
Research Article
Chaotic Enhanced Genetic Algorithm for Solving the Nonlinear
System of Equations

A. M. Algelany 1,2 and M. A. El-Shorbagy 1,3

1Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia
2Department of Mathematics, Faculty of Sciences, Fayoum University, Fayoum 63514, Egypt
3Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

Correspondence should be addressed to A. M. Algelany; ah.mohamed@psau.edu.sa

Received 17 January 2022; Revised 24 February 2022; Accepted 14 March 2022; Published 12 April 2022

Academic Editor: Ahmed M. Anter

Copyright © 2022 A. M. Algelany andM. A. El-Shorbagy.'is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Many engineering and scientific models are based on the nonlinear system of equations (NSEs), and their effective solution is
critical for development in these domains. NSEs can be modeled as an optimization problem. So, the goal of this paper is to
propose an optimization method, to solve the NSEs, which is called a chaotic enhanced genetic algorithm (CEGA). CEGA is a
chaotic noise-based genetic algorithm (GA) that improves performance. CEGA will be configured so that it uses a new definition
which is chaotic noise to overcome the drawbacks of optimization methods such as lack of diversity of solutions, the imbalance
between exploitation and exploration, and slow convergence of the best solution.'e goal of chaotic noise is to reduce the number
of repeated solutions and iterations to speed up the convergence rate. In the chaotic noise, the chaotic logistic map is utilized since
it has been used by numerous researchers and has proven its efficiency in increasing the quality of solutions and providing the best
performance. CEGA is tested using many well-known NSEs.'e suggested algorithm’s results are compared to the original GA to
prove the importance of the modifications introduced in CEGA. Promising results were obtained, where CEGA’s average
percentage of improvement was about 75.99, indicating that it is quite effective in solving NSEs. Finally, comparing CEGA’s results
with previous studies, statistical analysis by Friedman and Wilcoxon’s tests demonstrated its superiority and ability to solve this
kind of problem.

1. Introduction

Many models in engineering and science are based on the
nonlinear system of equations (NSEs), and their solution is
very critical for development in these fields. NSEs can be
found directly in some applications, but they can also be
found indirectly when practical models are transformed into
NSEs [1]. Finding a robust and effective solution for the
NSEs might be a difficult task in theory.

'e bisection technique, Muller’s method, false-position
method, Levenberg–Marquardt algorithm, Broyden
method, steepest descent methods, branch and prune ap-
proach, Halley’s method, Newton/damped Newton
methods, and Secant method have traditionally been used to
solve NSEs [2]. Secant and Newton are the methods of

choice for solving NSEs in general. Some techniques, on the
other hand, turn the NSEs into an optimization problem [3],
which is subsequently solved using the augmented La-
grangian method [4]. 'ese approaches are time-consum-
ing, may diverge, are inefficient when solving a set of
nonlinear equations, require a tedious process to calculate
partial derivatives to build the Jacobian matrix, and are
sensitive to initial conditions [5].

Because of these constraints, the researchers used evo-
lutionary algorithms (EAs) to solve NSEs. EAs are a sort of
metaheuristic that is often used to address problems of
optimization that are too difficult to solve using traditional
methods. EAs such as the genetic algorithm (GA) [6–8],
particle swarm algorithm (PSO) [9, 10], artificial bee colony
(ABC) [11], cuckoo search algorithm (CSA) [12], and firefly

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1376479, 13 pages
https://doi.org/10.1155/2022/1376479

mailto:ah.mohamed@psau.edu.sa
https://orcid.org/0000-0003-0425-4449
https://orcid.org/0000-0002-8115-0638
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1376479

algorithm (FA) [13] have been used to solve NSEs. In [6],
Chang proposed a real-coded GA for solving the nonlinear
system. In [7], Grosan and Abraham offered a novel ap-
proach based on GA for dealing with the problem of
complex NSEs by recasting it as a multiobjective optimi-
zation problem. In [8], an efficient GA with symmetric and
harmonic individuals was used to solve NSEs. Mo et al. in [9]
presented a conjugate direction to PSO for addressing NSEs,
which merges the conjugate direction method (CDM)
into PSO to enhance it and enable for fast optimization of
high-dimensional optimization problems. By moving the
challenge of high-dimensional function optimization to low-
dimensional, CDM aids PSO in avoiding local minima.
Jaberipour et al. suggested a new version of PSO for solving
NSEs, which is based on a novel way of updating each
particle’s location and velocity [10]. To tackle the drawbacks
of the classic PSO approach, such as trapping in local
minima and delaying convergence, they changed the way
each particle was updated. Also, Jia and He presented a
hybrid ABC technique for solving NSEs in [11], which
combined the ABC and PSO algorithms. 'e hybrid algo-
rithm corrects the problem of sinking into a premature or
local optimum by integrating the benefits of both strategies.
Furthermore, in [12], Zhou and Li proposed an upgraded
CSA to handle the NSEs. 'ey employed a novel encoding
strategy that ensures the provided solution is achievable
without requiring the cuckoo’s evolution to be altered. Fi-
nally, in [13], enhanced FA to solve NSEs as an optimization
problem is introduced by Ariyaratne et al. with several
advantages such as eliminating the need for beginning as-
sumptions, differentiation, or even function continuity and
allowing it to provide many root estimates at the same time.

'e genetic algorithm (GA), based on natural selection,
genetics, and evolution, was presented in 1975 [14] and
described in 1989 [15] as a competent global strategy for
tackling optimization problems. GA is well suited to solving
optimization issues, and it continues to pique academics’
interest. According to the literature, GAwas commonly used
to solve NSEs, where Mangla et al., in [16], highlight flaws in
existing approaches (Bisection, Regula Falsi, New-
ton–Raphson, Secant, Muller, and so on) and justify the
GA’s application to NSEs while an approach for sorting out
NSEs to solve them using the fixed-point method was
proposed in [17], with the equations’ arrangement deter-
mined by a GA that works with a population of the possible
resolution procedures for the system. In addition, in [18], Ji
et al. presented an optimization approach based on clus-
tering evolution for obtaining an optimum piecewise linear
approximation of a set of nonlinear functions.'e technique
is built on a balance of approximation precision and sim-
plicity, and it enhances the approximate linear with the
fewest possible departments. In [19], a GA technique to solve
NSEs for a variety of applications is presented, in which the
roots of NSEs were approximated using population size,
degree of mutation, crossover rate, and coefficient size. Also,
a method for solving nonlinear equations using GA was
given in [20]. Furthermore, in [21], evolutionary algorithms
to solve NSEs were used, which were turned into an un-
constrained optimization problem with some basic

mathematical relations. Finally, in [22], a new intelligent
computer strategy for solving nonlinear equations based on
evolutionary computational approaches was proposed
mainly based on variants of GAs. But, when it works with
complex and massive systems, however, GA has some
downsides, including being extremely slow and making it
hard to identify the global optimal solution due to the in-
creased number of iterations required or long search time.

From this motivation, this study offers an algorithm that
solves one of the most significant drawbacks with GA and all
EAs which is the repeating of solutions during the opti-
mization process, which wastes time. 'e proposed opti-
mization algorithm is called a chaotic enhanced genetic
algorithm (CEGA). Chaotic is a mathematical strategy that
has been shown to improve the performance of numerous
optimization algorithms. It has received a great deal of at-
tention, and it has been applied in a range of domains in-
cluding optimization [23]. 'e proposed CEGA is a
combination between GA and chaotic noise. 'e chaotic
noise is used when the solutions are repeated, during the
optimization process of GA, to change the positions of the
solutions chaotically. 'is combination aims to enhance GA
by overcoming its drawbacks such as lack of diversity of
solutions, the imbalance between exploitation and explo-
ration, and slow convergence of the best solution.

'e major contributions of this paper include the
following:

(1) Proposing a new methodology called a chaotic en-
hanced genetic algorithm (CEGA) to solve NSEs by
using a combination between GA and chaotic noise

(2) Presenting sufficient diversity of the solutions, and
preventing consuming time during the optimization
process by overcoming repetition of solutions

(3) Ensuring improvement in every iteration by using
chaotic noise and fast convergence to best solutions

(4) Testing CEGA by many well-known NSEs
(5) Using statistical tests to determine the relevance of

the CEGA findings
(6) Showing that CEGA is competitive and better than

other optimization algorithms

'e following is how the paper is structured. Section 2
discusses nonlinear systems of equations. 'e proposed
technique is detailed in Section 3. 'e numerical findings
and discussions are shown in Sections 4 and 5, respectively.
Section 6 concludes with observations and conclusions.

2. Nonlinear System of Equations

'e mathematical definition of a nonlinear system of
equations (NSEs) is

SNLE �

f1(z) � 0,

f2(z) � 0,

⋮

fQ(z) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

2 Computational Intelligence and Neuroscience

where z � (z1, z2, . . . , zn) is a vector of n components
subset of Rn, and fq∀q � 1, 2, . . . , Q are the nonlinear
functions that translate the n-dimensional space Rn’s vector
z � (z1, z2, . . . , zn) to the real line. Some of the functions
may be nonlinear, while others are linear. Finding a solution
for NSEs entails finding a solution in which each of the Q
functions above equals zero [24].

Definition 1. If ∀q � 1, ..., Q, the functions fq(z) � 0, then
the solution z � (z∗1 , z∗2 , . . . , z∗n) is called the optimal so-
lution of the NSEs.

Many approaches [25–27] transform the NSEs into an
unconstrained optimization problem by the inclusion of the
left side of all equations and the use of the absolute value
function as

F(z) � abs f1(z) + f2(z) + · · · + fQ(z)􏼐 􏼑,

subject to

f1(z) � 0,

f2(z) � 0,

⋮

fQ(z) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where F(z) denotes the objective function. If all of the
nonlinear equations are equal to zero (fq � 0∀q � 1, ..., Q),
the objective function in (2) has a global minimum.

3. The Proposed Methodology

'is section provides an overview of GA and chaos theory.
'e suggested CEGA is next presented in detail.

3.1. Genetic Algorithm. In 1975 and 1989, respectively,
Holland and Goldberg proposed and defined the genetic
algorithm (GA) as an optimization technique [14, 15]. GA
begins with a collection of chromosomes (solutions). 'en,
using GA operators (selection, mutation, and crossover), a
new set of chromosomes is generated (solutions).'e freshly
generated chromosomes will be of greater quality than the
preceding generation. 'ese procedures are repeated until
the termination conditions are met. As a final solution, the
best chromosome (solution) of the previous generation is
offered. Figure 1 depicts the generic GA’s pseudocode.

3.2. Chaos 1eory. Chaos theory is concerned with the
behavior of systems that obey deterministic laws yet look
random and unpredictable. Many elements of the optimi-
zation sciences have benefited from the mathematics of
chaos theory. Chaos optimization algorithms have received a
lot of attention as a novel method of global optimization
because they are based on many chaotic maps, and the
inherent characteristics of chaotic maps can improve opti-
mization algorithms by allowing them to escape from local
solutions and increase the convergence to reach the global
solution. To increase solution quality, many researchers
advocated integrating chaos theory and optimization algo-
rithms [28–31]. Chaotic maps are maps (evolution func-
tions) that display chaotic behavior and typically take the

form of iterated functions. Many well-known chaotic maps
may be found in the literature, including the sinusoidal map,
Chebyshev map, singer map, tent map, sine map, circle map,
Gauss map, and logistic map.

3.3. Chaotic EnhancedGenetic Algorithm. In this subsection,
the proposed chaotic enhanced genetic algorithm (CEGA)
will be described, which is an integration between GA and
chaos theory. CEGA be configured so that it uses chaotic
noise to overcome any limitations that can be appearing
during optimization by GA such as lack of diversity of
solutions, the imbalance between exploitation and explo-
ration, and slow convergence of the best solution. CEGA
operates in two phases: in the first one, the genetic algorithm
is implemented as a global optimization system to solve the
NSEs. If the best solution is repeated during the GA opti-
mization process, the chaotic noise is employed as the
second phase. Chaotic noise tries to show a sufficient di-
versity of solutions while preventing time consumption
during the optimization process by overcoming the repe-
tition of the best solution and reducing the number of it-
erations. 'e following is a full description of the suggested
algorithm:

Step 1: initialization

(i) Individuals of the population (in n-dimensions)
are created with random placements in the search
domain and the number of iterations set to one
(t � 1)

(ii) 'e fitness function F(z) is assessed for each
individual

(iii) Assign the best individual to the best position
􏽤Best)t

Step 2: evolution by GA (t � t + 1)

(i) Ranking [32]: individuals are ranked based on
their fitness value, and a vector containing the
corresponding individual fitness value is
returned, allowing the selection process to
compute survival probabilities.

(ii) Tournament selection (TS) [33]: many solutions
(individuals) are chosen at random from the
population, and the best of these solutions is
chosen to be a parent. 'is process is performed
as many times as necessary to choose parents.

(iii) BLX-α crossover operator [34]: two-parent can-
didate solutions with n design variables,
X � [x1, x2, . . . , xn] and Y � [y1, y2, . . . , yn], are

Create the starting population;
The individuals’ fitness in the population is evaluated;
Do:

Parents from the population are chosen;
Parents are recombined to create children by operators of GA.
Evaluate the children’s fitness;
Maintain the best;

While the termination requirement has been met.

Figure 1: 'e pseudocode of the general GA.

Computational Intelligence and Neuroscience 3

chosen with crossover probability Pc. 'e BLX-α
operator creates the k-th component of a new
offspring W. 'e k-th component of W is a
uniform random scalar in the range
[min(xk, yk) − αI,max(xk, yk) + αI], where I
defines the distance between parent candidates
given by I � max(xk, yk) − min(xk, yk) and a is a
user-defined parameter.
'e BLX-α efficacy comes from its capacity to
seek in a space domain that is not always con-
strained by the parents. Furthermore, because the
search space is dependent on the distance be-
tween the parents, the GA is self-adaptive. 'e
parameter α must be chosen carefully since it
quantitatively specifies the search domain. Based
on the findings of Herrera et al. [35], we choose
α � 0.5 in this investigation.

(iv) Real-valued mutation [36]: randomly generated
values are added to the variables for each new
offspring with a low probability (Pm) as follows:

Var
Mut
i � Vari ± si · ri · ai, i ∈ 1, 2, . . . , n{ },

uniform at random
(3)

where si ∈ − 1, +1{ } uniform at random, ri � r ·

do maini, r is mutation range (standard: 10%),
ai � 2− u·m, u ∈ [0, 1] uniform at random, and m
is mutation precision.

(v) Elitist strategy: the best individuals in the gen-
eration t − 1 are directly added to the new gen-
eration t.

(vi) Evaluation: for each individual, F(z) is evaluated
to find the new best position 􏽤Best)t.

(vii) Updating: if the new best position 􏽤Best)t is worse
than or equal to the previous best position
􏽤Best)t− 1, go to Step 3. Otherwise, continue by
updating the best position as the best individual
position discovered so far as 􏽤Best)t.

(viii) Termination criteria: the proposed algorithm is
terminated when the maximum number of it-
erations is achieved or when the individual
convergences. Convergence happens when the
locations of all individuals in the population are
identical. Finally, put out the optimal solution as
the best individual position 􏽤Best)t.

Step 3: chaotic noise

(i) Chaotic noise: chaotic noise is applied if the best
solution is repeated during the GA optimization
process. It tries to show a sufficient diversity of
solutions while preventing time consumption
during the optimization process by overcoming
the repetition of the best solution and reducing the
number of iterations. In this step, the population at
generation t (POPt) is changed by chaotic noise as
follows:

POPt � ϑ.POPt, (4)

where ϑ is a chaotic random number generated by
the logistic map by using the following equation:

ϑq � 4ϑq− 1 1 − ϑq− 1􏼐 􏼑, ϑ0 ∈ (0, 1) ,

ϑ0 ∉ 0.0, 0.25, 0.50, 0.75, 1.0{ }.
(5)

'e logistic map, according to the results in [37],
improves the quality of the solutions and provides
the best performance.

(ii) Evaluation: for each individual in POPt, F(z) is
evaluated to find the new best position 􏽤Best)t.

(iii) Updating: if the new best position 􏽤Best)t is better
than the previous best position 􏽤Best)t− 1, update the
best position 􏽤Best)t+1 as the best individual’s po-
sition found so far and continue and go to Step 2.
Otherwise, repeat Step 3.

Figure 2 depicts the suggested algorithm’s pseudocode.

4. Numerical Results

Four systems of nonlinear equations are solved to assess the
suggested method. 'ese four test systems are common
challenges that have been explored by other researchers and
are known as benchmarks. 'e proposed algorithm is coded
in MATLAB R2012b and implemented on the PC with
Intel(R) Core(TM) i7-6600U CPU@ 2.60GHz, 16GB RAM,
and Windows 10 operating system. 'e results will be
compared to those obtained by the original GA to dem-
onstrate the benefits of the suggested modifications and their
impact on achieving an optimal solution.

For computational studies, a population size equal to 20,
generation gap (GGAP) is 0.9, crossover probability Pc is 0.8,
and mutation probability Pm is 0.02. Also, the termination
criterion for CEGA is defined as

δ � ‖Foptimum‖ − ‖Ft‖
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε � 1e − 20. (6)

Foptimum is the optimum value of the objective function
which is 0 in all nonlinear system cases while Ft is the
calculated objective function at each iteration t. It should be
noted that the maximum number of iterations for both
algorithms (original GA and CEGA) is the same, and all
results are recorded from the first run. Furthermore, when
one of them meets the termination requirement, the com-
putations stop and the number of used iterations is reported.
Finally, to statistically evaluate the CEGA compared to other
algorithms, the Friedman test and Wilcoxon rank-sum test
are executed here.

4.1. Benchmark1: ExperimentTest. 'is benchmark problem
can be described as [7]

f1 z1, z2(􏼁 � cos 2z1(􏼁 − cos 2z2(􏼁 − 0.4 � 0,

f2 z1, z2(􏼁 � 2 z2 − z1(􏼁 + sin 2z2(􏼁 − sin 2z1(􏼁 − 1.2 � 0,

z1 ∈ [− 10, 10],

z2 ∈ [− 10, 10].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

4 Computational Intelligence and Neuroscience

'is benchmark is solved by many algorithms such as
Newton’s method, Secant’s method, evolutionary algorithm
approach (EAA) [7], genetic algorithms (GAs) [21], and
hybridization of grasshopper optimization algorithm with
genetic algorithm (hybrid-GOA-GA) [38]. Table 1 shows a
comparison between the best function value F obtained by
such algorithms, original GA, and the proposed CEGA. 'e
convergence curves of the best F(z) achieved so far using
original GA and CEGA are shown in Figure 3.

4.2. Benchmark 2: Arithmetic Application. 'is benchmark
problem can be described as [7]

f1(z) � z1 − 0.254287220 − 0.18324757 × z4z3z9 � 0,

f2(z) � z2 − 0.378421970 − 0.16275449 × z1z10z6 � 0,

f3(z) � z3 − 0.271625770 − 0.16955071 × z1z2z10 � 0,

f4(z) � z4 − 0.198079140 − 0.15585316 × z7z1z6 � 0,

f5(z) � z5 − 0.441667280 − 0.19950920 × x7x6x3 � 0,

f6(z) � z6 − 0.146541130 − 0.18922793 × z8z5z10 � 0,

f7(z) � z7 − 0.429371610 − 0.21180486 × z2x5x8 � 0,

f8(z) � z8 − 0.070564380 − 0.17081208 × z1z7z6 � 0,

f9(z) � z9 − 0.345049060 − 0.19612740 × z10z6z8 � 0,

f10(z) � z10 − 0.426511020 − 0.21466544 × z4z8z1 � 0,

− 10≤ z1, . . . , z10 ≤ 10.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

'is benchmark is solved by many algorithms as the
EAA [7], GAs [21], and hybrid-GOA-GA [38]. Table 2 shows
a comparison between the best function value F obtained by
such algorithms, original GA, and the proposed CEGAwhile

the convergence curves of the best F(z) achieved so far using
original GA and CEGA are shown in Figure 4.

4.3. Benchmark 3: Combustion Application. 'is benchmark
problem can be described as [7]

f1(z) � z2 + 2z6 + z9 + 2z10 − 10− 5
� 0,

f2(z) � z3 + z8 − 3 × 10− 5
� 0,

f3(z) � z1 + z3 + 2z5 + 2z8 + z9 + z10 − 5 × 10− 5
� 0,

f4(z) � z4 + 2z7 − 10− 5
� 0,

f5(z) � 0.5140437 × 107z5 − z
2
1 � 0,

f6(z) � 0.1006932 × 10− 6
x6 − 2z

2
2 � 0,

f7(z) � 0.7816278 × 10− 15
z7 − z

2
4 � 0,

f8(z) � 0.1496236 × 10− 6
z8 − z1z3 � 0,

f9(z) � 0.6194411 × 10− 7
z9 − z1z2 � 0,

f10(z) � 0.2089296 × 10− 14
z10 − z1z

2
2 � 0,

− 10≤ z1, z2, . . . , z10 ≤ 10.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

'is benchmark is solved by many algorithms as the
EAA [7], GAs [21], and hybrid-GOA-GA [38]. Table 3 shows
a comparison between the best function value F obtained by
such algorithms, original GA, and the proposed CEGA,
while Figure 5 shows the convergence curves of the best F
obtained so far by original GA and CEGA.

4.4. Benchmark 4: Neurophysiology Application. 'is
benchmark problem can be described as [7]

Initialization of parameters
While evolution not completed ← GA algorithm

Ranking
Tournament selection
BLX-α crossover.
Real-valued mutation
Elitist strategy.
Evaluation
If the new best position is worse than or equal to the previous best position, continue

While chaotic noise not completed
Update population position according to Equation (5)
Evaluation
If the new best position is better than the previous best position

Updating the best solution
End if

End while
Otherwise

Updating the best solution
End if

End while

Figure 2: 'e pseudocode of the proposed algorithm.

Computational Intelligence and Neuroscience 5

50 100 150 200 250 300

10-5

10-4

10-3

10-2

10-1
Convergence curve

Iteration

Be
st

F
(z

) o
bt

ai
ne

d
so

 fa
r

Original GA
CEGA

Figure 3: Benchmark 1: the convergence curves of the best F(z) achieved so far by original GA and CEGA.

Table 1: Results for benchmark 1, Experiment test.

Method (z1, z2) (f1, f2) F(z) No. of iterations

Newton’s method (0.15, 0.49) (0.00168, 0.01497) 0.0083 NA
Secant’s method (0.15, 0.49) (0.00168, 0.01497) 0.0083 NA
EAA (0.15722, 49458) (0.001264, 0.000969) 0.0011 150
GAs (0.156522, 0.49338) (4.8606E − 06, 3.7164E − 06) 4.2885E − 06 10
Hybrid-GOA-GA (0.680235945188233, 2.25999176017399) (2.2840E − 06, 1.2967E − 06) 1.7904E − 06 300
Original GA (− 2.98506954610277, − 2.64821484596259) (5.2059E − 07, 7.4084E − 06) 3.9645E − 06 300
CEGA (− 9.26825582324219, − 8.93140064444864) (2.9827E − 07, 5.1472E − 06) 2.7227E − 06 11

Table 2: Results for benchmark 2, Arithmetic application.

Method z1⟶ z10 f1⟶ f10 F(z) No. of iterations

EAA

z1 0.2077500302 f1 0.0464943

0.2344 300

z2 0.0299198492 f2 0.3489889
z3 − 0.0339491324 f3 0.3058418
z4 − 0.2027950317 f4 0.4012915
z5 0.2131771707 f5 0.2284027
z6 0.0568458067 f6 0.0886970
z7 0.2267650517 f7 0.2024745
z8 − 0.0977041236 f8 0.1687259
z9 − 0.0339921200 f9 0.3787652
z10 0.2532921324 f10 0.1741025

GAs

z1 2.5783339E − 01 f1 − 7.3844E − 10

1.2674E − 09 10

z2 3.8109715E − 01 f2 − 1.1684E − 12
z3 2.7874502E − 01 f3 1.7931E − 09
z4 2.0066896E − 01 f4 − 8.8837E − 10
z5 4.4525142E − 01 f5 − 4.5866E − 10
z6 1.4918391E − 01 f6 − 5.270E − 09
z7 4.3200969E − 01 f7 − 6.3852E − 09
z8 7.3402777E − 02 f8 − 9.7362E − 10
z9 3.4596683E − 01 f9 − 6.0389E − 11
z10 4.2732628E − 01 f10 3.0841E − 10

6 Computational Intelligence and Neuroscience

Table 2: Continued.

Method z1⟶ z10 f1⟶ f10 F(z) No. of iterations

Hybrid-GOA-GA

z1 0.2578333 f1 1.2656E − 12

1.7220E − 12 1200

z2 0.3810971 f2 7.9096E − 14
z3 0.2787450 f3 1.7517E − 12
z4 0.2006689 f4 4.5315E − 12
z5 0.4452514 f5 1.1361E − 12
z6 0.1491839 f6 2.2230E − 12
z7 0.4320096 f7 1.4795E − 12
z8 0.0734027 f8 6.5123E − 13
z9 0.3459668 f9 3.5476E − 12
z10 0.4273262 f10 5.5468E − 13

Original GA

z1 0.257833393700735 f1 2.6685E − 13

1.7873E − 12 1200

z2 0.381097154600942 f2 1.8415E − 12
z3 0.278745017345425 f3 1.0000E − 12
z4 0.200668964224041 f4 1.3058E − 12
z5 0.445251424840196 f5 8.3411E − 13
z6 0.149183919967650 f6 1.8859E − 12
z7 0.432009698988807 f7 4.9226E − 12
z8 0.0734027777813010 f8 5.0493E − 12
z9 0.345966826875570 f9 3.8700E − 14
z10 0.427326275994071 f10 7.2846E − 13

CEGA

z1 0.257833393700561 f1 5.7399E − 14

3.0855E − 14 272

z2 0.381097154602820 f2 1.2136E − 14
z3 0.278745017346455 f3 1.3031E − 14
z4 0.200668964225329 f4 1.5905E − 14
z5 0.445251424841115 f5 7.1657E − 14
z6 0.149183919969369 f6 1.4279E − 14
z7 0.432009698983808 f7 8.7737E − 14
z8 0.0734027777762290 f8 2.1295E − 14
z9 0.345966826875559 f9 4.9712E − 15
z10 0.427326275993280 f10 1.0141E − 14

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

10-10

10-5

100

Convergence curve

Iteration

Be
st

F
(z

) o
bt

ai
ne

d
so

 fa
r

Original GA
CEGA

Figure 4: Benchmark 2: the convergence curves of the best F (z) achieved so far by original GA and CEGA.

Computational Intelligence and Neuroscience 7

Table 3: Results for benchmark 3, Combustion application.

Method z1⟶ z10 f1⟶ f10 F(z) No. of iterations

EAA

z1 2.8724570E − 4 f1 − 9.0156756E − 5

− 1.8038E − 05 300

z2 4.6449359E − 004 f2 − 3.3881318E − 021
z3 − 3.8722475E − 006 f3 − 5.9848143E − 008
z4 5.7046411E − 005 f4 − 9.0000000E − 005
z5 1.2033492e + 000 f5 − 2.0652682E − 008
z6 3.2144041e + 000 f6 − 1.0783996E − 007
z7 − 2.3523205E − 005 f7 − 3.2542930E − 009
z8 3.3872248E − 005 f8 1.1173545E − 009
z9 1.6152635e + 000 f9 − 3.3367727E − 008

GAs

z1 7.7944699E − 5 f1 − 9.0000000E − 5

− 1.8034E − 05 70

z2 2.3453123E − 4 f2 − 4.7433845E − 20
z3 5.6870072E − 8 f3 − 5.5091023E − 18
z4 − 5.1124010E − 4 f4 − 9.0000000E − 5
z5 1.1665683E − 1 f5 − 7.8705351E − 11
z6 3.6717284E − 1 f6 − 7.3037986E − 8
z7 2.6062005E − 4 f7 − 2.6136644E − 7
z8 2.9943130E − 5 f8 4.7478263E − 14
z9 2.6776713E − 1 f9 − 1.6938693E − 9
z10 − 5.0116867E − 1 f10 − 4.2883872E − 12
z10 − 4.0222631e + 000 f10 − 6.1982897E − 011

Hybrid-GOA-GA

z1 1.5541664E − 9 f1 8.5611E − 12

1.2499E − 09 300

z2 4.6710388E − 6 f2 1.2440E − 08
z3 2.9852019E − 5 f3 1.9449E − 14
z4 1.7239638E − 10 f4 6.6138E − 12
z5 9.8332225E − 6 f5 5.0547E − 13
z6 2.5029647E − 6 f6 4.3385E − 11
z7 4.9999104E − 6 f7 2.5812E − 20
z8 1.3554000E − 7 f8 2.6115E − 14
z9 9.4779067E − 8 f9 1.3886E − 15
z10 1.1412198E − 7 f10 3.3671E − 20

Original GA

z1 0.000131595492467185 f1 1.2576E − 04

7.4518E − 05 300

z2 8.25174833157296E − 05 f2 1.0366E − 04
z3 − 2.16100194956660 f3 1.5119E − 04
z4 − 0.00728929937743800 f4 2.6026E − 05
z5 − 2.84721332483602 f5 1.6368E − 07
z6 − 4.25864110800585 f6 4.4243E − 07
z7 0.00363663681060500 f7 5.3134E − 05
z8 2.16113561379106 f8 2.8470E − 04
z9 − 1.45063000953809 f9 1.0072E − 07
z10 4.98385697563882 f10 8.8564E − 13

CEGA

z1 1.15278259019717E − 06 f1 5.7802E − 11

4.5300E − 09 183

z2 9.06471796614326E − 06 f2 4.4498E − 08
z3 1.56300393104332E − 05 f3 4.5304E − 10
z4 7.01041293845308E − 06 f4 4.9701E − 11
z5 2.11248562801178E − 06 f5 1.2203E − 12
z6 1.28545186382671E − 07 f6 1.6433E − 10
z7 1.49481838115443E − 06 f7 4.9146E − 11
z8 1.43254622355700E − 05 f8 1.5875E − 11
z9 5.33696042558367E − 09 f9 1.0449E − 11
z10 3.36398449219863E − 07 f10 9.4722E − 17

8 Computational Intelligence and Neuroscience

50 100 150 200 250 300
10-8

10-6

10-4

10-2

100

Convergence curve

Iteration

Be
st

F
(z

) o
bt

ai
ne

d
so

 fa
r

Original GA
CEGA

Figure 5: Benchmark 3: the convergence curves of the best F(z) achieved so far by original GA and CEGA.

Table 4: Results for benchmark 4, Neurophysiology application.

Method z1⟶ z6 f1⟶ f6 F(z) No. of iterations

EAA

z1 7.0148122E − 001 f1 1.1532022E − 009

3.7764E − 10 200

z2 7.5925767E − 001 f2 2.6058267E − 011
z3 − 7.1268794E − 001 f3 − 6.5553074E − 010
z4 6.5079013E − 001 f4 1.1783451E − 009
z5 2.4122542E − 009 f5 1.1134504E − 009
z6 7.8977724E − 010 f6 − 5.4967453E − 010

GAs

z1 3.2484137E − 001 f1 1.5105117E − 010

5.2127E − 11 20

z2 3.2484137E − 001 f2 1.5114510E − 010
z3 9.4576852E − 001 f3 − 1.2749912E − 011
z4 9.4576852E − 001 f4 4.6365863E − 012
z5 − 5.6887875E − 001 f5 1.0181522E − 011
z6 5.6887875E − 001 f6 8.4981744E − 012

Hybrid-GOA-GA

z1 0.0820223613267075 f1 6.9593E − 11

7.0908E − 11 1000

z2 − 0.138287000903135 f2 3.1647E − 11
z3 − 0.996630489354999 f3 3.3110E − 12
z4 0.990392197774631 f4 9.6123E − 12
z5 4.48130330622387E − 09 f5 2.5478E − 10
z6 4.56992671931472E − 09 f6 5.6505E − 11

Original GA

z1 0.00459210535797400 f1 3.8965E − 11

8.3319E − 06 1000

z2 − 0.0140392033441710 f2 8.6758E − 11
z3 0.999989456248088 f3 3.3069E − 11
z4 − 0.999901445571622 f4 1.3870E − 08
z5 − 0.00519291646053100 f5 4.9063E − 05
z6 − 0.00519428784572100 f6 9.1419E − 07

CEGA

z1 0.132104801350580 f1 1.9783E − 11

1.0693E − 11 87

z2 0.225320570231597 f2 1.2026E − 11
z3 − 0.991235754742487 f3 1.6804E − 11
z4 − 0.974284681506633 f4 1.2213E − 12
z5 − 1.46708097455544E − 10 f5 1.0116E − 11
z6 1.36330007947428E − 10 f6 4.2055E − 12

Computational Intelligence and Neuroscience 9

f1 � z
2
1 + z

2
3 − 1 � 0,

f2 � z
2
2 + z

2
4 − 1 � 0,

f3 � z5z
3
3 + z6z

3
4 � 0,

f4 � z5z
3
1 + z6z

3
2 � 0,

f5 � z5z1z
2
3 + z6z

2
4z2 � 0,

f6 � z5z
2
1z3 + z6z

2
2z4 � 0,

− 10≤ z1, z2, ..., z6 ≤ 10.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

'is benchmark is solved by many algorithms as the
EAA [7], GAs [21], and hybrid-GOA-GA [38]. Table 4 shows
a comparison between the best function value F obtained by
such algorithms, original GA, and the proposed CEGAwhile
Figure 6 shows the convergence curves of the best F obtained
so far by original GA and CEGA.

5. Discussions

Tables 1–4 show the results of all algorithms for the four
benchmark problems in terms of the best-obtained solution
and the number of iterations. We can observe, for the 1st
benchmark problem (experiment test), that hybrid-GOA-
GA [38] surpassed the other algorithms in reaching the
lowest value of F(z), which is 1.7904E − 06, but in the
number of iterations of 300 while the proposed CEGA
obtained a solution very close to the solution obtained by
hybrid-GOA-GA, which is 2.7227E − 06, but in only 11 it-
erations. For the 2nd benchmark problem (arithmetic ap-
plication), we find that the proposed CEGA outperformed
the rest of the algorithms in obtaining the lowest value of
F(z), which is 3.0855E − 14, in 272 iterations, while GAs [21]
got an acceptable solution, which is 1.2674E − 09, in the least
number of iterations, which is 10. For the 3rd benchmark
problem (combustion application), we find that hybrid-
GOA-GA [38] outperformed the rest of the algorithms in
obtaining the lowest value of F(z), which is 1.2499E − 09, in
300 iterations. CEGA got an acceptable solution, which is
4.5300E − 09, in an acceptable number of iterations, which is
183, while GAs [21] obtained a reasonable solution, which is
1.8034E − 05, in the fewest number of iterations, which is 70.
Finally, for the 4th benchmark problem (Neurophysiology
application), we find that the proposed CEGA outperformed
the rest of the algorithms in obtaining the lowest value of
F(z), which is 1.0693E − 11, in 87 iterations, while GAs [21]
got an acceptable solution, which is 5.2127E − 11, in the least
number of iterations, which is 20.

On the other hand, we can see that the original GA’
convergence curves had several straight portions, which
reflect periods of nonimproving in the objective function
owing to entrapment in a local minimum as seen in
Figures 3–6, while for CEGA, it is clear that the chaotic noise
was successful in permanently improving the objective
function and not repeating solutions or spending time on
iterations that did not enhance the objective function. 'e
following percentage relationship (IMP%) is used to indicate
the improvement between the original GA and the proposed
CEGA algorithm:

IMP% �
|original GA iterations − CEGA iterations|

original GA iterations
× 100.

(11)

As indicated in Table 5, CEGA improved all results
significantly by 75.99% on average. So, we can say that
chaotic noise guides GA to eliminate the local minimum and
enhance the search results, reducing the number of itera-
tions and, as a result, time, by preventing iterations from
being used without improvement or convergence to the best
solution.

'e EAA [7], GAs [21], hybrid-GOA-GA [38], original
GA, and the proposed CEGA solved the 4 benchmark
problems. 'erefore, a statistical evaluation of CEGA
compared to these algorithms will be done, according to the
best function value F(z) by implementing the Friedman test
[39] and the Wilcoxon signed-rank test [40] here. 'e
Friedman test compares the algorithms’ average ranks and
produces Friedman statistics, where the smaller the ranking,
the better the performance of the algorithm while the
Wilcoxon signed-rank test is used to show the significant
differences between the CEGA and the other algorithms.

'e Friedman test results are shown in Table 6. Table 6
shows that the Asymp. Sig. (P value) is smaller than 0.05,
indicating that there are variations in the outcomes obtained
by all algorithms. Furthermore, with a lower mean rank, the
suggested CEGA algorithm outperforms the other
algorithms.

Table 7, on the other hand, displays the results of the
Wilcoxon signed-rank test. 'e sum of positive ranks is R+,
whereas the sum of negative ranks equals R− . Table 7
demonstrates that CEGA achieves better R+ values than
R− values in 3 cases and is equal in 1 case, indicating that it
outperforms other algorithms. As a result of Table 7, we can
infer that the proposed CEGA is a significant algorithm and
better than the other algorithms.

100 200 300 400 500 600 700 800 900 1000

10-10

10-8

10-6

10-4

10-2

100

Convergence curve

Iteration

Be
st

F
(z

) o
bt

ai
ne

d
so

 fa
r

Original GA
CEGA

Figure 6: Benchmark 4: the convergence curves of the best F(z)

achieved so far by original GA and CEGA.

10 Computational Intelligence and Neuroscience

6. Conclusions

In this paper, a chaotic enhanced genetic algorithm (CEGA)
to solve the nonlinear system of equations (NSEs) is pro-
posed, which is a combination of genetic algorithm (GA)
and chaos theory. CEGA was designed by using a new
definition which is chaotic noise to solve the shortcomings of
original GA such as a lack of solution variety, an imbalance
between exploitation and exploration, repeating best solu-
tion throughout the optimization process, and sluggish
convergence of the optimal solution. NSEs are first trans-
formed into an unconstrained optimization problem, which
is then solved using CEGA.

Four benchmarks problems were considered, which are
experiment test, arithmetic application, combustion appli-
cation, and neurophysiology application. 'e results ob-
tained by CEGA and the original GA showed that CEGA
leads to faster convergence and is successful in finding the
optimal solution in fewer iterations than the original GA

with an average improvement percentage of about 75.99. On
the other hand, the convergence curves showed how the
original GA consumes time in trapping into the local
minima while the CEGA, by using the chaotic noise, ter-
minated this sticking in the local minimum and moved the
optimization process to new better search space. In addition,
by comparing CEGA results with other studies, we find that
CEGA is competitive and the best. Furthermore, statistical
analysis by Friedman and Wilcoxon’s tests showed the
significance of the CEGA findings, where it got the lowest
mean rank and achieved better R+ values than R− values.

In our future works, three directions will be concen-
trated: (i) implementing more modifications for CEGA and
assessing their impact on optimization results, (ii) applying
CEGA to solve optimization problems in different fields, and
(iii) using other metaheuristic algorithms to solve this kind
of problems, such as particle swarm optimization [41], ant
colony optimization [42], artificial bee colony (ABC) Al-
gorithm [43], krill herd [44], monarch butterfly optimization

Table 5: Percentage improvement between the original GA and the proposed CEGA.

Benchmark problem Original GA CEGA IMP% (%) Average IMP% (%)
Benchmark 1, experiment test 300 11 96.33

75.99Benchmark 2, arithmetic application 1200 272 77.33
Benchmark 3, combustion application 300 183 39
Benchmark 4, neurophysiology application 1000 87 91.3

Table 6: Friedman test.

Ranks Test statistics
Method Mean rank
EAA [7] 4.50
GAs [21] 3.25 N 4
Hybrid-GOA-GA [38] 1.75 Chi-square 11.400
Original GA 4.00 df 4
CEGA 1.50 Asymp. Sig. (P value) 0.022

Table 7: Wilcoxon signed ranks test.

Test statistics Ranks
N Mean rank Sum of ranks

EAA-CEGA R− 0a 0.00 0.00 (a) EAA<CEGA
Z − 1.826m R+ 4b 2.50 10.00 (b) EAA>CEGA
Asymp. Sig. (2-tailed) 0.068 Ties 0c (c) EAA�CEGA
m. based on negative ranks Total 4

GAs-CEGA R− 0d 0.00 0.00 (d) GAs<CEGA
Z − 1.826m R+ 4e 2.50 10.00 (e) GAs>CEGA
Asymp. Sig. (2-tailed) 0.068 Ties 0f (f) GAs�CEGA
m. based on negative ranks Total 4

Hybrid-GOA-GA-CEGA R− 2g 3.50 7.00 (g) Hybrid-GOA-GA<CEGA
Z − 0.730n R+ 2h 1.50 3.00 (h) Hybrid-GOA-GA>CEGA
Asymp. Sig. (2-tailed) 0.465 Ties 0i (i) Hybrid-GOA-GA�CEGA
n. based on positive ranks Total 4

Original GA-CEGA R− 0j 0.00 0.00 (j) Original GA<CEGA
Z − 1.826m R+ 4k 2.50 10.00 (k) Original GA>CEGA
Asymp. Sig. (2-tailed) 0.068 Ties 0l (l) Original GA�CEGA
m. based on negative ranks Total 4

Computational Intelligence and Neuroscience 11

(MBO) [45], earthworm optimization algorithm (EWA)
[46], elephant herding optimization (EHO) [47], moth
search (MS) algorithm [48], slime mould algorithm (SMA)
[49], hunger games search (HGS) [50], Runge Kutta opti-
mizer (RUN) [51], colony predation algorithm (CPA) [52],
and harris hawks optimization (HHO) [53].

Data Availability

All data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

'e authors declare that there are no conflicts of interest.

Authors’ Contributions

All authors are equally contributed to this article.

Acknowledgments

'e authors extend their appreciation to the Deputyship for
Research and Innovation, Ministry of Education in Saudi
Arabia, for funding this research work through the project
number (IF-PSAU-2021/01/18396).

References

[1] T. A. Jeeves, “Secant modification of Newton’s method,”
Communications of the ACM, vol. 1, no. 8, pp. 9-10, 1958.

[2] J. J. Moré and M. Y. Cosnard, “Numerical solution of non-
linear equations,” ACM Transactions on Mathematical Soft-
ware, vol. 5, pp. 64–85, 1979.

[3] Dennis .Jr, E. John, and R. B. Schnabel,Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Soci-
ety for Industrial and Applied Mathematics, Pennsylvania,
USA, 1996.

[4] A. R. Conn, N. I. M. Gould, and P. Toint, “A globally con-
vergent augmented Lagrangian algorithm for optimization
with general constraints and simple bounds,” SIAM Journal
on Numerical Analysis, vol. 28, no. 2, pp. 545–572, 1991.

[5] J. D. Hoffman and S. Frankel, Numerical Methods for Engi-
neers and Scientists, CRC Press, Florida, USA, 2018.

[6] W.-D. Chang, “An improved real-coded genetic algorithm for
parameters estimation of nonlinear systems,” Mechanical
Systems and Signal Processing, vol. 20, no. 1, pp. 236–246,
2006.

[7] C. Grosan and A. Abraham, “A new approach for solving
nonlinear equations systems,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 38,
no. 3, pp. 698–714, 2008.

[8] H. Ren, L. Wu, W. Bi, I. K. Argyros, and Argyros, “Solving
nonlinear equations system via an efficient genetic algorithm
with symmetric and harmonious individuals,” Applied
Mathematics and Computation, vol. 219, no. 23, pp. 10967–
10973, 2013.

[9] Y. Mo, H. Liu, and Q. Wang, “Conjugate direction particle
swarm optimization solving systems of nonlinear equations,”
Computers & Mathematics with Applications, vol. 57,
pp. 1877–1882, 2009.

[10] M. Jaberipour, E. Khorram, and B. Karimi, “Particle swarm
algorithm for solving systems of nonlinear equations,”

Computers & Mathematics with Applications, vol. 62, no. 2,
pp. 566–576, 2011.

[11] R. Jia and D. He, “Hybrid artificial bee colony algorithm for
solving nonlinear system of equations,” in Proceedings of the
2012 Eighth international conference on computational intel-
ligence and security, pp. 56–60, IEEE, Guangzhou, China,
November 2012.

[12] R. H. Zhou and Y. G Li, “An improve cuckoo search algorithm
for solving nonlinear equation group,” in Applied Mechanics
and Materialsvol. 651-653, pp. 2121–2124, Trans Tech Pub-
lications Ltd, 2014.

[13] M. K. A. Ariyaratne, T. G. I. Fernando, and S. Weerakoon,
“Solving systems of nonlinear equations using a modified
firefly algorithm (MODFA),” Swarm and Evolutionary
Computation, vol. 48, pp. 72–92, 2019.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence, MIT press, Cambridge,
USA, 1992.

[15] E. Goldberg David, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading, MA, Addison-Wesley,
Boston, USA, 1989.

[16] C. Mangla, H. Bhasin, M. Ahmad, and M. Uddin, “Novel
solution of nonlinear equations using genetic algorithm,” in
Industrial Mathematics and Complex Systems, pp. 249–257,
Springer, Singapore, 2017.

[17] A. Rovira, M. Valdés, and J. Casanova, “A new methodology
to solve non-linear equation systems using genetic algorithms.
Application to combined cyclegas turbine simulation,” In-
ternational Journal for Numerical Methods in Engineering,
vol. 63, no. 10, pp. 1424–1435, 2005.

[18] Z. Ji, Z. Li, and Z. Ji, “Research on genetic algorithm and data
information based on combined framework for nonlinear
functions optimization,” Procedia Engineering, vol. 23,
pp. 155–160, 2011.

[19] G. Joshi and M. Bala Krishna, “Solving system of non-linear
equations using Genetic Algorithm,” in Proceedings of the
2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 1302–1308,
IEEE, Delhi, India, September 2014.

[20] N. E. Mastorakis, “Solving non-linear equations via genetic
algorithms,” in Proceedings of the 6th WSEAS International
Conference on Evolutionary, pp. 16–18, Lisbon, Portugal, June
2005.

[21] A. Pourrajabian, R. Ebrahimi, M. Mirzaei, and M. Shams,
“Applying genetic algorithms for solving nonlinear algebraic
equations,” Applied Mathematics and Computation, vol. 219,
no. 24, pp. 11483–11494, 2013.

[22] M. A. Raja, Z. Zahoor, Z. Sabir et al., “Design of stochastic
solvers based on genetic algorithms for solving nonlinear
equations,” Neural Computing & Applications, vol. 26, no. 1,
pp. 1–23, 2015.

[23] L. Wang, D.-Z. Zheng, and Q. S. Lin, “Survey on chaotic
optimization methods,” Computing Technology and Auto-
mation, vol. 20, no. 1, pp. 1–5, 2001.

[24] A. A. M. Cuyt and L. B. Rall, “Computational implementation
of the multivariate Halley method for solving nonlinear
systems of equations,” ACM Transactions on Mathematical
Software, vol. 11, no. 1, pp. 20–36, 1985.

[25] R. Zhao, H. Ni, H. Feng, Y. Song, and X. Zhu, “An improved
grasshopper optimization algorithm for task scheduling
problems,” Int. J. Innov. Comput., Inf. Control, vol. 15,
pp. 1967–1987, 2019.

12 Computational Intelligence and Neuroscience

[26] P.-y. Nie, “A null space method for solving system of equa-
tions,” Applied Mathematics and Computation, vol. 149, no. 1,
pp. 215–226, 2004.

[27] P.-Y. Nie, “An SQP approach with line search for a system of
nonlinear equations,”Mathematical and ComputerModelling,
vol. 43, no. 3-4, pp. 368–373, 2006.

[28] D. Yang, Z. Liu, and J. Zhou, “Chaos optimization algorithms
based on chaotic maps with different probability distribution
and search speed for global optimization,”Communications in
Nonlinear Science and Numerical Simulation, vol. 19, no. 4,
pp. 1229–1246, 2014.

[29] P. Pan, D. Wang, and B. Niu, “Design optimization of
APMEC using chaos multi-objective particle swarm opti-
mization algorithm,” Energy Reports, vol. 7, pp. 531–537, 2021.

[30] S. Talatahari and M. Azizi, “Optimization of constrained
mathematical and engineering design problems using chaos
game optimization,” Computers & Industrial Engineering,
vol. 145, Article ID 106560, 2020.

[31] J. Feng, J. Zhang, X. Zhu, and W. Lian, “A novel chaos op-
timization algorithm,” Multimedia Tools and Applications,
vol. 76, no. 16, pp. 17405–17436, 2017.

[32] A. M. Abdelsalam and M. A. El-Shorbagy, “Optimization of
wind turbines siting in a wind farm using genetic algorithm
based local search,” Renewable Energy, vol. 123, pp. 748–755,
2018.

[33] D. Chakraborti, P. Biswas, and B. B. Pal, “FGP approach for
solving fractional multiobjective decision making problems
using GA with tournament selection and arithmetic cross-
over,” Procedia Technology, vol. 10, pp. 505–514, 2013.

[34] M. V. Pathan, S. Patsias, and V. L. Tagarielli, “A real-coded
genetic algorithm for optimizing the damping response of
composite laminates,” Computers & Structures, vol. 198,
pp. 51–60, 2018.

[35] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-
coded genetic algorithms: operators and tools for behavioural
analysis,” Artificial Intelligence Review, vol. 12, no. 4,
pp. 265–319, 1998.

[36] N. Soni and T. Kumar, “Study of various mutation operators
in genetic algorithms,” International Journal of Computer
Science and Information Technologies, vol. 5, pp. 4519–4521,
2014.

[37] M. A. El-Shorbagy, A. A. Mousa, and S. M. Nasr, “A chaos-
based evolutionary algorithm for general nonlinear pro-
gramming problems,” Chaos, Solitons & Fractals, vol. 85,
pp. 8–21, 2016.

[38] M. A. El-Shorbagy, A. M. El-Refaey, and A. M. El-Refaey,
“Hybridization of grasshopper optimization algorithm with
genetic algorithm for solving system of non-linear equations,”
IEEE Access, vol. 8, pp. 220944–220961, 2020.

[39] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

[40] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining:
experimental analysis of power,” Information Sciences,
vol. 180, no. 10, pp. 2044–2064, 2010.

[41] A. El-Shorbagy, “Weighted method based trust region-par-
ticle swarm optimization for multi-objective optimization,”
American Journal of Applied Mathematics, vol. 3, no. 3,
pp. 81–89, 2015.

[42] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony opti-
mization,” IEEE Computational Intelligence Magazine, vol. 1,
no. 4, pp. 28–39, 2006.

[43] D. Karaboga and B. Akay, “A comparative study of artificial
bee colony algorithm,” Applied Mathematics and Computa-
tion, vol. 214, no. 1, pp. 108–132, 2009.

[44] G.-G. Wang, L. Guo, A. H. Gandomi, G.-S. Hao, and
H. Wang, “Chaotic krill herd algorithm,” Information Sci-
ences, vol. 274, pp. 17–34, 2014.

[45] G.-G. Wang, S. Deb, and Z. Cui, “Monarch butterfly opti-
mization,” Neural Computing and Applications, vol. 31, no. 7,
pp. 1995–2014, 2019.

[46] M. Hosseini Rad and M. Abdolrazzagh-Nezhad, “A new
hybridization of DBSCAN and fuzzy earthworm optimization
algorithm for data cube clustering,” Soft Computing, vol. 24,
no. 20, pp. 15529–15549, 2020.

[47] J. Li, H. Lei, A. H. Alavi, and G.-G. Wang, “Elephant herding
optimization: variants, hybrids, and applications,” Mathe-
matics, vol. 8, no. 9, p. 1415, 2020.

[48] M. A. Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, “Task
scheduling in cloud computing based on hybrid moth search
algorithm and differential evolution,” Knowledge-Based Sys-
tems, vol. 169, pp. 39–52, 2019.

[49] S. Li, H. Chen, M. Wang, A. Asghar Heidari, A. A. Heidari,
and S. Mirjalili, “Slime mould algorithm: a new method for
stochastic optimization,” Future Generation Computer Sys-
tems, vol. 111, pp. 300–323, 2020.

[50] Y. Yang, H. Chen, A. Asghar Heidari, A. A. Heidari, and
A. H. Gandomi, “Hunger games search: visions, conception,
implementation, deep analysis, perspectives, and towards
performance shifts,” Expert Systems with Applications,
vol. 177, Article ID 114864, 2021.

[51] D. Yousri, M. Mudhsh, Y. Shaker et al., “Modified interactive
algorithm based on Runge Kutta optimizer for photovoltaic
modeling,” Justification under Partial Shading and Varied
Temperature Conditions, IEEE Access, vol. 10, 2022.

[52] J. Tu, H. Chen, M.Wang, A. H. Gandomi, and Gandomi, “'e
colony predation algorithm,” Journal of Bionics Engineering,
vol. 18, no. 3, pp. 674–710, 2021.

[53] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

Computational Intelligence and Neuroscience 13

