is the lowest. �is paper believes
that the exercise intensity during uniform running is ob-
viously less �uctuating than other sports, which may be the
reason for the low recognition rate. �is also shows that the
method proposed in this paper is more sensitive to high-
intensity motion detection. In general, the average accuracy
of the method proposed in this paper reaches 92.97%, which
can meet the needs of daily courses considering the wearable
device scene.�erefore, the algorithm proposed in this paper
can carry out e­ective exercise intensity detection, which can
help physical education teachers to grasp the physical
function state and fatigue status of students. In addition, it
can also control and adjust the course scienti�cally, and
realize quantitative evaluation of the quality of physical
education teaching.

4.3. Evaluation on 1D-CNN-Based ECG Signal Processing
Algorithm

4.3.1. Datasets. To evaluate the e­ect of the 1D-CNNmodel
exploited in our paper, the publicly available dataset MIT-
BIH is used in this section. �e MIT-BIH arrhythmia da-
tabase includes 48 dual-channel Holter recordings, the �rst
23 records were extracted from routine outpatient data, and
the remaining 25 records were due to the inclusion of some
rare, complex, and di�cult to identify chambers. �e 48
dual-channel signal distributions are shown in Table 2. �e
normal QRS complex is usually prominent in the �rst
channel, and the signal lead axis of the second channel is
almost orthogonal to the average ECG axis. In order to
accurately locate the position of the QRS complex, the �rst-
channel signal is used in this paper. In the MIT-BIH ar-
rhythmia database, 46 records were selected (102 and 104
records did not come from MLII leads, and this paper did
not use them as a dataset) and divided them into a training
set DS1 and a validation set DS2 in a cross-patient manner.
Where DS1� (101, 106, 108, 109, 112, 114, 115, 116, 118, 119,

122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230),
DS2 for the remaining 24 records [31].

4.3.2. Evaluation on Varied Dataset Length. In this paper,
the R wave peak and random non-R wave peak positions in
the QRS complex are used as the center, and a �xed window
is used to intercept the data to form ECG signal segments.
According to the characteristics of ECG signals, this paper
takes the R wave peak and random non-R wave peak po-
sitions provided by the MIT-BIH arrhythmia database as the
center to take 50, 75, and 100 sampling points, respectively,
to form 101, 151, and 201 sampling points length dataset.

�e experimental results are shown in Figure 5. In
general, di­erent dataset lengths have achieved relatively
good experimental results, and the minimum precision is
over 97% among these three datasets. As can be seen from
Figure 5, the experimental results of the dataset length of 151
sampling points are in three. Each index is better than other
length datasets. �e experimental results with a dataset
length of 201 sampling points are slightly higher than those
with a dataset length of 101 sampling points. �erefore, the
length of the dataset is selected as 151 sampling points to
achieve the best experimental results.

4.3.3. Evaluation on the Relationship between the Number of
Iterations and the Accuracy. �e number of iterations of
CNN model training can have an impact on the experi-
mental results. In this study, the cross-entropy function is
used as the loss function, and the loss function is the op-
timization target of the model. �e smaller the cross-en-
tropy, the more accurate the prediction result. Set the
number of training iterations to 100 and evaluate the change
of the loss function and model accuracy with the number of
iterations. As shown in Figure 6, as the number of iterations
increases, the loss function of the model gradually decreases
and tends to be stable, and the loss function �nally converges
to around 0.02. �e changes in the accuracy of the model
classi�cation and recognition are shown in Figure 7. It can
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Table 2: Channel distribution of each record in the MIT-BIH arrhythmia database.

Channel1 Channel2 Record

MLII V1 101 105106107108109111 112113115116118119121 122 200 201 201 203 205 207 208 209 210 212 213 214 215 217
219 220 221 222 223 228 230 231 232 233 234

MLII V2 103 117
MLII V4 124
MLII V5 100 123
V5 MLII 114
V5 V2 102 104

95.0
101 data
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Figure 5: Experimental evaluation on varied dataset length.
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be seen that with the increase of the number of iterations, the
classi�cation accuracy of the model gradually increases and
tends to be stable, and �nally converges to about 98%.

5. Conclusion

Portable and quanti�able physical �tness monitoring is
helpful to build a scienti�c evaluation system of physical
education teaching quality in colleges and universities,
which is of great bene�t to the cultivation of talents’
comprehensive quality and to the healthy and harmonious
development of college students. Heart rate is an important
indicator for health assessment and disease diagnosis. It can
objectively evaluate the physiological load of human exercise
and can be continuously and dynamically monitored by
wearable physiological sensing technology. Aiming at the
problems of low accuracy and inconvenience of existing
methods, this paper proposes a method for constructing
physical education quality evaluation indicators based on
wearable devices. �e wearable device collects ECG signal of
the participant and computes the exercise intensity to
achieve the goal of quantitative assessment of physical ed-
ucation teaching quality. In order to solve the problem of
noise interference in the process of ECG signal extraction,
which a­ects the detection e�ciency, a one-dimensional
convolutional neural network model is introduced in this
paper. After the ECG feature vector is output, the SVM
classi�er is used to e�ciently classify the exercise intensity of
the participants. �e experimental results show that the
method proposed in this paper can achieve continuous and
convenient physical monitoring, and at the same time can
obtain good performance. �is is of great signi�cance for
helping physical education teachers to grasp the physical
state and fatigue of students, scienti�cally control and adjust
curriculum development, and achieve a quantitative eval-
uation of physical education teaching quality.
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