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�is study proposed a dynamic adaptive weighted di�erential evolution (DAWDE) algorithm to solve the problems of di�erential
evolution (DE) algorithm such as long search time, easy stagnation, and local optimal solution. First, adaptive adjustment
strategies of scaling factor and crossover factor are proposed, which are utilized to dynamically balance the global and local search,
and avoid premature convergence. Second, an adaptive mutation operator based on population aggregation degree is proposed,
which takes population aggregation degree as the amplitude coe�cient of the basis vector to determine the in�uence degree of the
optimal individual on the mutation direction. Finally, the Gauss perturbation operator is introduced to generate random
disturbance and accelerate premature individuals to jump out of the local optimum.�e simulation results show that the DAWDE
algorithm can obtain better optimization results and has the characteristics of stronger global optimization ability, faster
convergence, higher solution accuracy, and stronger stability compared with other optimization algorithms.

1. Introduction

�e di�erential evolution (DE) algorithm is an optimiza-
tion algorithm based on the theory of modern intelligence
[1]. It was �rst proposed by American scholars Rainer Storn
and Kenneth Price in 1995 to solve the Chebyshev in-
equality [2]. �e DE algorithm solves the problem by
simulating the biological evolution of the survival of the
�ttest [3]. Superior to the traditional optimization algo-
rithm such as the method based on calculus [4] and the
exhaustive method [5], the DE algorithm uses its unique
memory ability to track the current search situation and
adjust the search strategy at the same time. It has high
robustness and strong global convergence ability and can
e�ectively deal with complex problems that are di�cult to
be solved by the traditional optimization algorithms.
In addition, the DE algorithm is not limited by the nature
of the problem, for example, derivatives are not required
as auxiliary information and are not constrained by
search space constraints (such as continuous di�erentia-
bility and single peak) [6–9]. It is widely used in

constrained optimization calculation, neural network op-
timization, �lter design, etc.

In recent years, the DE algorithm is widely used and is
also a concern by scholars around the world. Wang et al. [10]
proposed a generalized reverse di�erential evolution algo-
rithm, which introduced acceleration and migration oper-
ations in DE. �e acceleration operation used gradient
information to lead the optimal individual to a better area,
and when the dispersion of the population is lower than a
certain threshold, the migration operation is used to re-
generate new individuals in the vicinity of the optimal in-
dividual and replace the old individual, thereby maintaining
the diversity of the population and preventing the algorithm
from falling into local optimum to a certain extent. Chiou
et al. [11] proposed a variable scaling hybrid di�erential
evolution (VSHDE) algorithm, which does not need to select
the type of mutation operation, but selects the appropriate
mutation operator for DE from a variety of mutation op-
erators in real time to speed up the optimization process of
the algorithm. Compared with the random scale factor, the
algorithm has a great improvement in performance. Qin
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et al. [12] proposed the SaDE algorithm to adaptively adjust
F and CR based on the experience of early evolution to
generate high-quality solutions. Brest et al. [13] proposed a
differential evolution (JDE) algorithm for adaptive control
parameters and introduced new control parameters to adjust
the values of F and CR through a comparative study of
numerical benchmark problems. Zhang et al. [14] intro-
duced a new mutation strategy “DE/current-to-pbest” to
improve the optimization performance of the algorithm and
proposed an adaptive differential evolution (JADE) algo-
rithm with optional external archiving. Hou Ying et al. [15]
introduced a dynamic multiobjective differential evolution
algorithm, based on the information on evolution progress
(DMODE-IEP), which is developed to improve the opti-
mization performance. ,e information of evolution
progress, using the fitness values, is proposed to describe the
evolution progress of MODE, and the dynamic adjustment
mechanisms of evolution parameter values, mutation
strategies, and selection parameter values based on the in-
formation on evolution progress are designed to balance the
global exploration ability and the local exploitation ability.

Aiming at the problems of long search time, easy
stagnation, and easy to fall into the local optimal solution of
the differential evolution algorithm [16], this study proposes
a dynamic adaptive weighted differential evolution
(DAWDE) algorithm on the basis of the above several
improved algorithms. We select several typical benchmark
functions to test [16, 17]. ,e test results show that the
DAWDE algorithm has relatively strong global optimization
ability, strong convergence performance, and is not easy to
fall into the local optima. ,e global optimal values obtained
are all near or equal to the given optimal value.

2. DE Algorithm

,eDE algorithm is an algorithm based on group evolution,
which can not only memorize the optimal solution of in-
dividuals but also has the characteristics of information
sharing within the population. It is a method of optimization
used in symmetrical optimization problems and also in
problems that are not even continuous, and are noisy and
change over time [18]. ,e essence is a greedy genetic al-
gorithm based on actual number coding and with the idea of
preserving optimality [19].

In the DE algorithm, each population is composed of
NP individuals, which is expressed as follows: X0 � x0

1,􏼈

x0
2, . . . , x0

NP}, where NP is the population size; each indi-
vidual is used to represent the solution of the problem, which
is expressed as follows: x0

i � x0
i,1, x0

i,2, . . . , x0
i,D􏽮 􏽯, where D is

the dimension of the solution, x0
i is the i

th individual in the
0th generation population, and x0

i,j is the jth component of
the ith individual in the 0th generation population. ,e main
operation steps of the algorithm are as follows.

2.1. Initialization

x
0
i,j � x

min
i,j + rand(0, 1) · x

max
i,j − x

min
i,j􏼐 􏼑, (1)

where xmax
i,j and xmin

i,j represent the upper and lower bounds
of the jth dimension optimization, respectively, and
rand(0, 1) represents a random number in the interval [0, 1].

2.2. Mutation. ,e DE algorithm realizes individual mu-
tation through the difference strategy, randomly selects two
different individuals to scale their vector differences, and
performs vector synthesis with the individual to be mutated
to generate corresponding mutated intermediate individ-
uals. ,e most commonly used strategy in mutation oper-
ation is DE/rand/1/bin, and the specific expression is as
follows:

v
g+1
i � x

g
r1 + F · x

g
r2 − x

g
r3( 􏼁, (2)

where i≠ r1≠ r2≠ r3, and g is the current iteration number,
that is, the gth generation. F is the scaling factor. ,e smaller
the F is, the stronger the local search ability is; the larger the
F is, the more it can jump out of the local area.

2.3. Crossover. ,e DE uses the original individual x
g
i and

the mutant intermediate individual v
g+1
i to cross to generate

a new individual u
g+1
i , and determines whether the new

individual gene is provided by the original individual or the
mutant intermediate individual according to whether the
conditions are met. ,e crossover operation is as follows:

u
g+1
i,j �

v
g+1
i,j , if rand(0, 1)≤CR or j � jrand

x
g
i,j, otherwise

⎧⎪⎨

⎪⎩
, (3)

where CR is the crossover probability, and jrand is a random
integer on [1, D]. j � jrand means j is randomly selected so
that one gene in u

g+1
i is contributed by v

g+1
i to ensure the

generation of new individuals, and the rest of the genes are
determined by the crossover probability factor CR. ,e
larger CR is, the more v

g+1
i contributes to u

g+1
i , which is

conducive to improving local development capabilities; the
smaller CR is, the more x

g
i contributes to u

g+1
i , which is

conducive to improving global search capabilities [20].

2.4. Selection. ,e DE algorithm adopts a greedy strategy
when selecting operations, and only those with better fitness
values are selected for the next generation. ,e selection
operation is as follows:

x
g+1
i,j �

u
g+1
i,j , f u

g+1
i,j􏼐 􏼑<f x

g
i,j􏼐 􏼑

x
g

i,j, f u
g+1
i,j􏼐 􏼑≥f x

g

i,j􏼐 􏼑
.

⎧⎪⎨

⎪⎩
(4)

3. Dynamic Adaptive Weighted Differential
Evolution (DAWDE) Algorithm

3.1. Scale Factor F Adaptive Adjustment Strategy.
According to formula (2), the scaling factor F in the mu-
tation operation is an important parameter to control the
diversity and convergence of the population, and it deter-
mines the magnification ratio of the deviation vector. ,e
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smaller the value of F is, the smaller the group difference is,
which will speed up the algorithm convergence and also lead
to the local convergence of the algorithm, while the larger
the value F is, it will help the algorithm to jump out of the
local optimal solution, but it will reduce the convergence
speed. In order to balance the local and global search and
maintain a fast convergence rate, an adaptive adjustment
strategy is proposed as follows:

F � Fmax − Fmax − Fmin( 􏼁
g

G
􏼒 􏼓

2
, (5)

where Fmax is the maximum value of the scaling factor,
which is 0.9, and Fmin is the minimum value of the scaling
factor, which is 0.2, g is the current iteration number, that is,
the gth generation, and G is the maximum iteration number.

3.2. Dynamic Adjustment Strategy of Crossover Probability
Factor CR. ,e crossover probability factor CR deter-
mines whether the new individual gene is provided by the
original individual or the mutant intermediate individual,
that is, the degree of participation of each dimension of
individual parameters in the crossover.,e smaller the CR

is, the better individuals are retained, and the faster the
algorithm converges, but it is easy to fall into the local
optimum value. ,e larger CR is, the higher the diversity
of the population is, and the better the global search ability
is, but the convergence speed of the algorithm will de-
crease accordingly. In this study, a dynamic adaptive
crossover factor is adopted, and CR is set as a dynamic
adaptive function that continuously oscillates in [0,1] and
is updated every 50 generations, so that the constant
change in CR can make the new individual randomly
inherit the mutant individual or parent generation of
individual genes, jumping out of the local optimal solu-
tion. ,e value is as follows:

CRg �

1 + cos g

2
,mod(g, 50) � 0

CRg−1, otherwise

,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where CRg is the value of CR of the gth generation, CRg−1 is
the value of CR of the g-1th generation, and mod(g, 50) � 0
is to be updated every 50 generations.

3.3. Adaptive Mutation Operator Based on Population Ag-
gregationDegree. In the later stage of the iteration of the DE
algorithm, the difference between individuals of the pop-
ulation decreases, the diversity decreases, finally, the ag-
gregation phenomenon is formed, and the definition of
population aggregation degree is proposed.

Assuming that the size of the group is NP, the particle
dimension is D, xi,j is the individual vector of individual x
on the jth dimension, and xj is the average value of the
individual vector particles of the population on the jth di-
mension, then the population aggregation degree can be
defined as follows:

C � 􏽘
D

j�1
􏽘

NP

i�1
xi,j − xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (7)

,e smaller the population aggregation degree C is, the
smaller the individual differences of the population is, and the
higher the aggregation degree is; on the contrary, it means
that the population individuals are scattered and the pop-
ulation diversity is good. ,erefore, the population aggre-
gation degree C can well describe the aggregation degree of
population individuals. In this study, C takes [0.05, 0.95].

,e main purpose of improving the DE algorithm is to
balance the global exploration ability and local development
ability of the algorithm.,e standard DE algorithm adopts a
random selection mutation strategy, expressed as DE/rand/
1, which is beneficial to improve the diversity of mutation
and global exploration ability, but the randomness interferes
with the evolution direction in a large range, with great
blindness and uncertainty, which may lead to algorithm
premature and limited convergence speed. While DE/best/1
uses the optimal individual as the mutation base to ensure
the optimal direction of evolution and local development
ability, the optimal individual may be the local optimal
individual. If the population keeps evolving in this direction,
it is very likely to fall into the local optimum. ,e mutation
strategies DE/best/1 and DE/rand/1 of the standard differ-
ential evolution algorithm are

v
g+1
i � x

g

best + F · x
g
r1 − x

g
r2( 􏼁

v
g+1
i � x

g
r3 + F · x

g
r4 − x

g
r5( 􏼁

⎧⎪⎨

⎪⎩
, (8)

We carry out the weighted combination to propose a new
weighted dynamic mutation strategy as follows:

v
g+1
i � C · x

g

best + F · x
g
r1 − x

g
r2( 􏼁􏽨 􏽩

+(1 − C) · x
g
r3 + F · x

g
r4 − x

g
r5( 􏼁􏼂 􏼃,

(9)

where i, r1, r2, r3, r4, r5 are random integers on [1, NP] and
are not equal to each other. x

g

best is the optimal individual of
the gth generation population.

According to formula (5), the population aggregation
degree C, as the weight of the influence of the optimal in-
dividual on the variation direction, is a monotonically in-
creasing function; then, 1 − C is a monotonically decreasing
function. After weighted merging, in the early stage of
optimization, the amplitude coefficient of x

g

best + F · (x
g
r1 −

x
g
r2) is small, and the amplitude coefficient of x

g
r3 + F · (x

g
r4 −

x
g
r5) is large, focusing on global exploration, and in the later

stage of optimization, the amplitude coefficient of x
g

best + F ·

(x
g
r1 − x

g
r2) increases, and the amplitude coefficient of x

g
r3 +

F · (x
g
r4 − x

g
r5) reduces, focusing on local development, so

that the algorithm takes into account the global search ability
and local development ability at the same time, which is not
only beneficial to the diversity of the population but also
improves the convergence speed of the algorithm.

3.4. Disturbance Dimensional Mutation to Get Out of
Premature. When solving high-dimensional complex
function problems, problems such as falling into local
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Table 1: Test functions.

Test functions Formula Initial range
Sphere f1(x) � 􏽐

n
i�1 x2

i [−100, 100]
Schwefel’s problem 2.2 f2(x) � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| [−10, 10]

Schwefel’s problem 1.2 f3(x) � 􏽐
n
i�1(􏽐

i
j�1 xj)

2 [−10, 10]
Ackley f4(x) � −20 exp(−0.2

������
􏽐

n
i�1 x2

i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + 20 + e [−32, 32]

Griewank f5(x) � 1/4000􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 [−600, 600]

Rastrigin f6(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12]
Rosenbrock f7(x) � 􏽐

n
i�1[100(xi+1 − xi)

2 + (xi − 1)2] [−10, 10]
Schaffer f8(x) � 􏽐

n−1
i�1 [0.5 + sin2

��������
x2

i + x2
i+1

􏽱
− 0.5/1 + 0.001(x2

i + x2
i+1)

2] [−100, 100]

Table 2: Test function optimization results of 30 dimensions and 50 dimensions.

f Algorithm
30 dimensions 50 dimensions

Best Mean Std Best Mean Std

f1

DE 5.34E-29 8.37 E+02 5.30 E+03 3.73E-13 2.08E-03 1.09 E+04
SaDE 5.01E-28 8.90 E+02 5.05 E+03 1.28E-14 3.13 E+03 1.41 E+04
JDE 1.34E-39 4.67 E+02 3.38 E+03 1.70E-26 1.61 E+03 8.88 E+03
JADE 1.62×E-04 9.34×E-03 8.86×E-03 1.94×E-01 9.68 E+08 8.20 E+10

DAWDE 0 0 0 0 0 0

f2

DE 4.94E-16 9.68 E+08 8.20 E+10 4.69E-09 1.27 E+20 1.19 E+22
SaDE 6.99E-17 1.99 E+08 4.78 E+09 1.96E-09 7.31 E+17 2.26 E+19
JDE 1.55E-24 2.53 E+05 1.08 E+07 1.22E-16 2.79 E+17 1.24 E+19
JADE 6.02E-03 2.69E-02 1.51E-02 7.10E-01 1.54 6.23E-01

DAWDE 0 0 0 0 0 0

f3

DE 4.70E-05 2.66E-01 1.02 E+02 7.54E-01 1.30 E+02 3.08 E+02
SaDE 1.34 E+02 2.28 E+02 1.17 E+02 1.12 E+03 1.14 E+03 1.17 E+02
JDE 3.61E-03 21.96 78.85 1.66 1.02 E+02 2.62 E+02
JADE 1.68 E+02 2.49 E+02 31.64 5.12 E+02 7.77 E+02 1.01 E+02

DAWDE 0 0 0 0 0 0

f4

DE 7.99E-15 1.16 3.65 1.15E-14 1.19 3.67
SaDE 1.42E-14 1.14 3.63 1.95E-08 2.14 4.92
JDE 7.99E-15 0.91 3.18 2.22E-14 1.27 3.8
JADE 7.12E-05 78.42E-01 1.11E-03 4.36E-03 1.04 0.79

DAWDE 8.88E-16 8.88E-16 0 8.88E-16 8.88E-16 0

f5

DE 0 7.52 46.54 2.41E-13 19 97.45
SaDE 0 8.2 47.04 1.55E-14 26.69 1.15 E+02
JDE 0 4.91 31.05 0 9.96 58.53
JADE 5.03 E+02 2.52 E+03 5.56 E+02 8.98 E+02 4.19 E+03 9.60 E+02

DAWDE 0 0 0 0 0 0

f6

DE 12.6 1.55 E+02 65.38 30.94 3.04 E+02 1.20 E+02
SaDE 20.97 68.1 58.01 1.40 E+02 2.26 E+02 95.21
JDE 0 27.37 61.39 1.40E-09 78.14 1.24 E+02
JADE 5.11 E+02 1.95 E+03 9.81 E+02 1.21 E+02 1.43 E+03 1.03 E+03

DAWDE 0 0 0 0 0 0

f7

DE 20.04 2.37 E+04 2.07 E+05 44.01 6.51 E+04 4.65 E+05
SaDE 25.26 1.99 E+04 1.47 E+05 45.59 1.21 E+05 6.48 E+05
JDE 17.92 7.02 E+03 7.08 E+04 27.73 3.78 E+04 2.67 E+05
JADE 2.54 11.71 5.89 55.52 1.18 E+02 31.44

DAWDE 0 0 0 0 0 0

f8

DE 10.47 12.04 0.5 19.52 21.72 0.6
SaDE 6.32 8.42 1.63 16.17 18.21 1.57
JDE 1.07 3.88 3.38 3.29 9.6 5.48
JADE 0.15 0.48 0.14 1.87 2.93 0.35

DAWDE 0 0 0 0 0 0
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optimum will generally occur in the later stage of the DE
algorithm. In order to describe the state of the population,
the following premature definitions are given as follows:

Let Q be the precocious period, and if Mod(g,Q) � 0
and the difference between the current fitness value and the
fitness value before Q generations is extremely small, that is,

fbest(g) − fbest(g − Q + 1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ, (10)

the individual is said to be premature in the Q generation
iteration. Among them, fbest(g) is the optimal fitness value
of the gth generation, and δ is the premature test threshold
and takes δ � 1E − 6.

If it is judged by the above formula that the algorithm has
been premature, the dimensional mutation is carried out,
and the mutation strategy is as follows:

x
g

i,j � C · x
g
best,j +(1 − C) · x

g

r1,j + α x
g

r2,j − x
g

r3,j􏼐 􏼑, (11)

where the weighting coefficient C is the same as formula (5),
α � F(1 + 0.5η) is the acceleration random disturbance
coefficient, η is a random variable obeying the distribution
Gauss(0, 1), and x

g

best is the optimal individual of the gth

generation on the jth dimension.
It can be seen from formula (9) that the dimensional

mutation strategy consists of two parts, the C · x
g
best,j + (1 −

C) · x
g

r1,j part is composed of the optimal individual and the
weight of random individuals, and the information of the
optimal individual is used to guide other individuals to
evolve toward the optimization direction; the α(x

g
r2,j − x

g
r3,j)

part is the accelerated random disturbance vector; and since
the individual has fallen into the local optimum, disturbance
mutation is randomly generated, which accelerates the in-
dividual to jump out of the local optimum and guides the
individual to explore the global.

3.5. Algorithm Steps

Step 1. Initialization parameters: population size NP, so-
lution dimension D, maximum evolutionary generation G,
upper bound of individual variables xmax

i,j , lower bound of
individual variables xmin

i,j , maximum sum of scaling factors
Fmax, minimum sum of scaling factors Fmin, premature
generation Q, and premature test threshold δ.

Step 2. Initialize the population, calculate the fitness value of
each individual, and find out the individual of optimal fitness
value xbest and the corresponding optimal fitness value fbest.

Step 3. Calculate F, CR, and C, according to formulas
(5)–(7).

Step 4. Mutation operations. ,e variant individual v
g+1
i is

obtained according to formula (9).

Step 5. Crossover operations. A new test individual u
g+1
i,j is

obtained according to the formula (3).

Step 6. Selection operations. ,e next generation x
g+1
i,j is

obtained from the formula (4).

Step 7. Update the local and global optimal values.

Step 8. Check for premature. If Mod(g, Q) � 0 and
|fbest(g) − fbest(g − Q + 1)|≤ δ, calculate a new individual
x

g
i,j according to formula (11), and update the optimal value

to jump out of the local optimum.

Step 9. Repeat Steps 4–8.
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Figure 1: Convergence curve of f1. (a) 30 dimensions. (b) 50 dimensions.
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Step 10. If the maximum number of iterations G is not
reached, go to Step 3; otherwise, continue.

Step 11. Output the optimal value xbest and fbest.

4. Experimental Results

4.1. Test Functions and Comparison Algorithm. In order to
verify the effectiveness of the algorithm, this algorithm is
compared with the standard DE/rand/1, SaDE algorithm,
and JADE algorithm. All algorithms are independently run
20 times on 8 typical test functions. ,e test functions are

shown in Table 1. ,eir global optimal values are all 0.
According to the obtained optimal solution and convergence
curve, the performances of each algorithm in terms of
convergence speed, optimal solution accuracy, and ro-
bustness are compared.

,e simulation experiment is programmed with
MATLAB R2016a software, and the experimental configu-
ration is Intel(R) Core(TM) i5-6300HQ CPU@2.30GHz.
,e basic parameters of the algorithm are set as follows:
NP � 50, Fmax � 0.9, Fmin � 0.2, Q � 10, and δ � 1E − 6,
and the compared algorithm DE/rand/1, SADE, and JADE
parameter settings are the same as the original. In order to
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Figure 2: Convergence curve of f2. (a) 30 dimensions. (b) 50 dimensions.
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Figure 3: Convergence curve of f3. (a) 30 dimensions. (b) 50 dimensions.
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examine the comprehensive performance of the algorithm,
considering the dimension D � 30 and D � 50 two cases, for
the sake of fairness, the maximum number of iterations of all
algorithms is 2000, and the algorithm is independently run
20 times.

4.2. Results and Analysis. ,e minimum value, average
optimal value, and standard deviation of the solution results
are shown in Table 2.

It can be seen from the analysis that the DAWDE
algorithm can achieve better optimization results than the
other four algorithms on the 8 test functions regardless of

whether the dimension is 30 or 50. By comparing the best
value, mean optimal value, and standard deviation, it can
be seen that the DAWDE algorithm has strong global
optimization ability and has great advantages compared
with other algorithms in terms of convergence accuracy,
convergence ability, and stability. ,e optimization per-
formance of the DAWDE algorithm will not decrease due
to the increase in the complexity of the function, which
shows that the algorithm has high scalability, and it can be
concluded from the standard deviation that the stability of
the algorithm is strong. Compared with the other four
algorithms, the theoretical optimal value of 0 cannot be
obtained in 30 dimensions, and as the function becomes
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Figure 4: Convergence curve of f4. (a) 30 dimensions. (b) 50 dimensions.

0 100 200 300 400 500
Iterations

50

100

150

200

250

Fi
tn
es
s

DE
SADE
JDE

JADE
DAWDE

(a)

Fi
tn
es
s

50 100 150 200 250 300 350 400 450 500
Iterations

0

50

100

150

200

250

300

350

DE
SADE
JDE

JADE
DAWDE

(b)

Figure 5: Convergence curve of f5. (a) 30 dimensions. (b) 50 dimensions.
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more complex, the optimal value converged by the al-
gorithm deviates from the theoretical optimal value. It can
be seen from the standard deviation that the stability of
the other four algorithms in optimizing high-dimensional
complex functions is also poor, and with the increase in
the dimension, the evolutionary ability decreases to
varying degrees.

Figures 1–8 show the fitness value convergencecurvesof
the 5 algorithmstested for 8 functions. When we ana-
lyzedeach set of figures indetail, it can be seen from
Figures 1(a) and 1(b) that for the function f1, although all

the five algorithms can reach the theoretical optimal value of
0, the DAWDE algorithm has already converged to the
optimal value before the 10th generation, which is the fastest
among these algorithms. ,e other four algorithms all have
stagnation to a certain extent. According to Figures 2(a) and
2(b), when the dimension is 30, the DAWDE algorithm gets
the optimal value before the fifth generation, whereas other
functions get the optimal value after the fifth generation.
When the dimension is 50, the DAWDE algorithm and the
JDE algorithm both perform well on f2, and the other three
functions all fall into local optimum during the convergence
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Figure 6: Convergence curve of f6. (a) 30 dimensions. (b) 50 dimensions.
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Figure 7: Convergence curve of f7. (a) 30 dimensions. (b) 50 dimensions.
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process. It can be seen from Figures 3(a) and 3(b) that the
DAWDE algorithm converges to the optimal value of 0 very
quickly on f3, while the DE algorithm and the JDE algo-
rithm perform slightly worse. In 30 and 50 dimensions, the
DE algorithm and the JDE algorithm are optimized in about
400th generation and 1000th generation, respectively. ,e
JADE algorithm and the SaDE algorithm perform even
worse, failing to get the optimal value and falling into the
local optimum. As can be seen from Figures 4(a) and 4(b),
for the function f4, the DAWDE algorithm converges faster
than the other algorithms. Figures 5(a) and 5(b) show that,
for the function f5, when the dimension is 30, the DAWDE
algorithm gets the optimal value before the 10th generation,
whereas other functions get the optimal value after the 100th

generation. When the dimension is 50, the convergence of
the DAWDE algorithm is still very fast, but other algo-
rithms are affected by the increase in dimension, and the
optimal is not reached until 200 generations later. It can be
seen from Figures 6(a) and 6(b) that for the function f6, the
algorithms DE and SADE both fall into local optimum, and
the solution accuracy is poor. As can be seen from
Figures 7(a) and 7(b), for the function f7, although all five
algorithms can obtain the optimal value, the curve con-
vergence speed of the DAWDE algorithm is significantly
faster than that of the other four algorithms. Figures 8(a)
and 8(b) show that, for the function f8, when the other four
algorithms fall into the local optimum, the DAWDE al-
gorithm can still quickly obtain the optimum value, in-
dicating that it has the ability to judge and jump out of
premature. Comparing the 30-dimensional and 50-di-
mensional figures, it can be seen that although the spatial
dimension has increased, the optimization ability of the
DAWDE algorithm has not been significantly reduced. In
contrast, the optimization capabilities of the other four
algorithms have decreased to varying degrees, which proves

that the DAWDE algorithm not only adapts to the low-
dimensional search space but also meets the requirements
of high-dimensional search space. To sum up, the DAWDE
algorithm performs well in the early stage of optimization,
and the convergence speed is very fast. ,e optimal value
can be obtained around the 20th generation, and it is not
affected by dimensions and has strong stability. Compared
with DAWDE, the other four algorithms have a slower
convergence speed and worse solution accuracy, and the
more complex the function is, the more the objective
function value deviates from the theoretical optimal value.

5. Conclusions

In this study, a dynamic adaptive weighted differential
evolution (DAWDE) algorithm is proposed to solve the
problems of long search time, easy stagnation, and easy to
fall into local optimal solution when a differential evolution
algorithm solves high-dimensional complex optimization
problems. ,e improved algorithm includes adaptive opti-
mization scaling factor and crossover factor, proposes an
adaptive mutation operator based on the aggregation degree
of the population, and adopts a random dimensional mu-
tation and disturbance strategy. ,e algorithm dynamically
balances the global exploration ability and local develop-
ment ability of the algorithm. ,e simulation results show
that the DAWDE algorithm can obtain better optimization
results than other optimization algorithms on the 8 test
functions. Regardless of the dimension, it has the charac-
teristics of strong optimization ability, fast convergence,
high solution accuracy, and strong stability, which provides
a choice for solving complex high-dimensional optimization
problems and also provides algorithm support for practical
application research in the future [17].
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