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Water pollution threatens the safety of human production and life. To quickly respond to water pollution, it is important for water
management sta� to predict water quality changes in advance. Drawing on the temporality of water quality data, the leaky
integrator echo state network (ESN) was introduced to construct the water quality prediction models for dissolved oxygen (DO),
permanganate index (CODMn), and total phosphorus (TP), respectively. First, the missing values were �lled by the linear trend
method of adjacent points, and the outliers were detected and corrected by the Z-score method and the linear trend method.
Second, the singular spectrum analysis (SSA) was performed to denoise the original monitoring data, such that the predicted data
catch up with the real data, and the model accuracy is not a�ected by the hidden noise in the data. ird, the correlation between
water quality indices was measured by the maximum information coe�cient (MIC), and the strongly correlated indices were
imported to the prediction model. Finally, according to these strong correlation indicators, the water quality prediction models
based on multiple features were constructed, respectively, using the o�ine and online learning algorithms of the ESN. e
hyperparameters of the models were optimized through the sequential model-based optimization (SMBO). Experimental results
show that the proposed water quality prediction models, namely, SSA-MIC-SMBO-O�ine ESN and SSA-MIC-SMBO-Online
ESN, predicted DO, CODMn, and TP accurately, providing suitable tools for practical applications.

1. Introduction

Water is an important resource for human survival and social
development. Unfortunately, water shortage becomes an in-
creasingly severe global problem. One of the major causes of
water shortage is water pollution.With limited per-capita water
resources, China is deeply troubled by water pollution.
According to the 2020 Report on the State of the Ecology and
Environment in China (https://www.mee.gov.cn/hjzl/sthjzk/
zghjzkgb), 16.6% of the monitored surface water areas in
China belong to Classes IV and V in terms of water quality. As
the country stepped up the protection of water resources, the
focus of water pollution control has shifted from posttreatment
to preprevention. To e�ectively reduce water pollution, it is

important to predict the future trend of water quality accu-
rately. e early warning would promote the scienti�c man-
agement of water resources, maintain the sustainability of the
ecosystem, and protect human health.

In recent years, many water quality predictionmodels have
been developed based on a dazingly array of technologies,
namely, multiple linear regression (MLR) [1], regression tree
and support vector regression (SVR) [2], nonlinear least
squares (NLS) neural network [3, 4], radial basis function
(RBF) neural network [5–7], long short-termmemory (LSTM)
neural network [8–11], and graph neural network (GNN)
[12, 13]. ese models greatly advance the prediction of water
quality. However, the model performance is a�ected by various
factors in the complex and dynamic system of the water
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environment, including data quality, input features, prediction
algorithm, and selected parameters. erefore, the existing
models should be further improved to forecast water quality
more accurately.

is paper constructs the prediction models of water
quality indices through comprehensive use of multiple tech-
niques: singular spectrum analysis (SSA), maximum infor-
mation coe�cient (MIC), o�ine and online learning
algorithms of the leaky integrator echo state network (ESN)
[14], and sequential model-based optimization (SMBO). First,
the original data were smoothed and denoised through the
SSA. Next, the correlation between water quality indices was
measured by theMIC. Finally, the data on relevant indices were
collected from river monitoring stations, and imported to the
ESN, the hyperparameters of the network were optimized
through the SMBO, and the predictionmodels were established
for dissolved oxygen (DO), permanganate index (CODMn),
and total phosphorus (TP), respectively. Experimental results
show that the proposed water quality prediction models,
namely, SSA-MIC-SMBO-O�ine ESN and SSA-MIC-SMBO-
Online ESN, forecasted each water quality index accurately and
practically.

2. Leaky Integrator ESN

e ESN, a novel recurrent neural network (RNN) [14],
centers on a large, randomly generated, and sparsely con-
nected reservoir. e only thing that needs to be trained in
the network is the output connection weight. erefore, the
ESN boasts the advantages of simple structure and fast
training. During the training, the network is not prone to
falling to the local optimal trap, a common defect of tra-
ditional RNN. In this way, the network weights are always
optimized globally.

2.1. Network Structure. As shown in Figure 1, the leaky in-
tegrator ESN consists of an input layer; a hidden layer, i.e., the
reservoir; and an output layer. ere are K nodes in the input
layer, L nodes in the output layer, andN nodes in the reservoir.
At time t, the input, the reservoir state, and the output are
denoted as u(t), x(t), and y(t), respectively. e N×K con-
nection weight matrix from the input layer to the reservoir can
be expressed as Win. e N×N connection weight matrix of
the reservoir from the currentmoment to the nextmoment can
be expressed as W. e N× L weight matrix of the feedback
connection from the output layer to the reservoir can be
expressed as Wfb, and the connection is unnecessary. e
L× (N+K) connection weight matrix from the reservoir to the
output layer can be expressed asWout. Reservoir, and an output
layer. ere are K nodes in the input layer, L nodes in the
output layer, andN nodes in the reservoir. At time t, the input,
the reservoir state, and the output are denoted as u(t), x(t), and
y(t), respectively.eN×K connection weightmatrix from the
input layer to the reservoir can be expressed asWin.eN×N
connection weight matrix of the reservoir from the cu.

e reservoir state x(t) can be updated based on the
current input u(t) and the reservoir state x(t− 1) at the
previous time, using leaky integrator neurons:

x(t) �(1 − α)x(t − 1) + αf Winu(t) +Wx(t − 1)(

+Wfby(t − 1)),
(1)

where Win, W, and Wfb are randomly initialized and �xed
before network training; f is the activation function; α is the
leakage rate of the neuron; and y(t− 1) is the output at the
previous time. In this study, the activation function (tanh)
and output state equation of the network can be, respec-
tively, expressed as:

f(x) �
ex − e−x

ex + e−x
, (2)

y(t) �Woutx(t). (3)

2.2. Learning Algorithms. In the ESN, the input connection
weight matrix Win and reservoir connection weight matrix
W remain unchanged after initialization. us, the output
connection weight matrixWout is the only model parameter
that needs to be trained. In essence, the learning process of
the ESN is the solving process of Wout. e ESN has two
kinds of learning algorithms.

2.2.1. O�ine Learning. In the training process of o�ine
learning, to prevent over�tting, Wout was solved through
ridge regression based on the regularization coe�cient
[15, 16]. is approach adds a regularization term to the
objective function. e output weight matrix Wout can be
updated by:

Wout � XTX + λIN( )
−1
XTY, (4)

where X is the state matrix of the reservoir; λ is the ridge
parameter; IN is an N-dimensional identity matrix; and Y is
the target output matrix.

2.2.2. Online Learning. Online learning updates the current
model with continuously generated new data to make better
predictions of future data. e common online learning
algorithm is recursive least squares (RLS) [17], which up-
dates Wout for each time step to minimize the prediction
error. By the RLS, the output weight matrix Wout can be
updated by:
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Figure 1: Structure of the leaky integrator ESN.
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P(t) � P(t − 1) −
P(t − 1)x(t)x

T
(t)P(t − 1)

1 + x
T
(t)P(t − 1)x(t)

, (5)

Wout(t) � Wout(t − 1) +[d(t) − y(t)]P(t)x(t), (6)

where x(t) is the reservoir state; xT(t) is the transpose of x(t);
d(t) is the expected output; y(t) is the actual output; and P(t)
is the error covariance matrix at time t.

In this paper, the ESN using offline learning and that
using online learning are denoted as Offline ESN and Online
ESN, respectively.

2.3.NetworkTraining. According to the principle of the ESN
and the input data u, the training steps of Offline ESN and
Online ESN can be summarized as follows:

2.3.1. Training Steps of Offline ESN

Step 1: Initialize the reservoir. Configure the relevant
parameters; initialize Win, W, Wfb, and Wout; and set
the reservoir state to the zero vector.
Step 2: Update and collect the internal state of the
reservoir. Drive the reservoir with the input data u and
update the internal state of the reservoir continuously
by formula (1). Note that, to overcome the influence of
the initial transient, the state of the previous period is
generally abandoned, and the internal state is collected
from time T.
Step 3: Calculate Wout of the ESN by formula (4).
Step 4: Calculate the output y of the network by formula
(3).

2.3.2. Training Steps of Online ESN

Step 1: initialize the reservoir. Configure the relevant
parameters, e.g., reservoir size; initialize Win, W, Wfb,
and Wout; and set the initial reservoir state to the zero
vector.
Step 2: initialize the relevant parameters in the RLS.
Initialize P(0)�ψ −1I, where ψ is generally 1× 10−8, and
I is the identity matrix.
Step 3: input the sample data u into the network,
calculate the internal state matrix x(t) of the ESN by
formula (1), update Wout by formulas (5) and (6), and
solve the corresponding output y(t) by formula (3).
Step 4: repeat Step 3 until the input of u is completed.

Each connection weight matrix of the ESN can be ini-
tialized as follows: each element of the input connection
weight matrix Win is initialized to random number uni-
formly distributed in [−0.5, 0.5] and adjusted by the input
scaling factor η.,e reservoir connection weight matrixW is
initialized to random numbers uniformly distributed in
[−0.5, 0.5], discretized according to the sparsity s, and
readjusted by the target spectral radius ρ. ,e output con-
nection weight matrix Wout is initialized as a zero matrix.

Considering the principle of the ESN and the need to
initialize the connection weight matrices, several parameters
need to be set in advance: reservoir size N, spectral radius ρ,
leakage rate α, ridge parameter λ, input scaling factor η, and
sparsity s. By optimizing the values of these ESN parameters, the
accuracy of the prediction model can be significantly improved.

3. Data Preprocessing

,e original data were collected from the records of the
automatic monitoring station of Dongzhen Reservoir in the
middle reaches of Mulan river. ,is reservoir is the drinking
water source of over 1.5 million people in Chengxiang
District, Licheng District, Xiuyu District, Bei’an Development
Zone, and Meizhou Island. ,erefore, it is of great signifi-
cance to precisely predict the water quality at this station.

,ewater quality at the station ismonitored in days. A total
of 1,095 pieces of data from 2018 to 2020 were collected, in-
cluding water temperature (WT), pH, DO, conductivity (Con),
turbidity (Tur), ammonia nitrogen (NH3–N), CODMn, TP,
total nitrogen (TN), and chlorophyll (aChl). ,e blue-green
algae metrics were discarded for the many missing values.

According to the 2020 Report on the State of the Ecology
and Environment in China, DO, TP, and CODMn are the
main pollution-monitoring indices of surface water in
China. ,us, these three water quality indices were selected
as prediction objects. Based on the monitoring data of the
station, several prediction models were established for the
selected indices. ,e models can apply to other monitoring
stations in the Mulan river basin, facilitating the water
quality prediction of the entire basin.

,e original data contain missing values, outliers, and
noise, whichmay affect the prediction accuracy. To eliminate
the effect, some preprocessing operations were implemented
on the original data. Specifically, the missing values were
filled by the linear trend method of adjacent points, and the
outliers were checked and corrected by the Z-score method
and the linear trend method.

In addition, the SSA [18] was employed to extract signals
representing different components of the time series and
thus reduced to noise in the time series [19, 20]. ,e noise
reduction solves two common problems: the predicted data
fall behind the real data, if the time series data have frequent
random fluctuations; the prediction accuracy is suppressed
by the implicit noise in the data.

During the SSA, a quarter, i.e., 90 days, was taken as the
window length. On this basis, a principal component
analysis (PCA) was conducted on the decomposed time
series data of water quality. ,e series of the components,
whose cumulative explained variance ratio (EVR) reaches
90%, was taken as the real data, and the remaining com-
ponents were discarded as noise.

For time series reconstruction, the first 35 components
were selected for Con; the first 36 components were selected
for NH3–N and aChl; the first 37 components were selected
for DO, Tur, and pH; the first 38 components were selected
for TP and CODMn; and the first 39 components were
selected for WT and TN. Figures 2–4 display the time series
of DO, CODMn, and TP before and after reconstruction.
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Compared with the original time series, the reconstructed
time series contain no extreme values and have obvious cycle
and trend.erefore, the reconstructed data were adopted as
the real data for water quality indices.

e denoised water quality data were further normalized
through max-min normalization, which maps sample values
to the interval [0, 1]:

X′ �
X −Xmin

Xmax −Xmin
, (7)

where Xmin and Xmax are the minimum and maximum
values in the sample, respectively; X is the original value of
the sample.

4. MIC-Based Correlation Analysis of Water
Quality Indices

e water environment is a complex dynamic system af-
fected by many factors. e system faces both material
changes and energy exchanges. Besides, there may be some
correlations between water quality indices. e indices re-
lated to the prediction index could be used together as input
features. Drawing on the mutual information theory, this

section analyzes the correlation between water quality
indices.

e mutual information of a random variable pair (X, Y)
was adopted to describe the amount of information about
variable Y contained in variable X:

I(X;Y) � ∑
x∈X
∑
y∈Y

p(x, y)log
p(x, y)
p(x)p(y)

, (8)

where p(x, y) is the joint distribution of X and Y; p(x) and
p(y) are the marginal distributions of X and Y, respectively.

eMIC [21] measures the correlation between variables.
e coe�cient falls between 0 and 1.e greater the value, the
stronger the correlation [22]. MIC can be calculated by:

MIC(x, y) � max
ij<B

I[D(x, y)]
log min(x, y)

, (9)

where ij<B is the constraint of the total number of grids; B is
set to the power of θ of the size of dataset D. Relevant studies
show that the optimal θ is 0.6, when the dataset size is
between 1,000 and 2,500 [23].

Unlike mutual information, MIC can solve continuous
variables at a high accuracy. With su�cient samples, MIC
can detect a wide range of linear and nonlinear relationships
between variables, making it possible to mirror the degree of
correlation between water quality indices [24]. e speci�c
value of MIC can be determined as follows:

Step 1: For the two given random variables (X, Y),
rearrange the data elements of each variable in a certain
order, producing an ordered pair set D(X, Y).
Step 2: Mesh the scatterplot of the ordered pair setD(X,
Y) into i columns and j rows (the values of i and j are
given) and then calculate I(X; Y).
Step 3: Normalize the obtained mutual information.
Step4:Selectdi�erent combinationsof iand j todivide the
random variables, and then �nd out the maximum
mutual information (i.e., MIC) for each divisionmethod.

Here, the MIC analysis algorithm is adopted to analyze
the correlation between DO, CODMn, and TP of Dongzhen
Reservoir; the three target indices; and three other water
quality indices (Table 1). e results in Table 2 show that the
three other indices are strongly correlated with the three
target indices. us, these three indices were taken as the
common input features of the target indices.

5. SSA-MIC-SMBO-ESN Water Quality
Prediction Model

e transmission and di�usion of pollutants in the upstream
a�ect the concentration of pollutants in the downstream.

0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

D
O

/(
m

g·
L–1

)

100 200 300 400 500

Time (day)

600 700 800 900 1000 1100

Reconstruction data

Original data

Figure 2: Reconstructed series of DO.

Table 1: Input features of prediction model.

Predictive evaluation indicators Input features
DO DO, pH, NH3–N, Con
CODMn CODMn, WT, Tur, aChl
TP TP, Tur, pH, Con
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Figure 4: Reconstructed series of TP.
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Considering this effect, the data on water quality indices
were collected from four inflow river-monitoring stations
(Changtaixi Tukeng Reservoir, Dongtaixi Dongtai Village,
Dulixi Xiashan Village, and Juxi Guoxi Village) and added to
the ESN as input features. For each target index, a total of
eight features were imported to the ESN.

To ensure the timeliness of the forecast, a 3-day forecast
model was constructed for each index.,e input features are
denoted as t− w+ 1 to t, and the outputs (predicted values)
are denoted as t+ 1, t+ 2, and t+ 3.,en, the ESN hasK� 8w

input nodes and L� 3 output nodes. Note that w is a dy-
namic optimization parameter.

To fully mine the information of each time series, the
monitoring data of the first 1,045 days were organized into
the training set, and those of the last 50 days into the test set.
In addition, the first 45 states were discarded to eliminate the
influence of the initial state.

5.1. SMBO-Based Hyperparameter Optimization.
According to the network training process, the following
hyperparameters of the ESN need to be optimized, namely,
reservoir size N, spectral radius ρ, leakage rate α, ridge
parameter λ, input scaling factor η, sparsity s, and window
length w. ,ese hyperparameters were optimized to build
our water quality prediction model. ,e optimization of
hyperparameters essentially aims to improve the loss
function in the configuration space. Suppose the optimi-
zation problem pursues minimization, then, hyper-
parameter optimization can be expressed as:

x
∗

� argmin
x∈X

f(x), (10)

where f(x) is the objective function to be minimized; x is the
set of hyperparameters (N, ρ, α, λ, η, s, and w); X is the
hyperparameter domain; and x∗ is the set of the smallest
hyperparameters. x can take any value in the domain X.

,e evaluation of the objective function is generally
costly, and the manual or grid search parameter tuning
method is time-consuming. By contrast, Bayesian optimi-
zation greatly improves the search efficiency, as it approx-
imates the objective function with a low-cost adaptive
surrogate model. Bayesian optimization aims to model the
objective function, according to the existing N groups of
experimental results H� {xn, yn} (n ∈ [1, N], where yn is the
observed value of f(xn)), and to calculate p(y|x, H) (i.e., the
surrogate model) of y. ,e surrogate model uses the tree-
structured Parzen estimator (TPE). ,e value of p(y|x) can
be calculated by:

p(y|x) �
p(x|y)p(y)

p(x)
. (11)

Sufficient sampling is critical to make the surrogate
model approach the objective function. To reduce the cost of
sample generation, it is favorable to control the sample size
being used. Hence, formula (9) was adopted to evaluate the
profit brought by a sample to the surrogate model.,e larger
the profit, the closer the updated surrogate model will be to
the objective function. Generally, the profit can be measured
by expected improvement (EI):

EI(x, H) � 
∞

−∞
max(y∗ − y, 0)p(y | x, H)dy, (12)

where y∗ �min{yn, 1≤ n≤N} is the optimal value in the
current existing samples. ,e EI refers to the expectation
that the value y of a sample x under the current surrogate
model p(y | x, H) exceeds the best result y∗.

,e SMBO is a specific algorithm to implement Bayesian
optimization [25].,e algorithm1can be described as follows:

For hyperparameter optimization by the SMBO, the
searchspaceandstepsizeofeachparameterwereconfiguredas
shown in Table 3, and the number of iterations LTwas set to
5,000.

5.2. PerformanceMetrics. ,e predictive power of our water
quality prediction models was evaluated by root mean
square error (RMSE), mean absolute percentage error
(MAPE), and Nash–Sutcliffe efficiency (NSE) [26, 27].
Among them, the NSE specifically verifies the simulation
results of the hydrological model. ,e value of NSE falls
between 0 and 1. ,e larger the value, the stronger the
prediction ability of the model. ,e RMSE, MAPE, and NSE
can be, respectively, calculated by:

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




, (13)

MAPE �
100%

n


n

i�1

yi − yi

yi




, (14)

NSE � 1 −


n
i�1 yi − yi( 

2


n
i�1 yi − y( 

2 , (15)

where yi is the target output; ŷi is the network output; and
is the mean of the target output.

5.3. Construction of the SSA-MIC-SMBO-Offline ESNModel.
Offline learning, also known as batch learning, inputs all
sample data at once to train the model. During training, the
data on the eight input features for each target index were
imported to the Offline ESN. ,e hyperparameters of the

Table 2: Results of MIC correlation analysis.

WT pH DO Tur NH3–N CODMn TP TN aChl Con
DO 0.210 0.497 1 0.219 0.310 0.131 0.192 0.148 0.245 0.283
CODMn 0.363 0.199 0.131 0.361 0.143 1 0.171 0.249 0.316 0.314
TP 0.168 0.223 0.192 0.217 0.192 0.171 1 0.158 0.156 0.232
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Offline ESN were optimized by SMBO. Table 4 displays the
optimization results. On this basis, the authors established
the SSA-MIC-SMBO-Offline ESN prediction model for each
water quality index. Table 5 shows the index values obtained
by verifying each prediction model on the test set.
Figures 5–7 compare the predicted value with the actual
value of each prediction model.

As shown in Table 5 and Figures 5–7, the SSA-MIC-
SMBO-Offline ESN prediction models of DO, CODMn,
and TP generally performed well. In particular, the pre-
dicted value and actual value basically overlapped in the
first 2 days. ,us, the SSA-MIC-SMBO-Offline ESN 3-day
prediction model constructed for each water quality index
can meet the requirements of practical application.
However, the predicted values of the three indices on the
second and third days gradually deviated from the actual
values, with the deterioration of each evaluation index.,is
means the prediction effect weakens over the time. Spe-
cifically, the prediction indices of all prediction models
were good on the first day, where the NSE values were all
above 0.98, indicating that the prediction models have a
high prediction accuracy for the next day. ,e NSE values
of the prediction indices were all around 0.9 on the second
day (only the NSE of the CODMn was slightly low),
suggesting that the accuracy on the second day also
maintains a high level. ,e NSE values of the prediction
indices of each prediction model reached about 0.8 on the
third day, and the values of other evaluation indices were
also within the acceptable range. Hence, the prediction
effect on the third day can also meet the application
requirements.

5.4. Construction of the SSA-MIC-SMBO-Online ESNModel.
,e data on the eight input features for each target index
were imported to the Online ESN. ,e hyperparameters of
the Online ESN were optimized by SMBO. Table 6 displays
the optimization results. On this basis, the authors estab-
lished the SSA-MIC-SMBO-Online ESN prediction model
for each water quality index. Table 7 shows the index values
obtained by verifying each prediction model on the test set.
Figures 8–10 compare the predicted value with the actual
value of each prediction model.

Experimental results show that the SSA-MIC-SMBO-
Online ESN prediction models of DO, CODMn and TP
output ideal prediction index values and prediction curves in
the first two days. On the first day, the prediction index
values of each prediction model were very good. ,e RMSEs
were around 0.01, the MAPEs were within 0.09, and the

Table 3: Parameter space optimized by SMBO.

Parameter Range Step size
N [50, 400] 10
Ρ [0.1, 1.5] 0.1
A [0.01, 0.1] 0.01
Η [0.1, 1] 0.1
s [0.01, 0.1] 0.01
λ [1e− 5, 1] Increase 10 times each time
w [3, 15] 1

SMBO (f(x), T, EI (x, M))
Inputs: Objective function f(x), number of iterations LT, and profit function EI(x, M)
Output: H /∗H is the set of hyperparameters and profit function values ∗ /

(1) H⟵Ø;
(2) Use the TPE to establish a proxy probability model M0 to obtain the posterior probability pM(f(x) | x, H)
(3) for t⟵ 1 to LT do
(4) x′⟵ argmaxx EI(x, Mt− 1); /∗ Use the acquisition function to find the set of parameters ∗ /
(5) Evaluate y′� f(x′); /∗ Bring the set of parameters into the objective function to evaluate the effect of the surrogate modelM(H) ∗ /
(6) H⟵H∪ (x′, y′); /∗ Update H∗ /
(7) Update the surrogate model Mt by H, and calculate pM(f(x) | x, H);
(8) end
(9) return H;

ALGORITHM 1: SMBO algorithm.

Table 4: Hyperparameter optimization results of the SSA-MIC-
Offline ESN 3-day prediction model.

Evaluation
index Model parameters

DO N� 140, ρ� 0.63, α� 0.23, λ� 1.E− 04, η� 0.1,
s� 0.06, w � 5

CODMn N� 170, ρ� 0.61, α� 0.49, λ� 1.E− 04, η� 0.8,
s� 0.01, w � 10

TP N� 70, ρ� 1.29, α� 0.63, λ� 1.E− 02, η� 0.4,
s� 0.06, w � 5

Table 5: Index values of SSA-MIC-SMBO-Offline ESN 3-day
prediction model.

Water quality indicator Prediction step RMSE MAPE NSE

DO
1 0.0091 0.059 0.992
2 0.0314 0.175 0.906
3 0.0608 0.603 0.824

CODMn
1 0.0194 0.092 0.984
2 0.0607 0.356 0.887
3 0.0946 0.649 0.753

TP
1 0.0124 0.028 0.991
2 0.0341 0.080 0.938
3 0.0556 0.135 0.840
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Figure 5: E�ect of SSA-MIC-SMBO-O�ine ESN 3-day prediction model for DO.
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Figure 6: E�ect of SSA-MIC-SMBO-O�ine ESN 3-day prediction model for CODMn.
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Figure 7: E�ect of SSA-MIC-SMBO-O�ine ESN 3-day prediction model for TP.
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Table 6: Hyperparameter optimization results of the SSA-MIC-Online ESN 3-day prediction model.

Evaluation index Model parameters
DO N� 50, ρ� 0.05, α� 0.91, η� 0.7, s� 0.05, w� 7
CODMn N� 130, ρ� 0.77, α� 0.31, η� 0.9, s� 0.04, w� 14
TP N� 50, ρ� 1.32, α� 0.98, η� 0.2, s� 0.05, w� 4
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Figure 8: E�ect of SSA-MIC-SMBO-Online ESN 3-day prediction model for DO.

Table 7: Index values of the SSA-MIC-SMBO-Online ESN 3-day prediction model.

Water quality indicator Prediction step RMSE MAPE NSE

DO
1 0.0087 0.058 0.993
2 0.0299 0.153 0.919
3 0.0503 0.484 0.846

CODMn
1 0.0187 0.089 0.986
2 0.0573 0.332 0.897
3 0.0814 0.506 0.786

TP
1 0.0102 0.022 0.994
2 0.0328 0.076 0.941
3 0.0527 0.118 0.867
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Figure 9: E�ect of SSA-MIC-SMBO-Online ESN 3-day prediction model for CODMn.
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NSEs were above 0.985, indicating that the prediction
models have a very high prediction accuracy for the next day.
On the second day, the RMSEs of the prediction indices were
all around 0.04, and the NSE values were around 0.9 (only
the NSE value of the CODMn was slightly low), indicating
that the accuracy can also reach a high level on the second
day. On the third day, the RMSEs of the prediction models
reached about 0.06, the NSEs stood at about 0.8, and the
MAPEs were within the acceptable range. Overall, the
prediction e�ect on the third day is signi�cantly lower than
that on the previous two days, but it can still meet the
application requirements. It can also be seen that, on the �rst
day, the prediction curves of the three water quality indices
largely overlapped the actual curves. On the second and
third days, the prediction curves gradually deviated from the
real curves, and exhibited some oscillations. However, the
two sets of curves obeyed consistent trends. In general, the
SSA-MIC-SMBO-Online ESN 3-day prediction models for
DO, CODMn and TP achieved desirable performances,
indicating that the model is feasible to predict each water
quality index.

5.5. Discussion. From the experimental results, it is easy to
�nd that the SSA-MIC-SMBO-O�ine ESN and SSA-MIC-
SMBO-Online ESN water quality prediction models can
basically forecast the values of DO, CODMn, and TP.
Further comparison shows that the SSA-MIC-SMBO-
Online ESN model had better evaluation indices than the
SSA-MIC-SMBO-O�ine ESN model. On the �rst day, the
three water quality indices predicted by SSA-MIC-SMBO-
Online ESN were about 0.001 smaller than those predicted
by SSA-MIC-SMBO-O�ine ESN, while the NSEs were 0.002
larger. On the second day, the RMSE of DO predicted by
SSA-MIC-SMBO-Online ESN was 0.0015 smaller than that
of DO predicted by SSA-MIC-SMBO-O�ine ESN, while the
NSEs were 0.013 larger. e other two indices predicted by
SSA-MIC-SMBO-Online ESN were also better than those
predicted by SSA-MIC-SMBO-O�ine ESN in the same

period. Overall, the SSA-MIC-SMBO-Online ESN predic-
tion models were more accurate than the SSA-MIC-SMBO-
O�ine ESN prediction models and more suitable for pro-
jecting the dynamics changes in water quality data.

Concerning the commonality of the prediction e�ects
of the SSA-MIC-SMBO-O�ine ESN or SSA-MIC-SMBO-
Online ESN on the three target indices, the TP prediction
model had the best index value than DO and CODMn
prediction models in the same period. e DO prediction
model outperformed the CODMn prediction model in
terms of index value and prediction e�ect. Meanwhile, the
CODMn prediction model had the lowest accuracy.
Judging by the performance of the o�ine and online
prediction models of the three indices, it can be observed
that the prediction performance is closely related to the
data features of the target indices. e prediction perfor-
mance is good when the index data are clear and not
frequently changeable. But the prediction accuracy tends to
be low when the index data (e.g., CODMn) °uctuate greatly
and frequently, making it di�cult for any prediction model
to capture the laws and features of the data. is is also the
limitation of this prediction method. erefore, the per-
formance of the prediction models can be further enhanced
by inputting more relevant features and expanding the
training set.

6. Conclusions

Based on the important water quality indices related to water
pollution, this paper separately establishes ESN-based o�ine
and online water quality prediction models by using singular
spectrum analysis algorithm, maximummutual information
coe�cient, echo state network, and sequential model opti-
mization algorithm. ese models achieve good prediction
results, and it can be seen from the above experimental
results that the SSA-MIC-SMBO-Online ESN prediction
models are more accurate than the SSA-MIC-SMBO-O�ine
ESN prediction models and more suitable for projecting the
dynamics changes in water quality data.
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Figure 10: E�ect of SSA-MIC-SMBO-Online ESN 3-day prediction model for TP.
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,e water environment is a complex system affected by
many factors. ,e change of each water quality index is
related to various factors rather than the water environment
alone. For instance, the DO in the water body depends on
climate factors such as water temperature, air pressure, and
light. ,erefore, the prediction of water quality indices must
consider multiple influencing factors, as well as the corre-
lation between water quality indices and meteorological
factors/pollution sources. In the future, our research team
will improve the proposed prediction models by supple-
menting various relevant data and further optimize the ESN
algorithm from multiple perspectives: improving the res-
ervoir generation approach, improving the initialization of
connection weights of the reservoir, optimizing these
weights, streamlining the reservoir topology, rationalizing
neuron selection, and so on. In addition, LSTM and its
improved algorithms will be considered for water quality
prediction work in this study.
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