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Construction workers” unsafe behaviors are closely related to construction safety performance. Most existing studies on con-
struction workers’ personality traits and safety behaviors have ignored the flexibility of worker mix at construction sites, the
dynamics of workers’ behaviors, and the complexity of environmental risks at construction sites. Based on the cognitive process of
construction workers’ safety behaviors and from the perspective of personality traits, this research establishes an agent-based
model of steelworkers’ mutual assistance behavior. The AnyLogic platform is adopted to show emerging phenomena in complex
problems. Through simulation experiments, the optimized configuration of construction team members under different risk
environments can be obtained. This research is conducive to project managers to understand the influence of construction
workers’ mutual assistance on team safety, assess workers’ potential for safe work before recruitment, and carry out active safety
management from the source instead of looking for the cause of the accident afterward, making safety management theory more

realistic and dynamic.

1. Introduction

According to statistics, the construction industry employs
approximately 6%-10% of the labor force but accounts for
20%-40% of occupational fatal accidents [1]. The frequent
occurrence of accidents makes the safety problem of
building construction very serious. Researchers [2-4] ana-
lyzed the relevant data on accidents and found that the
unsafe behavior of the construction personnel was the fuse
for the accident. Even in the same situation, construction
workers will have different behaviors. This is because, be-
sides being affected by environmental factors, workers’
behavior is also affected by personal characteristics. Many
studies [5, 6] have identified personality as one factor that
significantly affects workers’ safety performance. Personality
can also be used to explain and predict human behavior and
job performance [7]. Florez and Cortissoz [8, 9] show that
workgroups with similar personalities can speed up project
progress. Also, personality has been proven to be related to

risk perception [10], risk propensity [10], risk preference
[11], unsafe behavior [11], and social behavior [12]. Al-
though researchers have explored the relationship between
workers’ unsafe behaviors and personality traits, existing
studies hardly consider the dynamic effects of personality
traits on worker behavior and interactions between workers
and the external environment.

Complex construction tasks exist on the construction
site. Some traditional research methods, such as the field
observation method [13] and qualitative analysis method
[14], can only analyze the static state of the project but
cannot capture the processes of on-site dynamic changes.
Therefore, it is necessary to investigate methods that can
capture the nature of dynamic site changes as well as the
impacts of different personality traits.

Computer simulation technology provides a good way to
solve complex systemic problems [15]. By reproducing
relevant scenarios in the real world and setting parameter
ranges in simulation experiments to observe changes at the
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macro level, the shortcomings of traditional analysis
methods such as limited data, excessive interference factors,
and difficulty in controlling variables [16] can be effectively
avoided. Agent-based modeling (ABM) is a classic research
method to explore changes in macroscopic results caused by
microinteractions [17]. Aiming at the workers in the con-
struction team and considering the mutual assistance of on-
site workers and workers and the interactions with the
external environment, an agent model is established in this
study based on the cognitive process of behavior.

2. Literature Review

2.1. Big Five Personality Traits and Behaviors. In the con-
struction industry, many researchers studied the factors that
influence individual unsafe behaviors from the perspective
of psychology. Neal and Griffin [18] proposed that per-
sonality traits affect safety behaviors and can affect safety
results. Lingard and Rowlinson [19] found that there are
almost no workplaces where personality does not affect
work-related behaviors. Since accidents are caused by a
series of events and the agents of these events are a person.
Therefore, it is vital to understand the relationship between
the personality characteristics of people and the high inci-
dence of human error accidents on construction sites [20].
The Big Five personality traits, proposed by McCrae and
Costa [21], are the version accepted by most psychologists,
including five dimensions of extraversion, agreeableness,
conscientiousness, neuroticism, and openness. In interviews,
self-descriptions and observations, as well as a wide range of
participants of different ages and different cultures, showed
consistency [22].

Many researchers have studied the correlation between
Big Five personality traits and the unsafe behavior of con-
struction workers. Geller [23] took construction workers as
the research object and explored the correlation between the
five characteristics of the Big Five personality traits and
unsafe behaviors through a questionnaire survey. Similarly,
Clarke [24] also found that workers’ accident tendency is
closely related to their personality traits. Although an in-
dividual’s personality traits do not directly determine
whether unsafe behaviors occur, they can have an important
impact on the main actions in the process of unsafe cog-
nition. As far as risk perception is concerned, different
individuals have different perceptions of risks. Different
individuals have different cognitions and understandings of
the origin of different risks, the composition of risks, and the
severity of risks [25].

Chauvin et al. [26] found that the environment faced by
construction workers is complex and changeable when
performing work tasks. When making risk decisions, they
are often affected by personality factors. Myers et al. [27]
found that the perception of risk is closely related to indi-
vidual differences based on research. The risk assessment
also involves the individual’s risk tolerance. Risk tolerance is
related to the number of risks, the qualitative characteristics
of the hazards, the perceived benefits of risks, and personal
acceptability. Faced with the same risk situation, everyone’s
risk tolerance is different. Risk tolerance is affected by factors
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such as personal characteristics, expected consequences, and
safety culture [28]. Thanki [29] found a correlation between
personality traits and risk tolerance. Bye and Lamvik [30]
also proposed that personality traits are related to risk
tolerance.

2.2. The Cognitive Process of Safe Behavior. Many researchers
found that the unsafe behaviors of construction workers
mainly caused accidents. For the unsafe behavior of con-
struction workers, the mechanism of unsafe behavior is the
sorting out of the influencing factors of unsafe behavior and
the construction of interrelationship to clarify the position
and role of each influencing factor in the chain of unsafe
behavior, which is a further deepening based on the analysis
of influencing factors. With the in-depth study of psy-
chology and social cognitive processes, Fang et al. [31] began
to explain the mechanism of unsafe behavior from the
perspective of safety cognition. Goh et al. [32] borrowed
from the theory of planned behavior [33] to analyze and
believes that unsafe behavior is the result of rational deci-
sion-making by construction workers. Chi et al. [34] pointed
out that workers’ unsafe behaviors are misjudgments or
wrong decisions made in the cognitive process. From a
physiological point of view, construction workers’” cognitive
status can also be assessed by valence, arousal, and domi-
nance index in the valence-arousal-dominance (VAD)
model [35], which can be measured by electroencephalog-
raphy (EEG) [36]. By analyzing the three broadly influential
cognitive models: Rasmussen’s step-ladder model [37],
Wickens et al.’s model of human information processing
[38], and the IDAC model [39], Fang et al. [31] summarized
the cognitive process of construction workers’ unsafe be-
haviors into five stages: discovering information, under-
standing information, thinking and responding, choosing a
response, and implementing the response. Among them, the
failure of the choice response is the most important cause of
unsafe behavior. Ye et al. [40] sorted out the influencing
factors in the cognitive process and discussed the impact of
the failure of the cognitive process on construction workers’
unsafe behavior from the individual and the environment.
The research summarizes the cognitive process into four
stages: obtaining information, understanding information,
choosing response, and taking action. Although there are
differences in the details involved, these models all emphasize
risk perception, risk assessment, and decision-making.

2.3. Workers’ Mutual Assistance and Construction Safety.
With the continuous improvement and progress of various
mechanisms in human society, the emotions and instincts of
cooperation and mutual assistance between individuals have
become increasingly mature [41]. The behavior of mutual
assistance is very important to the work and life of the
individual. Herman [42] believes that mutual assistance
behavior is when others have certain needs, the behavior for
satisfying the real needs of others. Anderson and Williams
[43] believe that helping others deal with the problems
encountered in work and life, that is, the behavior of col-
leagues in favor of others is a mutual assistance behavior.
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In the construction and production activities, the team is
not only closely related to the equipment, machinery, tools,
and materials required in the construction and production
activities but also the most basic organization that imple-
ments the various rules and regulations, construction
technology, and on-site management activities in the con-
struction enterprise. In the construction team, most of the
construction workers come from the same place. They are
not only the relationship of colleagues at work but also the
relationship of friends in life. No matter in life or work,
construction workers will care about their workers, help and
cooperate, and strengthen emotional exchanges in daily
activities. Mutual help behavior not only helps team
members better establish interpersonal relationships and
better adapt to the surrounding environment but also has
important significance in completing construction tasks
safely and improving the overall performance of the team.

In the field of construction safety, many researchers have
researched the mutual assistance behavior of construction
workers. Liang et al. [44] believe that workers often surpass
team leaders and managers and have a more social influence
on workers. Some researchers [45-47] regard worker mutual
assistance as a dimension to evaluate the safety atmosphere
of construction and verify the relationship between the
safety mutual assistance of workers and workers and the
safety atmosphere of the organization. Burt et al. [46] have
further realized that workers who care about the safety of
their colleagues play an important role in improving safety
performance. The active care of workers may overcome (or
supplement) the need for management to continuously
monitor safety-related behaviors. Workers help ensure the
safety of their colleagues by taking on this responsibility.
Suppose the dominant attitude of each worker is to care
about each other, and each worker actively identifies hazards
and reminds workers. In that case, the safety performance of
the team will be improved. Osama Jannadi et al.’s [48] re-
search also shows that mutual safety assistance between
colleagues positively impacts safety performance.

Safety mutual help between workers is mostly in the form
of communication, such as reminding workers to abide by
safety rules, sharing hazard information with workers, and
discussing past accidents and safety improvement measures
[45, 49]. These exchanges and mutual help will not only bring
about the flow of information and knowledge and other or-
ganizational resources but also positively impact the members
of the organization. Knowledge and experience sharing among
colleagues can better promote performance [50]. Through safe
and mutual help exchanges with workers, construction workers
not only make it easier for construction workers to master the
operating methods of the tools and machinery used but also
avoid unsafe behaviors to the greatest extent.

3. Research Gap

Existing studies have explored the correlation between per-
sonality traits and the work behavior of construction workers
through questionnaires, focusing on the psychological factors
of the agents of construction activities. However, each
worker’s behavior is not the direct result of a factor but rather

a combination of personal characteristics, mutual assistance
with others, and interaction with the external environment. In
a site environment with complex construction tasks, the
variability of behavior caused by different personality traits,
the interactivity caused by mutual assistance and cooperation
with workers, and the dynamism caused by real-time ad-
justment of their behavior according to site changes make the
interactive behavior of individual construction personnel at
the individual level lead to changes at the project level.
Thus, traditional research methods, such as the field
observation method and qualitative analysis, are only pos-
sible to analyze the project situation in a static state but not
to capture the dynamic changing processes. In addition,
although these studies can find universal rules and provide
certain guiding significance, they ignore the composition of
workers’ personality traits, the interactions between workers
and the external environment, and the influence of con-
struction workers’ mutual assistance on team safety. Fur-
thermore, those studies do not consider the degree of
environmental risk on the construction site.

4. Research Methodology

4.1. Overview. Due to the complexity of the construction
tasks, characteristics of the individuals, and the changing
environment, it is more difficult to use traditional methods
to study the behavior changes of construction workers and
their dynamic effects [51]. Using computer simulation
technology to study the behavioral activities of interaction in
building construction can actively change the parameters for
control, avoid the interference of unrelated external factors
on the experimental results, and achieve real experimental
and control effects. It can also create a new research space for
construction safety-related behaviors of construction
workers from the perspective of technical methods [16].

In this study, firstly, based on the findings of existing
literature, the relationship between the five personality traits
in the Big Five personality theory and the key parameters
(risk perception, risk tolerance) in the cognitive process of
unsafe behavior of construction workers was synthesized.
Then, based on the workers” key parameter attributes and
their external environment, whether they perform unsafe
behaviors or not is determined. Finally, while the cognitive
process of workers’ unsafe behaviors occurs, the possibility
of cooperation and mutual assistance between workers and
their surrounding colleagues is considered to explore the
impact of individual behaviors on the overall team safety.

This study adopts an ABM approach to solve the
problem of inconvenient control of variables such as ex-
ternal environmental factors and an individual’s actual
situation when personality trait factors are involved. A
variety of combinations of workers with different personality
traits are realized by dynamically adjusting the relevant
parameters in order to explore the different combinations of
workers’ mutual assistance on the overall unsafe team be-
havior. This study simulates the impacts of safety and mutual
assistance of workers with different personality traits on
team safety and provides an optimized combination plan for
team workers.
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FiGure 1: Framework of decision-making in the cognitive process of unsafe behavior of construction workers.

4.2. Model Framework. In recent years, research on theo-
retical models of cognition has matured and improved,
providing a strong foundation for the scientific study and
explanation of individual cognitive processes in many fields.
The cognitive process of construction workers’ unsafe be-
havior can be divided into three stages: perceiving infor-
mation, evaluating information, and making decisions [52].
In the stage of perceiving information, workers perceive the
risks from external information. This means the subjective
judgment and assessment of the current danger when the
individual is in an environment where danger may occur
[53]. The risk level perceived by an individual is not only
related to the true risk level [54], but risk perception is also
affected by personal beliefs, attitudes, judgments, and feel-
ings [55]. In studies on the Big Five personality traits and
individual perceived risk, perceived risk is influenced by
agreeableness [54] and neuroticism [26]. According to
Sjoberg [54] and Chauvin et al. [26], the more neurotic and
agreeableness of an individual, the more risks they feel.
Individuals with high agreeableness scores may prefer safer
solutions or alternatives to reduce their discomfort [56].
During the evaluation information phase, construction
workers consider the level of acceptance of risk to assess the
level of injury and benefit from the behavior. The risk
evaluation process can be determined by comparing the
perceived risk with the risk tolerance the individual can bear.
Hunter [57] defines risk tolerance as “The amount of risk
that an individual is willing to accept when pursuing a
certain goal.” According to this definition, it can be found
that risk tolerance includes two aspects: subjectivity (the
degree that an individual can tolerate) and goal (total risk).
Wang et al. [58] verified that the psychological character-
istics of construction workers significantly impact risk tol-
erance through questionnaires and structural equation
models. Individuals™ acceptance of risk is related to their
extroversion [30], openness [29], and due conscientiousness
[28]. In the decision-making phase, workers make judg-
ments based on a combination of information from the first
two phases as well as physiological and skill factors. The first
two cognitive stages, perceived and evaluated information,

are important for the safety of construction workers.
Therefore, risk perception and risk tolerance in the two
stages will be selected as key parameters in the model, and
the influence of personality traits on these two parameters
will be investigated. The framework of decision-making in
the cognitive process of unsafe behavior of construction
workers is shown in Figure 1.

4.3. Agent-Based Model Development. Establish an agent-
based model according to the cognitive process of safe
behavior, which is composed of (1) a description of the
environment and the agent (2) defining the mutual assis-
tance rules between the agent and the interaction rules
between the agent and the external environment (3) model
validation [59]. Each of these model components is
explained in detail below.

4.3.1. Defining Environment and Agent. In the agent-based
model, the virtual construction site environment is set
according to the grid form proposed by Lu et al. [60]. The area
is set to 40 * 40 (each grid represents 1 m* of space); the task
volume is included in the site (range 0-20); and the risk level
(range 0-1) has two parameters. Different grids have different
tasks and risk levels as shown in Figure 2. Among them,
parameters 1-9 are the initial parameters of the environment
(1-2) and the agents (3-9) that need to be set when the model is
constructed and are mainly set according to existing studies
[44, 61]. Parameters 10-21 are process parameters calculated
when the model is running, and the calculation method is
executed according to the define interaction rules.

Because steelworkers have the highest occupational
disease and injury rate [62], the workers in the model are set
as steelworkers. Considering that the death rate of tower
crane-related accidents is relatively serious and the location
is relatively fixed, more importantly, the tower crane is easy
to be noticed by colleagues’ safety warnings and avoid ac-
cidents [63]. So the hazard source is set as a tower crane and
placed in the center of the site.
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FIGURE 2: Virtual construction site: (a) workload and (b) risk level view (generated by AnyLogic software).

TABLE 1: Model parameter setting.

No. Parameter name Parameter meaning Initialization value
1 riskLevel Construction site environmental risks Triangular (0, 0.5, 1)
2 workload Construction site tasks Triangular (0, 10, 20)
3 workerNum Number of workers 20

4 id Worker’s ID —

5 extroversion (E) Worker’s extroversion N (0.5, 0.13)

6 agreeableness (A) Worker’s agreeableness N (0.5, 0.13)

7 conscientiousness (C) Worker’s conscientiousness N (0.5, 0.13)

8 neuroticism (N) Worker’s neuroticism N (0.5, 0.13)

9 openness (O) Worker’s openness N (0.5, 0.13)

10 riskPerception (RP) Risk perception of worker —

11 riskTolerance (RT) Risk tolerance of worker —

12 unsafeBehavior (UB) Unsafe behavior of worker —

13 safeHelpBehavior (SHB) Mutual assistance of workers —

14 numberOfUnsafeBehaviors Number of worker’s unsafe behaviors —

15 numberOfSafeBehaviors Number of worker’s safe behaviors —

16 unsafeBehaviorRate Unsafe behavior rate —

17 numberOfAccidents Number of accidents —

18 numberOfNear-missingAccidents Number of near-missing —

19 ratioOfAccidentsToNearMisses Ratio of accidents to near-missing —

20 unsafeBehaviorReductionRate Unsafe behavior reduction rate —

21 accidentRate Accident rate —

Steelworkers are the main agents of the model, and each
worker has the following state variables: ID number, Big
Five personality traits (extraversion, conscientiousness,
agreeableness, neuroticism, and openness), risk perception,
risk tolerance, and unsafe behavior. Based on the size of the
construction team, the number of workers on site is set to
20. Before each simulation model runs, the grid unit’s risk
value and task amount are assigned different values to
simulate different construction situations. The five per-
sonality traits of construction workers are assigned dif-
ferent values, representing their heterogeneous attributes.
Among them, different personality traits will affect the
behavior and decision-making in performing tasks. Based
on the statistical research of Schmitt et al. [61], the dis-
tribution of personality traits in each dimension follows the
normal distribution, and the model sets its range from 0 to
1. To exclude extreme traits, the worker’s traits range from
0.1 to 0.9, which is set to obey the normal distribution of N
(0.5, 0.13) through analysis. The on-site environmental
risks and on-site tasks are set to a medium level that obeys

the triangular distribution [44]. Table 1 shows the pa-
rameter settings for the construction of the benchmark
model (the model that has set the relevant initial param-
eters of the agent).

4.3.2. Defining Interaction Rules. This research assumes that
construction workers have two states: task-Searching and
task-Executing. In task-Searching, the grid unit where the
worker is currently located has no tasks, and at this time, the
agent needs to move to the grid with tasks, and its state also
changes from task-Searching to task-Executing. Since in-
juries or accidents usually occur in the task execution
process rather than the task search process, this research
mainly focuses on the cognitive process of safety behavior
during the task execution process.

(1) The Decision-Making Rules of the Cognitive Process.
According to the conclusion of the cognitive model, workers
mainly experience three stages: perception information,
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FIGURE 3: Modeling logic of workers’ construction safety behavior based on the cognitive model.

evaluation information, and decision-making response, in
the process of cognition of unsafe behaviors, corresponding
to the three states of risk perception, risk tolerance, and safe
behavior or unsafe behavior. The modeling logic is shown in
Figure 3.

In the stage of perceiving information, workers will make
subjective judgments and assessments of hazards. Risk
perception can be affected by actual risk levels [54] and
individual factors [55].

Chauvin et al. [26] found that construction workers face
complex and changeable environments when performing
work tasks, and they are often affected by personality
factors when making risky decisions. Even facing the same
environmental risk, the risk perceived by one worker may
be different from that of another colleague. Therefore, the
risk perception in the model is determined by the actual
risk value of the current environment and the personality
traits of the worker. Individuals with a high level of
agreeableness tend to view risk as a higher risk factor [26].
In contrast, people with high neuroticism scores are prone
to anxiety and tend to be conservative in the face of risks
[64]. According to Sjoberg [54] and Chauvin et al. [26], the
more neurotic and agreeableness of an individual, the more
risks they feel. An individual with high agreeableness scores
may prefer safer solutions or alternatives to reduce their
discomfort [56]. Therefore, risk perception can be deter-
mined by agreeableness and neuroticism from the per-
spective of personality traits. To ensure the balance of
contribution, the proportion is set to 0.5. Based on the
above analysis, the model can express risk perception by the
following formula:

RP! = BR + (055 S 05+ 1), (1)
A N

where RP!: worker i’s risk perception at time ¢, ER;: the
actual risk value of worker i’s environment at time ¢, a;: the
agreeableness score of workers i, A: the maximum value in
the value range of agreeableness, #;: the neuroticism score of
workers i, and N: the maximum value in the value range of
neuroticism.

When workers perceive risk, they will conduct an in-
formal assessment based on their situation, that is, assess the
degree of risk that can be tolerated. Williams and Noyes [65]
believe that risk tolerance is a personal assessment of risk
and the corresponding comfort or discomfort to the risk. It
depends on the level of confidence that controls the un-
certainty of the situation. Studies have found a correlation
between risk tolerance and personality traits [28-30]. Oehler
and Wedlich [66] found that people with high extraversion
have a higher risk tolerance, and openness positively cor-
relates with risk-taking behavior [67]. The results of the
study by Pak and Mahmood [68] show a significant negative
correlation between conscientiousness and risk tolerance.
Therefore, the risk tolerance set in the model is determined
by the extraversion, openness, and conscientiousness of the
personality traits. To ensure the balance of the distribution of
traits and avoid the influence caused by a relatively high
proportion of a certain trait, the proportional coefficients of
the three traits are set to be 1/3 in the model. In addition to
being related to their personality traits, they will also be
affected by the organizational climate so that workers will
adjust their behavior to conform to group norms. Moreover,
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the behavioral role models of coworkers can have a sig-
nificant impact on individual workers and can provide in-
dividual workers with relevant information on acceptable
behaviors on site [69]. Therefore, each worker will know the
risk tolerance of other colleagues as a result of being affected
by the safety climate of the construction team. And, due to
the existence of the memory utility, the worker’s risk tol-
erance is also determined by the average value of the risk
tolerance of other workers on site in the previous time unit
determined. The proposed model in this research assumes
that the worker’s personality traits and the influence of
external colleagues have the same contribution to risk tol-
erance, both at 50%. Based on the above analysis, this model
sets the following formula:

1 1 o
RT;=SO%*<—*E+—*&
3 E3 O

—1*E>+50%*l§RT“1
3 C m J

(2)

Here, RT!: the risk tolerance of worker i at time t, ¢;: ex-
traversion score of worker i, E: the maximum value in the
value range of extraversion, o;: worker i’s openness score, O:
the maximum value in the value range of openness, ¢;:
worker i’s conscientiousness score, C: the maximum value in
the value range of conscientiousness, m: the number of other
workers on site, and RT;‘I: the risk tolerance of worker j at
t—1.

In the decision-making stage, workers make risky be-
havior decisions based on perceived risks and their risk
tolerance. The theory of risk steady-state points out that risk
perception and risk tolerance are the two main aspects that
determine risk behavior [70]. Workers will compensate for
the behavior if the perceived risk exceeds the internal
threshold (i.e., the current risk tolerance). In the proposed
model, if the perceived risk exceeds the worker’s current risk
tolerance, then the worker will perform safe behavior to
prevent accidents. Conversely, if the perceived risk does not
exceed the worker’s current risk tolerance, then the worker
will take unsafe behavior. Based on the above analysis, this
research proposes the following formula:

. { 1,RP; <RT;,

= . . (3)
0, RP! > RT.

i

Here, UBf: worker 7’s unsafe behavior state at time t, 1: take
unsafe behavior, and 0: take safe actions.

Since there is no danger when taking unsafe behaviors, it
may be safe and sound, which is only a near-missing event
[71]. Therefore, the model assumes that when workers take
unsafe behaviors, if the environment happens to be in an
unsafe state, then an accident will occur; otherwise, no danger
will occur, and only a near-missing accident will occur. Based
on the above analysis, this model sets the following formula:

(4)

;=

D 1, UBE = l,ERf > random.uniform (0, 1),
0, others.

Here, Di: the dangerous state of worker i at time #, ER!: the
actual risk value of worker 7’s environment at time t, and

random.uniform (0, 1): generate a uniformly distributed
floating-point number between [0, 1].

After experiencing a dangerous state, the worker’s risk
tolerance will change. If unsafe behaviors are taken, but no
danger occurs, workers’ tolerance for risks will increase and
become riskier [72]. If accidents occur after unsafe behav-
iors, workers’ risk tolerance will be weakened. That is, risk
tolerance will decrease. Among them, the degree of re-
duction of risk tolerance is greater than the degree of in-
crease. The purpose of the research is not to accurately
measure the change value of the risk tolerance of workers
after mutual assistance but to reflect the changes of different
combinations of workers under different environmental
risks. Therefore, after multiple simulations to observe the
value range of risk tolerance, setting the reduction coefficient
and the increase coeflicient to 0.1 and 0.5, respectively,
indicates that the change range is different. Because workers
with different personality traits have different sensitivity to
danger, their risk tolerance changes after the dangerous state
are not the same. Therefore, after the dangerous state, the
worker’s risk tolerance change value is set in the model as
follows:

[ RT;,UB; =0,
1 e 1 o 1 c
t+1_ | RTE-0.1 (— Skt —l>,UBF:1,D?:1,
RT =1 53 T30 3" ) T
1 e 1 o 1 ¢
RT:+O.05*(—*E+7*&——*ﬁ),UB§:1,D::0.
L 3 E3 03 C
(5)

Here, RTf”: the risk tolerance of worker i at ¢+ 1.

(2) Decision-Making Rules for Mutual Assistance Behavior.
When construction workers are task-Executing, they will
randomly engage in safe mutual assistance behaviors with
surrounding workers. In the five dimensions of the Big Five
personality traits, agreeableness reflects the orientation of
interpersonal relationships such as trust, understanding,
sympathy, and altruism [73]. Agreeableness people are good
at cooperating, like to help others, and have strong empathy.
Therefore, this model sets an agreeableness value as a switch
for triggering safety mutual assistance behavior. According
to Table 1, the agreeableness follows a normal distribution
with a mean of 0.5. Therefore, it is assumed in the model that
when the agreeableness of workers is higher than the av-
erage, there is an altruistic tendency and mutual assistance
with other workers. Based on this, this model sets formula
(6). To more accurately simulate the limitations of human
perception and behavior in the actual construction envi-
ronment, the range of safe mutual assistance behavior is set
to workers within a radius of three meters from the workers
[74].

1, a;>0.5,
SHB = (6)
0, others.
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construction workers and the number of unsafe behaviors.

Here, SHB: safe mutual assistance behavior and a;: the
agreeableness score of worker i.

Learning behavior is closely related to the process of
mutual assistance. Mutual assistance from others can help
individuals clarify concepts, improve problem-solving skills,
and increase retention. Mutual assistance is one of the
prerequisites for external learning [75]. Interaction can
bring about information exchange, knowledge acquisition
[76], and obvious behavior changes [77]. Mutual assistance
behavior is one of the important manifestations of the in-
teractive process. After workers undergo safe mutual as-
sistance during construction, both participants will have new
cognition and understanding of construction safety, so the
feedback to the individuals of both participants is a positive
behavior change rather than a negative impact. So set in the
model; the two participants have a certain improvement in
risk perception after mutual assistance behavior and are also
more risk-conscious. Run the model multiple times to ob-
serve the value range of risk perception and set the increased
value to 0.01. Based on the above analysis, this model
proposes the following formula:

RP{"' = RP} +0.01. (7)

4.3.3. Model Verification. The purpose of model verification
is to ensure that the simulation model can reasonably ex-
press the logic of the real world to solve the problem to be
studied [78]. Zeigler et al. [79] divided the verification
method into replicative validity (i.e., “the model matches
data obtained from the real world”), predictive validity (i.e.,
“the model matches data before being acquired from the real
world”), and construct validity (i.e., “the model truly reflects
how the real world operates”). At the same time, Sargent [80]
proposed that an appropriate verification method should be
selected according to the purpose of the model. This paper
aims to explore the role of construction workers with dif-
ferent personality traits on safety-related behaviors based on
the cognitive mechanism of safety behaviors, rather than to
make accurate predictions of safety behaviors. Therefore, the
verification of this model will focus on replicative validity
and construct validity.

First, a qualitative consistency test of replicative validity
was carried out for the model. It can be seen from Figure 4
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FIGURE 5: The relationship between the average risk perception
level of construction workers and the number of unsafe behaviors.

that the overall risk tolerance level of construction workers
in the benchmark model is directly proportional to the
number of unsafe behaviors (the total number of unsafe
behaviors taken by workers in the team from the beginning
of the task to the current model time; R* = 0.852, p<0.001).
That is, the higher the level of construction workers who can
tolerate risks, the more unsafe behaviors may occur during
the execution of the task. This result is supported by existing
literature in many fields. Ji et al. [81] interviewed pilots and
used questionnaires to analyze the relationship between
pilots’ behavioral decision-making and risk tolerance. The
results showed that the higher the risk tolerance, the fewer
safe behaviors. Davidson [82] found that the higher the coal
miners’ tolerance to risk, the greater the risk of their de-
cision-making plans by studying the process of coal miners’
final behavior selection. In construction, Ma [83] established
a construct equation model, conducted empirical analysis,
and found that the risk tolerance of construction workers
was significantly negatively correlated with safety behavior.

The simulation results are consistent with existing
studies on the relationship between risk perception and
unsafe behavior. As shown in Figure 5, the unsafe behavior
of construction workers will be inhibited by their risk
perception level (R* = 0.839, p < 0.001). Under the same level
of risk environment, the more risks construction workers
can perceive and the more comprehensive, the higher the
probability of taking safe actions. Existing studies also
support this result. The research of Xia et al. [84] found that
the more risks construction workers perceive, the more they
can recognize the potential dangers in the current state and
thus can choose safe behaviors to prevent themselves from
accidents. Huang et al. [85] found that risk perception and
unsafe behavior have a significant negative correlation
through a survey of front-line workers in Chinese con-
struction projects. Xia et al. [86] found that improving the
risk perception of construction workers can play a positive
role in safe behavior.

To ensure the quantitative consistency of replicative
validity, this study implemented the benchmark model 50
times, calculated the mean value of important indicators,
and compared the results with the empirical data of previous
studies. Among them, the unsafe behavior rate (formula (8))
is 0.35 (standard deviation = 0.006), which is consistent with
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the research results of Sa et al. [87] and Fang and Wu [88].
Both studies have found that one-third of workers are unsafe
at the construction site. Also, according to Heinrich’s [89]
triangle rule, every major accident will cause 29 serious
accidents and 300 near-missing accidents. That is, the ratio
of accidents to near-missing accidents (formula (9)) is
roughly 1:10. Execute the benchmark model 50 times and
calculate that the ratio of accidents to near-missing events is
1:8.6, which is near the value of the triangle rule. Finally, the
average accident rate is calculated and compared with the
relevant accident statistics. The benchmark model is exe-
cuted 50 times, and the accident rate (formula (10)) is
calculated to be 3.3, which is the same as the 2016 Occu-
pational Injury and Disease Incident Rate (3.0) published by
the U.S. Bureau of Labor Statistics [90] very close. Therefore,

TaBLE 2: Big Five personality parameter settings in the experiment
(extraversion as an example).

Group A Group B

0.3 0.3
E 0.3 0.7

0.7 0.7
A N (0.5, 0.16) N (0.5, 0.16)
C N (0.5, 0.16) N (0.5, 0.16)
N N (0.5, 0.16) N (0.5, 0.16)
O N (0.5, 0.16) N (0.5, 0.16)

the quantitative consistency between the simulation results
and the empirical data is proved.

number of unsafe behaviors

unsafe behavior rate =

ratio of accidents to near misses =

, (8)
number of un safe behaviors + number of safe behaviors
number of accidents
— . , 9
number of nearmissing accidents
number of accidents (10)

accident rate =

number of unsafe behaviors + number of safe behaviors

In terms of construct validity, this study uses three
methods to enhance the construct validity of the model.
First, the agent’s behavioral rules and interaction rules are
based on theories that have been established and verified in
the social science literature (such as cognitive science theory,
risk homeostasis theory, and Big Five personality traits).
Secondly, the influencing factors of parameters (such as risk
perception and risk tolerance) are derived from the research
results of the existing literature. Finally, the initialization of
model parameters refers to the common principles in
existing empirical research and related construction simu-
lation literature [52, 60].

5. Experiments and Results

5.1. Experimental Design. Based on the parameters set by the
benchmark model, this study changed the risk level of the
construction environment. The model kept running until the
changes in each variable have stabilized (elapse of 80 model
time units).

In the experiment, the construction workers in the
construction team were divided into two groups (A and B),
and each group has ten workers. The five dimensions of the
personality traits of the construction workers have two
levels, high and low. For example, extraversion is divided
into high-level extraversion (i.e., extroversion, denoted by
0.7) and low-level extroversion (i.e., introversion, denoted
by 0.3). The variable traits of the two groups of workers will
take a combination of high and low levels. The personality
traits of other dimensions all obey the normal distribution.
In the benchmark model, all traits are set to follow a normal

distribution. Take the extraversion as an example. The ex-
periment sets the parameters as shown in Table 2 to explore
the relevant effects of different combinations of extraversion.
Different levels of environmental risk are set by changing the
mode value of the triangular distribution, as shown in
Figure 6.

5.2. Simulation Results. Figures 7-11, respectively, show the
combination of construction workers with different per-
sonality traits in high-, medium-, and low-risk environ-
ments. After the cognitive process of unsafe behavior and the
process of mutual assistance, they reflect the change in the
rate of unsafe behavior reduction on the overall level of the
construction team (i.e., the ratio of the difference between
the number of unsafe behaviors before and after the safe
mutual assistance behavior and the number of unsafe be-
haviors before mutual assistance). It should be pointed out
that the average unsafe behavior rate of construction
workers within the construction team in the baseline model
was reduced by 53% in the medium-risk environment.

It can be seen from Figure 7 that with the increase of
environmental risks, the average unsafe behavior reduction
rate of the three types of extraverted combination forms of
team workers is getting lower. This is because the high-risk
environment is relatively more dangerous and prone to
accidents. The resulting warning effect will prompt workers
to pay more attention to construction safety. As far as the
combination is concerned, regardless of the high or low
environmental risk, the team with the same number of high-
and low-extroverted workers has the largest reduction rate of
unsafe behavior, and the overall safety performance of the
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Figure 6: Different environmental risk levels (indicated by triangular distribution function): (a) medium risk triangular (0, 1, 0.5), (b) low

risk triangular (0, 1, 0.3), and (c) high risk triangular (0, 1, 0.8).
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team has the best improvement effect. The team with more
highly extroverted workers has the lowest reduction rate of
unsafe behavior, which is caused by the characteristics of
highly extroverted individuals who like to take risks and
pursue excitement.

In Figure 8, as far as the combination is concerned,
regardless of the high or low environmental risk, teams with
the same number of agreeableness workers have the greatest
reduction in unsafe behaviors. At this time, the overall safety
behavior of the team has the best improvement, especially in
the medium- and high-risk environments by about 90%.
This may be because workers with different levels of
agreeableness are more efficient in learning safety in mutual
assistance behaviors, thereby reducing the occurrence of
unsafe behaviors.

Figure 9 shows that with the increase in environmental
risk levels, the average incidence of unsafe behaviors of the

three types of conscientious combination of team workers is
getting lower. This is because the environmental risk be-
comes higher, the greater the impact of conscientiousness;
workers will carefully assess the safety situation before
performing tasks and act more cautiously so that there are
fewer unsafe behaviors. Especially in a high-risk environ-
ment, in teams with more highly conscientious workers or
teams with the same number of high- and low-conscientious
workers, the unsafe behavior of construction workers after
mutual assistance is reduced by about 90%.

It can be found in Figure 10 that in terms of the
combination form, regardless of the level of environmental
risk, team workers with the same number of high- and low-
neurotic workers have the greatest reduction in unsafe
behavior, and the improvement of team safety behavior is
the best, especially in the high-risk environment; it is re-
duced to 85%. Teams with more highly neurotic or less
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neurotic workers are more effective in reducing unsafe be-
haviors in medium to high risks but are less effective in low-
risk environments. This may be due to workers’ safety
mentality being more relaxed and emotionally stable and will
not always worry about accidents in low-risk environments.

Figure 11 shows that in a low-risk environment, the re-
duction rates of unsafe behaviors of workers in a combination
of the three types of openness levels after mutual assistance

are very small, all of which are around 50%. In a medium-risk
environment, when the overall openness of the team is at the
mid-to-high level, mutual assistance has the best effect on
safety. While in a high-risk environment, the overall openness
and consistency of the team are more important. The overall
reduction rate of unsafe behaviors in teams with high or low
overall openness after mutual assistance is nearly 80%, which
can effectively improve team performance.
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Based on the results of the above experiments, according
to the idea that the higher the rate of unsafe behavior re-
duction after the mutual assistance of the construction
workers of the team is, the better the improvement of safety
performance. It can analyze the best combination of dif-
ferent personality traits to improve the overall safety level of
the team under various levels of environmental risks as
shown in Table 3.

In a low-risk environment, when the number of high and
low levels of extravert, agreeable, and neurotic workers in the
team is similar, and there are more low-conscientious and
low-neurotic workers, the effect of improving team safety is
best. In a medium-risk environment, the team has the best
potential for safety performance when the team has much
the same as the workers with high and low levels of each trait.
In a high-risk environment, when the number of high and
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TaBLE 3: The best combination of workers” personality traits under various levels of environmental risks to improve safety performance.

Environmental risk level Low Medium High

Group Group A Group B Group A Group B Group A Group B
Extroversion High Low High Low Low Low
Agreeableness High Low High Low High Low
Conscientiousness Low Low High Low High Low
Neuroticism High Low High Low High Low
Openness Low Low High Low Low Low

low levels of agreeable, conscientious, and neurotic workers
in the team is almost identical and there are more low-
extraversion and low-openness workers, the team’s safety
behavior improvement effect is best after worker safety
mutual assistance. It can be found that when the number of
workers with high and low levels of extraversion, agree-
ableness, and neuroticism is nearly equal, regardless of the
level of environmental risk, mutual assistance improves the
overall safety of the construction team.

6. Discussion and Conclusion

This paper mainly explores the change difference in the
overall unsafe behavior of the workers after the safety mutual
assistance of workers with different personality traits. First,
based on the occurrence mechanism of unsafe behaviors of
construction workers, the critical processes in the cognitive
process of unsafe behaviors are extracted: risk perception,
risk tolerance, and decision-making. Existing studies indi-
cate that the Big Five personality traits affect the risk per-
ception and risk tolerance in the process of individual unsafe
behaviors and indirectly determine whether unsafe behav-
iors of construction workers occur.

Agent-based modeling (ABM) is used in this paper as a
bottom-up and micro-to-macro classical modeling ap-
proach. At the same time, the research analyzes the rela-
tionship between construction workers and workers and the
relationship between construction workers and the external
construction environment to establish individual behavior
rules and interaction rules that are consistent with the actual
construction context. The individual worker’s personality
trait, an inherent attribute that cannot be easily changed later
in life, determines each worker’s unique outwardly ex-
pressive behavior and decision-making style. By setting up
worker agents possessing different traits in the agent-based
model and arranging various combinations of workers in the
team, it is possible to maximize the simulation of the be-
havioral differences of workers with different personality
traits in the real environment and measure the impact of
such differences on overall team safety performance. This
paper explores the optimal combination of workers with
varying traits of personality in various risk environments
from the perspective of psychology, providing a new way to
improve the safety performance of teams in different situ-
ations and ultimately deepen the understanding of the
complex system in construction.

By introducing the Big Five personality traits theory into
the research of the construction industry, combined with the

agent-based modeling method in the complex system the-
ory, this paper is conducive to understanding the cognitive
process of construction workers’ unsafe behavior and the
differences in the results of unsafe behavior from the per-
spective of psychology. According to the conclusions of the
simulation analysis, this research proposes corresponding
management measures to improve construction safety from
the perspective of enterprise human resources and personnel
arrangements based on personality traits and actively
manages from the source to improve the level of con-
struction safety performance.
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