
Research Article
Ridge Regression Method and Bayesian Estimators under
Composite LINEX Loss Function to Estimate the Shape
Parameter in Lomax Distribution

Mansour F. Yassen ,1 Fuad S. Al-Duais ,1 and Mohammed M. A. Almazah 2

1Mathematics Department, College of Humanities and Science in Al A�aj, Prince Sattam Bin Abdulaziz University, Al-Kharj,
Al A�aj, Saudi Arabia
2Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil 61421, Saudi Arabia

Correspondence should be addressed to Fuad S. Al-Duais; f.alduais@psau.edu.sa

Received 18 June 2022; Accepted 3 August 2022; Published 29 August 2022

Academic Editor: Heng Liu

Copyright © 2022 Mansour F. Yassen et al.  is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, the Ridge Regression method is employed to estimate the shape parameter of the Lomax distribution (LD). In
addition to that, the approaches of both classical and Bayesian are considered with several loss functions as a squared error (SELF),
Linear Exponential (LLF), and Composite Linear Exponential (CLLF). As far as Bayesian estimators are concerned, informative
and noninformative priors are used to estimate the shape parameter. To examine the performance of the Ridge Regression
method, we compared it with classical estimators which included Maximum Likelihood, Ordinary Least Squares, Uniformly
Minimum Variance Unbiased Estimator, and Median Method as well as Bayesian estimators. Monte Carlo simulation compares
these estimators with respect to the Mean Square Error criteria (MSE’s).  e result of the simulation mentioned that the Ridge
Regression method is promising and can be used in a real environment. where it revealed better performance the than Ordinary
Least Squares method for estimating shape parameter.

1. Introduction

Ridge Regression is a popular parameter estimation method
for analyzing multiple regression data which has multi-
collinearity. When Multicollinearity happens, Least squares
estimates are unbiased, but their variances are large. As a
result, the estimator of the Ordinary Least Squares Method
(OLS) becomes far from the true value. Ridge Regression
decreases the standard errors when a degree of bias is added
to the Regression Estimates. Several authors have addressed
Ridge Regression as in [1–10].

 e Lomax distribution (LD) is a proposed distribution
of the Pareto distribution of type II; it was used to obtain a
good model for biomedical problems. Also, it is an im-
portant model for modeling failure times.  e Lomax dis-
tribution was used as a stochastic model with a decreasing
failure rate for the operating times of the electronic vehicles

under study. It was also used in studies related to income and
studies related to the size of cities. As well as being a useful
model in studying queuing theory and in analyzing data
related to biostatistics.

Many theoretical and statistician’s studies have given
great interest to estimating the parameter and survival
analysis of LD.

Al-Noor and Alwan [11] compared the Nonbayesian,
Bayesian, and Empirical Bayes estimate for the parameters of
the LD by considering the symmetric and asymmetric loss
functions. Al-Duais and Hmood [12] compared the Bayesian
estimators and Classical estimators to estimate the param-
eter and survival analysis depending on record values and by
considering the SELF, LLF, and WLLF. Ellah [13] estimated
the parameter, reliability, and hazard function of the LD by
applying the Bayesian estimators and Classical estimators
based on record values by considering the SELF and LLF. Asl
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et al. [14] applied the Bayesian estimators and Classical
estimators of prediction on unidentified parameters of an
LD based on a progressively type-I hybrid censoring scheme.
Mohie El-Din et al. [15] studied the Classical estimations and
Bayesian estimations of the LD based on progressively type-
II censored samples and by considering symmetric (SELF)
and asymmetric (LLF and GELF), Okasha [16] estimated the
parameters, and survival analysis of the LD by applying the
E-Bayesian estimators and Bayesian estimators under type-
II censored data and by regarding the balanced squared error
loss function. Liu and Zhang [17] studied the Bayesian and
E-Bayesian estimations of the LD Based on the Generalized
Type-I Hybrid Censoring Scheme. to estimate the unknown
parameter of LD and by considering SELF and LLF to es-
timate the parameter and reliability function. Al-Bossly [18]
developed a compound LINEX loss function (CLLF) to
estimate the shape parameter of the Lomax distribution
utilizing the E-Bayes and Bayes estimation methods for the
distributional parameters of the LD.

In the current study, Ridge regression was employed to
estimate the shape parameter of LD and compare it with the
classical estimators which included Maximum Likelihood,
Ordinary Least Squares, Uniformly Minimum Variance
Unbiased Estimator, andMedianMethod as well as Bayesian
estimators. ,e uniqueness of this work comes from the fact
that, to date, no attempt has beenmade to estimate the shape
parameter of the LD using the method of Ridge regression.

,e pdf of LD is given as follows [19]:

f(x; ϑ, δ) �

ϑ
δ

1 +
x

δ
􏼒 􏼓

− (ϑ+1)

; x≥ 0; ϑ, δ > 0,

0; o.w,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x is a random variable, and δ > 0, ϑ> 0 are the scale
and shape parameters, respectively.

,e CDF and reliability function R(t) of (1) are given by
the following equation:

F(x; ϑ, δ) � 1 − 1 +
x

δ
􏼒 􏼓

− ϑ
; x≥ 0; ϑ, δ > 0, (2)

R(t) � 1 +
t

δ
􏼒 􏼓

− ϑ
; t≥ 0; ϑ, δ > 0. (3)

2. Classical Methods of Estimation of Lomax
Shape Parameter

,eClassical methods selected for the comparative study are
(i) Maximum Likelihood Estimator (MLE), (ii) Ordinary
Least Squares Method (OLS), (iii) Ridge Regression method,
(iv) Uniformly Minimum Variance Unbiased Estimator
(UMVUE), and (v) Median Method (M.M).

2.1. MLE’s of the Shape Parameter ϑ. Suppose that
x � x1, x2, . . . xn is a random sample from the LD as in (1),
then the L(x |ϑ) for the sample observation will be as follows:

L x |ϑ( 􏼁 � 􏽙
n

i�1

ϑ
δ

1 +
x

δ
􏼒 􏼓

− (ϑ+1)

�
ϑ
δ

􏼠 􏼡

n

exp[− T(ϑ + 1)], (4)

where T � 􏽐
n
i�1 In(1 + xi/δ).

Log likelihood function

ln L(ϑ, δ) � n ln ϑ − n ln δ − (ϑ + 1) 􏽘
n

i�1
ln 1 +

xi

δ
􏼒 􏼓. (5)

,e MLE’s of ϑ denoted by 􏽢ϑMLE is given as follows:

􏽢ϑMLE �
n

􏽐
n
i�1 ln 1 + xi/δ( 􏼁

. (6)

2.2. Ordinary Least Squares Method (OLS). ,e CDF in
equation (2) satisfies

ln(1 − F(x)) � − ϑln 1 +
x

δ
􏼒 􏼓 � − ϑln(δ + x) + ϑlnδ. (7)

Now, suppose that X1, X2, . . . . . . Xn form a random
sample from LD defined by (1), and that
X(1) <X(2) < . . . <X(n) are the order statistics. With ob-
served ordered observations x(1) <x(2) < . . . <x(n) (2) gives
the following equation:

ln 1 − F x(i)􏼐 􏼑􏼐 􏼑 � − ϑln 1 +
x(i)

δ
􏼒 􏼓 � − ϑln δ + x(i)􏼐 􏼑 + ϑlnδ.

(8)

(8) represents a simple linear regression function cor-
responding to F(x(i))

Yi � α + βXi + εi, (9)

where Yi � ln(1 − 􏽢Fi) and 􏽢Fii it is a point estimator of
F(x(i)) many estimators for 􏽢Fi are used.

For example, the Median Rank estimator
􏽢Fi � (i − 0.3)/(n + 0.4) or 􏽢Fi � (i − 3/8)/(n + 0.25), the
mean rank estimator 􏽢Fi � i/(n + 1). where i denotes the ith

smallest value of x(1), x(2), . . . x(n), i � 1, 2, . . . , n. εi is the
random error with expected value E(εi) � 0.
Xi � ln(δ + x(i)), β � − ϑ, α � ϑlnδ.

,e estimates 􏽢α and 􏽢β of the regression parameters, α and
β minimize the function,

Q(α, β) � 􏽘
n

i�1
Yi − α − β ln δ + x(i)􏼐 􏼑􏼐 􏼑

2
. (10)

,erefore, the estimates 􏽢βOLS of the parameter, β is given
by the following equation:

􏽢βOLS �
n 􏽐

n
i�1 ln δ + x(i)􏼐 􏼑ln 1 − 􏽢Fi􏼐 􏼑 − 􏽐

n
i�1 ln δ + x(i)􏼐 􏼑 􏽐

n
i�1 ln 1 − 􏽢Fi􏼐 􏼑

n 􏽐
n
i�1 ln

2 δ + x(i)􏼐 􏼑 − 􏽐
n
i�1 ln δ + x(i)􏼐 􏼑

2 ,

􏽢αOLS �
1
n

􏽘
n

i�1
ln 1 − 􏽢Fi􏼐 􏼑 − 􏽢βOLS

1
n

􏽘
n

i�1
ln δ + x(i)􏼐 􏼑.

(11)

,e estimate 􏽢ϑOLS of the parameter ϑ is given by the
following equation:
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􏽢ϑOLS � − 􏽢βOLS. (12)

2.3. Ridge Regression Method. Ridge Regression estimates
can be obtained by minimizing the function.

Q
∗
(α, β) � 􏽘

n

i�1
ln 1 − 􏽢Fi􏼐 􏼑 − α − β ln δ + x(i)􏼐 􏼑􏼐 􏼑

2
. (13)

According to the following constraint

α2 + β2 � ϕ, (14)

where ϕ is a definite positive constant.
,e Lagrange multiples method requires that we derive

the following:

L � 􏽘
n

i�1
ln 1 − 􏽢Fi􏼐 􏼑 − α − β ln δ + x(i)􏼐 􏼑􏼐 􏼑

2
+ λ α2 + β2 − ϕ􏼐 􏼑􏼒 􏼓,

z ln L

zα
� − 2􏽘

n

i�1
ln 1 − 􏽢Fi􏼐 􏼑 − α − β ln δ + x(i)􏼐 􏼑ln δ + x(i)􏼐 􏼑􏼐 􏼑 + 2αλ � 0,

z ln L

zβ
� − 2􏽘

n

i�1
ln 1 − 􏽢Fi􏼐 􏼑 − α − β ln δ + x(i)􏼐 􏼑􏼐 􏼑ln δ + x(i)􏼐 􏼑 + 2βλ.

(15)

,erefore, the estimates 􏽢αRid and 􏽢βRid of the parameters,
α and β are given by the following equation:

􏽢βRid �
(n + λ) 􏽐

n
i�1 ln δ + x(i)􏼐 􏼑ln 1 − 􏽢Fi􏼐 􏼑 − 􏽐

n
i�1 ln δ + x(i)􏼐 􏼑 􏽐

n
i�1 ln 1 − 􏽢Fi􏼐 􏼑

(n + λ) 􏽐
n
i�1 ln

2 δ + x(i)􏼐 􏼑 − 􏽐
n
i�1 ln δ + x(i)􏼐 􏼑􏼐 􏼑

2 ,

􏽢αRid �
􏽐

n
i�1 ln 1 − 􏽢Fi􏼐 􏼑 − β􏽐

n
i�1 ln δ + x(i)􏼐 􏼑

n + λ
,

(16)

and

λ �
ρσ2

β′β
; 0< λ< 1, (17)

where ρ represents the number of parameter of the distri-
bution and β′β represents the covariance matrix.

NOT when λ � 0, we get the estimations of the OLS.
,e Ridge Regression estimate of ϑ denoted by 􏽢ϑRid is

given as follows:

􏽢ϑRid � − 􏽢βRid. (18)

2.4. UMVUE Estimator of the Shape Parameter ϑ. ,e pdf of
LD belongs to the exponential family. ,erefore,
T � 􏽐

n
i�1 ln(1 + (xi/δ)) is a complete sufficient statistic for ϑ.

,en, depending on the theorem of Lehmann-Scheffe [20],
the uniformly minimum variance unbiased estimator
􏽢ϑUMVUE of ϑ, may be given by the following equation:

􏽢ϑUMVUE �
n − 1

􏽐
n
i�1 ln 1 + xi/δ( 􏼁

. (19)

2.5. Median Method (M.M). ,is method is dependent on
the basis that the median divides the data into two equal
parts

F xmed( 􏼁 � 0.5. (20)

By substituting into the cumulative distribution function
defined by (2). ,e equation will become

1 − 1 +
xmed

δ
􏼒 􏼓

− ϑ
� 0.5. (21)

,erefore, the estimates 􏽢ϑMed of ϑ, can be obtained as
follows:

􏽢ϑMed �
− log(0.5)

log 1 + xmed/δ( 􏼁
, (22)

where xmed is the median of the data.

3. Prior and Posterior Density Functions

3.1. Prior Distribution. ,e Bays estimators demand an
appropriate selection of priors for the parameter. If we do
not have sufficient knowledge about the parameter, in this
case, the noninformative priors are better chosen. Or else, it
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is desirable to use informative priors. In this research, we
study both types of priors: informative priors and non-
informative priors.

3.1.1. Non-Informative Prior. Let us assume that ϑ has
noninformative prior density defined as using extended
Jeffrey’s prior h1(ϑ) which is given by the following
equation:

h1(ϑ)∝ [I(ϑ)]
c
; c> 0, (23)

where I(ϑ) represented Fisher information matrix which
defined as follows:

I(ϑ) � − nE
z
2logf(x; ϑ, δ)

zϑ
􏼢 􏼣,

h1(ϑ) �
1
ϑ2c

; c> 0.

(24)

3.1.2. Informative Priors (?e Natural Conjugate Prior).
In this work, three types of prior distributions were used to
study the effect of the different prior distributions on a
Bayesian estimate of ϑ.

(a) Chi-squared prior

h2(ϑ) �
d

k/2

2k/2Γ(k/2)
ϑk/2− 1 exp −

dϑ
2

􏼢 􏼣; ϑ> 0; k, d> 0.

(25)

(b) Inverted levy prior

h3(ϑ) �

���

k

2π

􏽳

ϑ− 1/2exp −
dϑ
2

􏼢 􏼣; ϑ> 0; k> 0, (26)

(c) Gamma Prior

h4(ϑ) �
d

k

Γ(k)
ϑk− 1exp[− dϑ]; ϑ> 0; k, d> 0. (27)

3.2. Posterior Density Functions. ,e posterior distribution
for the shape parameter ϑ can be expressed as follows:

π ϑ| x( 􏼁 �
L ϑ, δ| x( 􏼁h(ϑ)

􏽒
∞
0 L ϑ, δ| x( 􏼁h(ϑ)dϑ

. (28)

Combining the L(|x |ϑ) in (4) and the prior distri-
bution of extended Jeffrey’s prior (16), chi-square prior
(17), inverted Levy prior (18), and gamma prior (19). ,e
posterior density of ϑ It can be found on respectively as
follows:

π1 ϑ| x( 􏼁 �
T

n− 2c+1

Γ(n − 2c + 1)
ϑn− 2c exp[− Tϑ]; ϑ> 0; c> 0,

π2 ϑ| x( 􏼁 �
(T + d/2)

n+k/2

Γ(n + k/2)
ϑn+k/2− 1 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣; ϑ> 0; k, d> 0,

π3 ϑ| x( 􏼁 �
(T + d/2)

n+1/2

Γ(n + 1/2)
ϑn− 1/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣; ϑ> 0; k, d> 0,

π4 ϑ| x( 􏼁 �
(T + d)

n+k

Γ(n + k)
ϑn+k− 1 exp[− (T + d)ϑ]; ϑ> 0; k, d> 0.

(29)

4. Loss Functions

In Bayes estimation, we will consider three types of loss
functions including SELL, LLF, and CLLF.

4.1. Squared Error Loss Function. ,e SELF is defined as
follows [21]:

L(􏽢ϑ, ϑ) � (􏽢ϑ − ϑ)
2
. (30)

,e Bayes estimator of ϑ relative to SELF, signified by
􏽢ϑBSE is

􏽢ϑBSE � Eh ϑ| x( 􏼁. (31)

4.2. LINEXLossFunction. ,e LINEX loss function for ϑ can
be written as follows [22, 23]:

L(􏽢ϑ, ϑ)∝ [exp[a(􏽢ϑ − ϑ)] − a(􏽢ϑ − ϑ) − 1]; a≠ 0. (32)

,eBayes estimator of ϑ relative to LLF, denoted by 􏽢ϑBL is

􏽢ϑBL � −
1
a

Ln Eϑ exp[− aϑ]􏼂 􏼃; a≠ 0. (33)

Provided that Eϑ � exp[− aϑ] exists and is finite, where
Eϑ denotes the expected value.

4.3. Composite LINEX Loss Function. CLLF is given by the
following formula [24].

L(􏽢ϑ, ϑ) � La (􏽢ϑ, ϑ) + L− a(􏽢ϑ, ϑ)

� exp[− a(􏽢ϑ, ϑ)] + exp[a(􏽢ϑ , ϑ)] − 2a> 0.
(34)

,e Bayes estimator of ϑ relative to CLLF, denoted by
􏽢βBCL, is

􏽢βBCL �
1
2a

ln
Eϑ exp[aϑ]| x( 􏼁

Eϑ exp[− aϑ]| x( 􏼁
􏼠 􏼡. (35)

Provided that Eϑ � (exp[aϑ]| x) and Eϑ(| x)(exp[− aϑ])

exist and are finite.

5. Bayes Estimator

In this part, we estimate ϑ, using three various loss functions,
including SELF, LLF, and CLLF. We assume four different
prior distributions for ϑ including; extended Jeffrey’s prior, chi-
square prior, inverted Levy prior, and gamma prior [25–28].
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5.1. Bayesian Estimator of ϑ under SELF. ,e Bayes estimates
of ϑ relative to SELF depended on π1(ϑ| x) which is signified as
􏽢ϑBSE1 and can be acquired by using equations (21) and (26) to be

􏽢ϑBSE1 � E ϑ| x( 􏼁 � 􏽚
∞

0
ϑπ1 ϑ| x( 􏼁dϑ,

􏽢ϑBSE1 � 􏽚
∞

0

T
n− 2c+1

Γ(n − 2c + 1)
ϑn− 2c+1 exp[− Tϑ]dϑ �

n − 2c + 1
T

.

(36)

Likewise, we can obtain the Bayesian estimates of ϑ
relative to SELF depending on π2(ϑ| x), π3(ϑ| x), and
π4(ϑ| x), which are signified as 􏽢ϑBSE2, 􏽢ϑBSE3, and 􏽢ϑBSE4 by
using equations ((22) and (26)), ((23) and (26)) and ((24)
and (26)), respectively, to be

􏽢ϑBSE2 � E ϑ| x( 􏼁 � 􏽚
∞

0
ϑπ2 ϑ| x( 􏼁dϑ,

􏽢ϑBSE2 � 􏽚
∞

0

(T + d/2)
n+k/2

Γ(n + k/2)
ϑn+k/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ �

n + k/2
T + d/2

,

􏽢ϑBSE3 � E ϑ| x( 􏼁 � 􏽚
∞

0
ϑπ3 ϑ| x( 􏼁dϑ,

􏽢ϑBSE3 � 􏽚
∞

0

(T + d/2)
n+1/2

Γ(n + 1/2)
ϑn+1/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ �

Γ(n + 3/2)

Γ(n + 1/2)(T + d/2)
,

(37)

and

􏽢ϑBSE4 � E ϑ| x( 􏼁 � 􏽚
∞

0
ϑπ3 ϑ| x( 􏼁dϑ,

􏽢ϑBSE4 � E ϑ| x( 􏼁 � 􏽚
∞

0
ϑπ3 ϑ| x( 􏼁dϑ,

􏽢ϑBSE4 � 􏽚
∞

0

(T + d)
n+k

Γ(n + k)
ϑn+k exp[− (T + d)ϑ]dϑ

�
n + k

T + d
.

(38)

5.2. Bayesian Estimator of ϑ under LLF. We can obtain the
Bayes estimator of ϑ under the LLF depending on π1(ϑ| x)

signified as 􏽢ϑBL1 by using equations (21) and (28) as follows:

􏽢ϑBL1 � −
1
a

Ln Eϑ exp[− aϑ]􏼂 􏼃 � 􏽚
∞

0
exp[− aϑ]π1 ϑ| x( 􏼁dϑ,

􏽢ϑBL1 � −
1
a
ln􏽚
∞

0
exp[− aϑ]

T
n− 2c+1

Γ(n − 2c + 1)
ϑn− 2c exp[− Tϑ]dϑ

�
n − 2c + 1

a
ln 1 +

a

T
􏼒 􏼓.

(39)

In the same way, the Bayes estimates of ϑ relative to LLF
depended on π2(ϑ| x), π3(ϑ| x), and π4(ϑ| x), which are
signified as 􏽢ϑBL2, 􏽢ϑBL3, and 􏽢ϑBL4 by using equations ((22) and
(28)) ((23) and (28)), and ((24) and (28)), respectively, to be

􏽢ϑBL2 � −
1
a

Ln Eϑ exp[− aϑ]􏼂 􏼃 � 􏽚
∞

0
exp[− aϑ]π2 ϑ| x( 􏼁dϑ,

􏽢ϑBL2 � −
1
a
ln􏽚
∞

0
exp[− aϑ]

(T + d/2)
n+k/2

Γ(n + k/2)
ϑn+k/2− 1 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
n + 0.5k

a
ln 1 +

a

T + d/2
􏼒 􏼓,

􏽢ϑBL3 � −
1
a

Ln Eϑ exp[− aϑ]􏼂 􏼃 � 􏽚
∞

0
exp[− aϑ]π3 ϑ| x( 􏼁dϑ,

􏽢ϑBL3 � −
1
a
ln􏽚
∞

0
exp[− aϑ]

(T + d/2)
n+1/2

Γ(n + 1/2)
ϑn− 1/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
n + 0.5

a
ln 1 +

a

T + d/2
􏼒 􏼓,

(40)

and
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􏽢ϑBL4 � −
1
a

Ln Eϑ exp[− aϑ]􏼂 􏼃 � 􏽚
∞

0
exp[− aϑ]π4 ϑ| x( 􏼁dϑ,

􏽢ϑBL4 � −
1
a
ln􏽚
∞

0
exp[− aϑ]

(T + d)
n+k

Γ(n + k)
ϑn+k− 1 exp[− (T + d)ϑ]dϑ

�
n + k

a
ln 1 +

a

T + d
􏼒 􏼓.

(41)

5.3.BayesianEstimationofϑunderCLLF. ,eBayes estimate
of ϑ under CLLF depended on π1(ϑ| x), which is signified as
􏽢ϑBCL1 by using equations (21) and (30) to be

􏽢ϑBCL1 �
1
2a

ln
Eϑ exp[aϑ]| x( 􏼁

Eϑ exp[− aϑ]| x( 􏼁
􏼠 􏼡 �

I1

I2
, (42)

where:

I1 � Eϑ exp[aϑ]| x( 􏼁 � 􏽚
∞

0
exp[aϑ]π1 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[aϑ]

T
n− 2c+1

Γ(n − 2c + 1)
ϑn− 2c exp[− Tϑ]dϑ

�
T

T − a
􏼒 􏼓

n− 2c+1
,

(43)

and

I2 � Eϑ exp[− aϑ]| x( 􏼁 � 􏽚
∞

0
exp[− aϑ]π1 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[− aϑ]

T
n− 2c+1

Γ(n − 2c + 1)
ϑn− 2c exp[− Tϑ]dϑ

�
T

T + a
􏼒 􏼓

n− 2c+1
.

(44)

,erefore, the Bayes estimation of parameter ϑ is

􏽢ϑBCL1 �
1
2a

ln
(T/T − a)

n− 2c+1

(T/T + a)
n− 2c+1􏼢 􏼣 �

n − 2c + 1
2a

ln
T + a

T − a
􏼒 􏼓.

(45)

Similarly, the Bayesian estimates of ϑ under CLLF
depended on π2(ϑ| x), π3(ϑ| x), and π4(ϑ| x), which are
signified as 􏽢ϑBCL2, 􏽢ϑBCL3, and 􏽢ϑBCL4 by using equations ((22)
and (30)), ((23) and (30)), and ((24) and (30)), respectively,
to be

􏽢ϑBCL2 �
1
2a

ln
Eϑ exp[aϑ]| x( 􏼁

Eϑ exp[− aϑ]| x( 􏼁
􏼠 􏼡 �

I3

I4
, (46)

where

I3 � Eϑ exp[aϑ]| x( 􏼁 � 􏽚
∞

0
exp[aϑ]π2 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[aϑ]

(T + d/2)
n+k/2

Γ(n + k/2)
ϑn+k/2− 1 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
T + d/2

T + d/2 − a
􏼠 􏼡

n+k/2

,

(47)

and

I4 � Eϑ exp[− aϑ]| x( 􏼁 � 􏽚
∞

0
exp[− aϑ]π2 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[− aϑ]

(T + d/2)
n+k/2

Γ(n + k/2)
ϑn+k/2− 1 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
T + d/2

T + d/2 + a
􏼠 􏼡

n+k/2

,

(48)

So

􏽢ϑBCL2 �
1
2a

ln
((T + d/2)/(T + d/2 − a))

n+k/2

((T + d/2)/(T + d/2 + a))
n+k/2􏼢 􏼣

�
n + k/2
2a

ln
T +(d/2) + a

T +(d/2) − a
􏼠 􏼡,

(49)

and

􏽢ϑBCL3 �
1
2a

ln
Eϑ exp[aϑ]| x( 􏼁

Eϑ exp[− aϑ]| x( 􏼁
􏼠 􏼡 �

I5

I6
, (50)

where

I5 � Eϑ exp[aϑ]| x( 􏼁 � 􏽚
∞

0
exp[aϑ]π3 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[aϑ]

(T + d/2)
n+1/2

Γ(n + 1/2)
ϑn− 1/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
T + d/2

T +(d/2) − a
􏼠 􏼡

n+1/2

,

(51)

and
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I6 � Eϑ exp[− aϑ]| x( 􏼁 � 􏽚
∞

0
exp[− aϑ]π3 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[− aϑ]

(T + d/2)
n+1/2

Γ(n + 1/2)
ϑn− 1/2 exp − T +

d

2
􏼠 􏼡ϑ􏼢 􏼣dϑ

�
T + d/2

T + d/2 + a
􏼠 􏼡

n+1/2

,

(52)

So
􏽢ϑBCL3 �

1
2a

ln
((T + d/2)/(T + d/2 − a))

n+1/2

((T + d/2)/(T + d/2 + a))
n+1/2􏼢 􏼣

�
n + 1/2
2a

ln
T + d/2 + a

T + d/2 − a
􏼠 􏼡,

􏽢ϑBCL4 �
1
2a

ln
Eϑ exp[aϑ]| x( 􏼁

Eϑ exp[− aϑ]| x( 􏼁
􏼠 􏼡 �

I7

I8
,

(53)

where
I7 � Eϑ exp[aϑ]| x( 􏼁 � 􏽚

∞

0
exp[aϑ]π4 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[aϑ]

(T + d)
n+k

Γ(n + k)
ϑn+k− 1 exp[− (T + d)ϑ]dϑ

�
T + d

T + d − a
􏼠 􏼡

n+k

,

(54)

and
I8 � Eϑ exp[− aϑ]| x( 􏼁

� 􏽚
∞

0
exp[− aϑ]π4 ϑ| x( 􏼁dϑ

� 􏽚
∞

0
exp[− aϑ]

(T + d)
n+k

Γ(n + k)
ϑn+k− 1 exp[− (T + d)ϑ]dϑ

�
T + d

T + d + a
􏼠 􏼡

n+k

.

(55)

,erefore, the Bayes estimation of parameter ϑ is

Table 1: MSE values for non-bayes estimators of ϑ.

Cases n 􏽢ϑMLE
􏽢ϑOLS 􏽢ϑRid 􏽢ϑUMVUE

􏽢ϑMed

I

20 0.1457 0.2021 0.1350 0.1249 0.3042
40 0.0645 0.1005 0.0870 0.0599 0.1440
60 0.0408 0.0689 0.0631 0.0388 0.0873
80 0.0302 0.0531 0.0501 0.0291 0.0665
100 0.0237 0.0417 0.0399 0.0229 0.0507

II

20 0.2551 0.3585 0.2434 0.2196 0.5406
40 0.1126 0.1814 0.1521 0.1047 0.2412
60 0.0702 0.1224 0.1105 0.0667 0.1528
80 0.0526 0.0942 0.0882 0.0507 0.1148
100 0.0412 0.0770 0.0732 0.0399 0.0878

III

20 0.3995 0.5743 0.4357 0.3462 0.7967
40 0.1743 0.2818 0.2455 0.1621 0.3770
60 0.1116 0.1864 0.1735 0.1062 0.2475
80 0.0807 0.1478 0.1416 0.0778 0.1775
100 0.0668 0.1215 0.1175 0.0649 0.1440

Table 2: MSE values for bayes estimators of ϑ with extended Jeffrey’s prior.

Cases n 􏽢ϑBSE1
􏽢ϑBL1

􏽢ϑBCL1
a � 0.5 a � 1 a � 1.5 a � 0.5 a � 1 a � 1.5

I

20 0.1457 0.1298 0.1177 0.1081 0.1464 0.1476 0.1511
40 0.0645 0.0611 0.0560 0.0532 0.0645 0.0621 0.0614
60 0.0408 0.0393 0.0371 0.0371 0.0408 0.0397 0.0408
80 0.0302 0.0294 0.0292 0.0275 0.0303 0.0307 0.0296
100 0.0237 0.0232 0.0230 0.0223 0.0237 0.0239 0.0237

II

20 0.2551 0.2200 0.1961 0.1803 0.2574 0.2628 0.2776
40 0.1126 0.1050 0.0967 0.0952 0.1128 0.1104 0.1151
60 0.0702 0.0670 0.0655 0.0632 0.0703 0.0716 0.0708
80 0.0526 0.0508 0.0504 0.0480 0.0526 0.0536 0.0526
100 0.0412 0.0400 0.0397 0.0388 0.0412 0.0419 0.0415

III

20 0.3995 0.3347 0.2922 0.2727 0.4051 0.4189 0.4535
40 0.1743 0.1601 0.1517 0.1441 0.1748 0.1780 0.1794
60 0.1116 0.1054 0.1012 0.0985 0.1117 0.1126 0.1121
80 0.0807 0.0774 0.0729 0.0723 0.0808 0.0786 0.0805
100 0.0668 0.0646 0.0600 0.0596 0.0668 0.0636 0.0646
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􏽢ϑBCL4 �
1
2a

ln
(T + d/T + d/2 − a)

n+k

(T + d/T + d + a)
n+k

􏼢 􏼣

�
n + k

2a
ln

T + d + a

T + d − a
􏼠 􏼡.

(56)

6. Simulation Study and Results

In this part, a simulation study has been conducted to assess
and examine the behavior of Classical methods and Bayes

estimators for the shape parameter of LD under different
cases. ,e following steps of the simulation are as follows:

(1) Set the true values for the parameters of LD which are
varied into three cases to observe their effect on the
estimates when δ > ϑ, δ � ϑ, and δ < ϑ “case I
(δ � 2, ϑ � 1.5 ), case II (δ � 2, ϑ � 2 ) and case III
(δ � 2, ϑ � 2.5 )”

(2) Determine the sample size n � 20, 40, 60, 80 and 100
(3) Determine the value λ� 0.75, c � 0.5,

(K, d) � (0.6, 0.2) and a � 0.5, 1 and 1.5

Table 3: MSE values for bayes estimators of ϑ with chi-square prior.

Cases n 􏽢ϑBSE1

􏽢ϑBL1
􏽢ϑBCL1

a � 0.5 a � 1 a � 1.5 a � 0.5 a � 1 a � 1.5

I

20 0.1468 0.1305 0.1177 0.1077 0.1476 0.1486 0.1522
40 0.0648 0.0613 0.0561 0.0531 0.0649 0.0625 0.0617
60 0.0410 0.0395 0.0371 0.0370 0.0410 0.0399 0.0410
80 0.0304 0.0295 0.0292 0.0275 0.0304 0.0309 0.0297
100 0.0238 0.0232 0.0231 0.0223 0.0238 0.0240 0.0238

II

20 0.2529 0.2177 0.1933 0.1771 0.2552 0.2602 0.2746
40 0.1124 0.1045 0.0961 0.0944 0.1126 0.1101 0.1149
60 0.0702 0.0668 0.0653 0.0629 0.0702 0.0715 0.0708
80 0.0526 0.0507 0.0502 0.0479 0.0526 0.0536 0.0526
100 0.0412 0.0400 0.0397 0.0386 0.0412 0.0419 0.0415

III

20 0.3895 0.3265 0.2849 0.2658 0.3948 0.4077 0.4405
40 0.1726 0.1584 0.1499 0.1423 0.1731 0.1762 0.1776
60 0.1109 0.1047 0.1005 0.0977 0.1110 0.1119 0.1114
80 0.0804 0.0770 0.0725 0.0719 0.0804 0.0783 0.0801
100 0.0666 0.0643 0.0598 0.0593 0.0666 0.0634 0.0643

Table 4: MSE values for bayes estimators of ϑ with inverted Levy prior.

Cases n 􏽢ϑBSE1

􏽢ϑBL1
􏽢ϑBCL1

a � 0.5 a � 1 a � 1.5 a � 0.5 a � 1 a � 1.5

I

20 0.1528 0.1352 0.1210 0.1100 0.1536 0.1544 0.1583
40 0.0662 0.0624 0.0569 0.0536 0.0663 0.0638 0.0630
60 0.0416 0.0400 0.0375 0.0373 0.0416 0.0405 0.0416
80 0.0307 0.0298 0.0294 0.0277 0.0307 0.0312 0.0300
100 0.0240 0.0234 0.0232 0.0224 0.0240 0.0242 0.0240

II

20 0.2630 0.2248 0.1974 0.1793 0.2654 0.2703 0.2858
40 0.1146 0.1062 0.0972 0.0951 0.1149 0.1124 0.1174
60 0.0712 0.0676 0.0658 0.0631 0.0712 0.0726 0.0717
80 0.0531 0.0512 0.0505 0.0481 0.0532 0.0541 0.0532
100 0.0416 0.0403 0.0399 0.0387 0.0416 0.0422 0.0418

III

20 0.4043 0.3358 0.2892 0.2662 0.4099 0.4234 0.4581
40 0.1760 0.1607 0.1511 0.1425 0.1765 0.1798 0.1813
60 0.1124 0.1057 0.1011 0.0977 0.1126 0.1135 0.1128
80 0.0812 0.0776 0.0728 0.0720 0.0813 0.0791 0.0811
100 0.0671 0.0647 0.0599 0.0594 0.0671 0.0639 0.0649
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(4) For a given sample size n, generate x1, x2, . . . xn by
using the following formula: xi � δ[(1 − Ui)

− 1/ϑ − 1],
i � 1, . . . , n, where Ui is uniform (0, 1)

(5) Classical methods estimation, 􏽢ϑMLE, 􏽢ϑOLS , 􏽢ϑRid,
􏽢ϑUMVUE, and 􏽢ϑMed of ϑ are computed from equations
(6), (10), (13)–(15), respectively

(6) Under SELL and based on h1(ϑ), h2(ϑ)h3(ϑ) and
h4(ϑ) priors, Bayesian estimation, 􏽢ϑBSE1, 􏽢ϑBSE2, 􏽢ϑBSE3
and 􏽢ϑBSE.

, of ϑ are computed from equations (31),
(32), (33), and (34), respectively

(7) Under LLF and based on h1(ϑ), h2(ϑ),h3(ϑ) and
h4(ϑ) priors, Bayesian estimation, 􏽢ϑBL1, 􏽢ϑBL2, 􏽢ϑBL3
and 􏽢ϑBL4, of ϑ are computed from equations (35),
(36), (37), and (38), respectively

(8) Under CLLF and based on h1(ϑ), h2(ϑ)h3(ϑ) and
h4(ϑ) priors, 􏽢ϑBCL1, 􏽢ϑBCL2, 􏽢ϑBCL3 and 􏽢ϑBCL4, of ϑ are
calculated from equations (40), (42), (44), and (46),
respectively

(9) Steps 4 to 8 are replicated 10,000 times. ,e (MSE’s)
for all Estimates of the parameter ϑ are obtained,
where

MSE (􏽢ϑ) �
1

10000
􏽘

10000

i�1

􏽢ϑi − ϑ􏼐 􏼑
2
. (57)

,e results are displayed in the following Tables 1–5.

7. Conclusions and Recommendations

In this paper, the Ridge Regression method was employed to
estimate the shape parameter of LD. Besides, researchers
made a Monte Carlo simulation to test the performance of
the Ridge Regression method. ,en, compared the Ridge

Regression estimator with the other estimators, including
MLE, OLS, UMVUE, M.M, and Bayesian estimators based
on SELF, LLF, and CLLF. However, the major observations
are identified in the following points:

(1) Among classical estimators, in Table 1, the perfor-
mance of the UMVUE was shown as better than
other estimators: “MLE, OLS, Ridge, and M.M es-
timators” in all different cases and all samples sizes.
Whereas the performance of Ridge Regression was
better than MLE. Estimator especially for a small
sample size (n � 10). In the meanwhile, the results
showed that the performance of the Ridge estimator
was better than OLS estimator in all different cases
and sample sizes.

(2) With Bayes estimators, gamma prior records full
appearance as best prior based on LLF and CLLF for
all different cases and all sample sizes. As well as that
is true under SELF with δ � ϑ and δ < ϑ , while
extended Jeffrey’s prior record as best prior based on
SELF when δ > ϑ.

(3) ,eMSE values associated with each of the classical and
Bayes estimate “corresponding to each prior and every
loss function” reduces with the increase in the sample
size. Also, the results show a convergence betweenmost
of the estimators to increase the sample sizes and this
conforms to the statistical theory.

(4) For all cases and all sample sizes, LLF (a � 1.5)

records full appearance as the best loss function
associated with Bayes estimates corresponding to
gamma prior.

(5) According to the results, MSE values of all classical
and Bayes estimators of shape parameters are de-
creasing as the shape parameter value increase.

Table 5: MSE values for bayes estimators of ϑ with gamma prior.

Cases n 􏽢ϑBSE1
􏽢ϑBL1

􏽢ϑBCL1
a � 0.5 a � 1 a � 1.5 a � 0.5 a � 1 a � 1.5

I

20 0.1482 0.1314 0.1179 0.1075 0.1489 0.1498 0.1534
40 0.0652 0.0615 0.0562 0.0530 0.0653 0.0629 0.0621
60 0.0412 0.0396 0.0372 0.0370 0.0412 0.0401 0.0412
80 0.0305 0.0296 0.0293 0.0275 0.0305 0.0310 0.0298
100 0.0239 0.0233 0.0231 0.0223 0.0239 0.0240 0.0239

II

20 0.2510 0.2156 0.1907 0.1742 0.2531 0.2578 0.2720
40 0.1121 0.1041 0.0956 0.0937 0.1123 0.1099 0.1147
60 0.0701 0.0667 0.0651 0.0626 0.0702 0.0715 0.0707
80 0.0526 0.0507 0.0501 0.0477 0.0526 0.0535 0.0526
100 0.0412 0.0400 0.0396 0.0385 0.0412 0.0419 0.0415

III

20 0.3801 0.3187 0.2779 0.2591 0.3851 0.3971 0.4284
40 0.1709 0.1567 0.1482 0.1405 0.1714 0.1745 0.1759
60 0.1102 0.1040 0.0997 0.0969 0.1104 0.1113 0.1107
80 0.0800 0.0767 0.0721 0.0714 0.0801 0.0780 0.0798
100 0.0663 0.0641 0.0595 0.0591 0.0664 0.0632 0.0641
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