
Research Article
Selective Strategy Differential Evolution for Stochastic Internal
Task Scheduling Problem in Cross-Docking Terminals

Dollaya Buakum1 and Warisa Wisittipanich 2,3

1Department of Industrial Engineering and Manufacturing, Faculty of Engineering, Prince of Songkla University,
15 Karnjanavanich Road, Hat Yai, Songkhla 90110, Tailand
2Advanced Manufacturing and Management Technology Research Center (AM2Tech), Department of Industrial Engineering,
Faculty of Engineering, Chiang Mai University, 239 Huay Keaw Road, Suthep, Muang, Chiang Mai 50200, Tailand
3Supply Chain and Engineering Management Research Unit, Chiang Mai University, Chiang Mai 50200, Tailand

Correspondence should be addressed to Warisa Wisittipanich; warisa.o@gmail.com

Received 2 June 2022; Revised 1 October 2022; Accepted 19 October 2022; Published 4 November 2022

Academic Editor: Miaolei Zhou

Copyright © 2022 Dollaya Buakum and Warisa Wisittipanich. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Tis study proposed an algorithm called selective strategy diferential evolution (SSDE) to handle the complexity of the stochastic
internal task scheduling problem in cross-docking terminals. Te aims of this study are to assign workers and transfer equipment
to internal operations and sequence those operations under randomness and uncertainty with the purpose to minimise total
tardiness.Temain feature of SSDE is its ability to adapt itself in order to execute the best search strategy.Te proposed algorithm
was tested on 16 instances using generated data based on real-case scenarios of a pharmaceutical distribution centre. Te results
showed the signifcant performance of SSDE to other existing algorithms in terms of solution quality and computational time.Te
key success factors of SSDE are the use of various search strategies in a single run and the application of suitable
termination conditions.

1. Introduction

Warehouse management problem has driven researchers to
seek the least-cost operation which optimize ordering and
holding costs and maximize space utilization by leveraging
existing technologies. A cross-docking strategy is one of the
logistics practice of unloading goods from incoming trucks
and loading them directly into outbound trucks with little to
or storage in between. Since cross-docking does not involve
storing goods in the warehouse, costs associated with
handling and storage are reduced and deliveries are faster. In
addition, cross-docking enables greater throughput without
the need for opening up a new warehouse. Undeniably,
insufcient operational management in cross-docking may
obstruct its successful implementation. Recently, studies
concerning operation problems in cross-docking have been
addressing the real-world problem or specifc conditions.
Rijal et al. [1] studied truck scheduling and dock door

assignment at unit-load cross-dock terminals where dock
doors can operate in a mixed service mode. Zheng et al. [2]
addressed the cold-chain cross-docking truck scheduling
problem. Shahmardan and Sajadieh [3] investigated a truck
scheduling problem at a cross-docking centre where in-
bound trucks were also used as outbound and they can be
partially unloaded. Correa Issi, Linfati, and Escobar [4]
proposed a mathematical model for truck scheduling in
cross-docking in a mixed service mode dock area of a
multinational food company in Chile. Chargui et al. [5]
proposed a mathematical model to optimize the scheduling,
storage, assignment, and sequencing of trucks at receiving
and shipping docks for a problem inspired from a multiple
door cross-dock facility of an industrial partner with mul-
tiple temporary storage zones. However, there exist some
limitations to the aforementioned references. One of the
common suggestions from those articles is to incorporate
stochastic considerations into the problem to provide more

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1398448, 17 pages
https://doi.org/10.1155/2022/1398448

mailto:warisa.o@gmail.com
https://orcid.org/0000-0003-4515-3273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1398448

practical and novel directions for future studies. In addition,
adding a resource-constrained in the model was suggested
by Shahmardan and Sajadieh (2020) as a direction for future
research.

Task environments in a real-world practice are subject to
several uncertainties and randomness. Terefore, a practical
model for scheduling problems should be established to
address uncertainty issues. Picking orders is typically dis-
cussed under the assumptions that processing times and due
dates are known in advance and machines are continuously
available. However, in practice, some of these assumptions
in man-to-goods picking systems are unrealistic. In fact,
workers may have diferent speeds owing to fatigue or other
reasons. In addition, workers moving between picking lo-
cations can disrupt and lock each other.Te phenomenon of
pickers locking results in the time loss arising from waiting
for the ability to continue the picking process [6].

Te stochastic internal task scheduling problem is a
more practical model to deal with uncertainties and ran-
domness in a real-world environment. Tis consideration
could fll the current research gap in the cross-docking
platform. To date, there are few studies on the stochastic
internal task scheduling problem in a cross-dock terminal.
Buakum and Wisittipanich [7] proposed a mathematical
model for stochastic internal task scheduling tominimise the
total tardiness of customer orders. Te goal of their study
was to simultaneously assign internal cross-docking workers
and transportation equipment to obtain the optimal internal
task schedule in a single unloading activity. Figure 1 rep-
resents a single unloading activity in a cross-docking ter-
minal. In the cross-docking terminal, the cross-docking
operations can be divided into two phases: incoming and
outgoing phases. In the incoming phase, the containers
reach the cross-dock with diferent products. Each incoming
container is processed by a breakdown operation such as
scanning or sorting processes. In the outgoing phase, cus-
tomers’ orders are built up. Each customer order is pro-
cessed by a build-up order operation, and some orders may
require value-adding services, such as repacking or labelling.

In 2020, Buakum and Wisittipanich formulated a
mathematical model of stochastic internal task scheduling
problems in a cross-docking terminal using chance-con-
strained programming. In their study, an exact method
using an optimisation solver was employed to obtain the
optimal solution. Te preliminary results showed that the
problem was NP-hardness (nondeterministic polynomial-
time hardness). Te model consumed very high amount of
computational time when the problem size slightly in-
creased, and it failed to solve a large-scale case of the real-
world problem. As a result, the exact method was not robust
for dealing with uncertainty of processing time and due date.

Tus, this study focuses on metaheuristic applications to
obtain a near-optimal solution within an acceptable com-
puting time. Tis application aims to apply the stochastic
model proposed by Buakum and Wisittipanich [7] in order
to schedule large-scale internal tasks for timely medicine
delivery to prevent negative efects on patients. Taking in-
spiration from the aforementioned problem statements,
diferential evolution (DE), a type of stochastic search and

optimisation method, is used in this study. Starting from a
population of randomly initialised solutions, the original DE
algorithm employs simple mutation and crossover operators
to generate new candidate solutions. Terefore, the per-
formance of the DE algorithm is sensitive to the mutation
and crossover schemes. Recently, various DE strategies with
new mutation and crossover schemes have been introduced
to enhance DE searching ability. However, a large amount of
time is required to determine the appropriate DE evaluation
strategies for specifc problems under consideration.

To overcome this dilemma, this study proposes a novel
self-adaptive and strategy selection-based DE technique
called selective strategy diferential evolution (SSDE). Te
main contributions of this study are listed as follows:

(i) Te robust methods of the SSDE algorithm is
proposed for dealing with uncertainty of processing
time and due date; thus, the SSDE can properly
handle large-scale internal task scheduling prob-
lems in a cross-docking terminal.

(ii) An intelligible modifcation procedure that trans-
forms classical DE to the SSDE is presented in this
work. In addition, the application of suitable ter-
mination conditions is implemented in SSDE.

(iii) Te development of encoding and decoding pro-
cedures is proposed for fnding the optimal order-
picking operation in a single unloading manner
under stochastic environments.

Te remainder of this paper is organised as follows:
Section 2 reviews related studies on the internal task
scheduling problem in a cross-docking terminal. Tis sec-
tion also reviews the modifcation of the classical DE al-
gorithm and DE applications in cross-docking. Section 3
presents the mathematical model of the problem. Section 4
describes three classical metaheuristics used for experi-
mental comparison in this study. Section 5 introduces the
SSDE algorithm, and the solution representation of the
encoding and decoding schemes is described in Section 6. A
computational experiment using scenarios from a real-case
study is reported in Section 7. Finally, the conclusion is
provided in Section 8.

2. Related Studies

Te internal task scheduling problem in cross-dock termi-
nals was frst studied by Li et al. [8]. Te problem was
considered to be a parallel machine scheduling problem.Te
mathematical model was formulated with the objective of
just-in-time shipments, and the resource constraint in the
model was limited to the number of workers. Ten, two
heuristic algorithms such as squeaky wheel optimisation
embedded in a genetic algorithm (SWOGA) and linear
programming within a genetic algorithm (LPGA) were
implemented to solve the problem and compared with so-
lutions obtained from a CPLEX solver. Te comparison
results showed that the CPLEX solver has limited memory
for solving the problem, whereas metaheuristic methods can
provide near-optimal solutions for all test problems. Later,

2 Computational Intelligence and Neuroscience

Alvarez-Perez et al. [11] proposed another metaheuristic, the
reactive greedy randomised adaptive search procedure and
tabu search (RGTS), to solve the same problem as that of Li
et al. (2004).Te results showed that the RGTS obtains better
objective values and less computational time than the
SWOGA and LPGA in some instances.

Workers and transferring tools are both important
resources for internal tasks in cross-docking terminals in
real-world problems. Recently, the developed mathemat-
ical model of internal task scheduling in cross-dock ter-
minals was proposed to simultaneously assign workers and
transfer equipment for operations to minimise the
makespan [12]. Te model was formulated in a deter-
ministic environment; however, tasks in the real-world
were operated under a stochastic environment. Terefore,
Buakum and Wisittipanich [7] transformed the deter-
ministic model into a stochastic model by using chance-
constrained programming to minimise the total tardiness,
in which the processing times and due dates of operations
were considered as stochastic parameters. An exact method
using the LINGO optimisation solver was used to fnd the
optimal solution for the generated data. Te results showed
that LINGO required high computational time and was
terminated with memory insufciency in a large-scale case
of the real-world problem. Several research studies have
considered the internal task scheduling problem as a
parallel machine scheduling (Li et al. [8] [7, 11, 12]).
Afshar-Bakeshloo et al. [9] considered the internal task
scheduling problem as single machine scheduling while
Hamdi and Tekaya [10] considered the internal task
scheduling as fow shop scheduling in deterministic
environment.

A classical DE was frst suggested by Storn and Price [13],
which proved its high performance in solving scheduling

problems [14–17]. In addition, better DE performance was
observed when compared to other evolutionary algorithms
(EAs), such as PSO on a suite of 34 widely used benchmark
problems [18]. Nevertheless, low convergence speed is a
problem of a classical DE, which requires high computa-
tional eforts. To overcome this restriction, several variations
of the DE algorithm have been suggested to improve the
performance of DE by modifying the evolution process
during the search or integrating some additional processes
into the DE to increase the convergence rate, such as local
search [19], external archive [20], or antiaging mechanisms
[21]. Pant et al. [22] presented an extensive survey of ex-
istence of DE. A number of research articles have been
shown through variants of diferential evolution like ini-
tialization techniques, modifcations in mutation schemes,
modifed crossover schemes, modifcations done in selection
schemes, changes in parameters, and hybrid variants of
diferent evolution.

Consequently, in terms of adaptive DE variants, diferent
adaptation mechanisms have been introduced to dynami-
cally update the DE algorithm to reproduce new generation
of vectors without any prior knowledge of the relationship
between the algorithm and the characteristics of optimisa-
tion problems. Te adaptation mechanisms in the DE al-
gorithm can be categorized into three classes as follows.

2.1. Parameter Adaptation. Te performance of DE highly
depends on the control parameters in the mutation operator,
scaling factor F, the crossover operator, and crossover rate
CR. Terefore, some studies have focused on the modif-
cation of control parameters in mutation and crossover
operations [20, 23–28]. For example, Huynh et al. [28]
proposed Q-learning model; the parameter controller

Incoming pallet 1

Incoming pallet 2

Outgoing
container 4

Outgoing
container 3

Outgoing
container 2

Outgoing
container 1

Tasks in a cross-docking terminal

Incoming Phase Outing Phase

In
bo

un
d

D
oc

k
D

oo
r

O
ut

bo
un

d
D

oc
k

D
oo

r

Figure 1: Tasks for a single unloading activity in a cross-docking terminal.

Computational Intelligence and Neuroscience 3

adaptively adjusts the algorithm parameters at runtime using
information from previous iterations.

2.2. Strategy Adaptation. In 2005, Price et al. [29] proposed
other variants of DE derived from the diferent strategies of
mutation and crossover schemes. However, a signifcant
amount of time was required to fnd the best strategies for each
specifc problem. In order to automatically select the most
suitable strategy while solving a problem without any prior
knowledge, some approaches were introduced to apply mul-
tistrategies in a single run [30–33]. In the strategy adaptation
class, parameter adaptive ability and/or other additional abil-
ities could be implemented along with strategies adaptive
ability [34–47]. For example, Do et al. [46] proposed amodifed
DE by adjusting scale factor F and crossover rate c as well as the
mutation and selection phases of the original DE are also
replaced by the best individual-based mutation and elitist
selection techniques. In addition to adaptive mutation or
crossover phases, the adaptive initialization phase was con-
sidered in this class. For example, Tang and Lee [47] proposed a
straightforward and efective scheme for adaptive initialization
and coupled with a linear reduction to the DE population size
[26], called L-SHADE, for solving constrained optimisation
problems.

2.3. Algorithm Adaptation. Since several DE variants have
been proposed in recent years, some studies proposed ap-
proaches to employ multiple state-of-the-art DE variants for
solving particular problems [48, 49].

According to the aforementioned references, Buakum
andWisittipanich [33] proposed the modifed DE algorithm
in the strategy adaptation class which contained both dif-
ferent mutation and crossover schemes in the strategy pool
called self-learning diferential evolution (SLDE) algorithm.
Te adaptive ability of SLDE was made by the ranking and
updating probability of each constituent strategy in each
generation.Tus, both the mutation and crossover operators
were adaptable, and the strategy assignment of the proposed
algorithm was based on one active strategy. However, SLDE
was designed in deterministic aspect only.

To present a more practical problem and provide novel
directions for addressing this problem, this study consider
the stochastic internal task scheduling problem and pro-
posed themodifed DE algorithmwhich extends the SLDE in
the stochastic aspect. Ten, fve metaheuristic algorithms,
GA, PSO, DE, RAM-EPSDE, and SSDE are applied in the
comparison experiments.

3. Mathematical Model of the Problem

Te problem statement and a mathematical model were taken
from Buakum and Wisittipanich [13]. Te problem was for-
mulated to minimise the total tardiness of the order-picking
operation according to prescriptions in a single unloading
activity. In a stochastic environment, processing times and due
dates were set as random parameters, and their distributions
were assumed to be known in advance. Based on the limited
number of workers and transfer equipment, the goal of the

formulation was to obtain an optimal schedule to simulta-
neously assign workers and transfer equipment for handling
medicine pallets and prescriptions. Te due date of each
prescription was set based on the delivery date and patient
location. Te basic assumptions of the mathematical model
were shown as follows:

(i) All workers are identical and 100% reliable.
(ii) No preemptions occur in scheduling.
(iii) Te optimal schedule is based on a single unloading

activity.Tus, the picking order of each prescription
proceeds once the medicine pallets are completely
unloaded.

In the stochastic model formulation, the processing time
for breaking down the medicine pallets and picking order of
the prescription was assumed to be random variables sub-
jected to a normal distribution, while the due date of the
picking order was assumed to be a random variable subject
to a uniform distribution.

3.1. Indices

i,i’: incoming medicine pallet (i,i’� 1,. . .,n)
j,j’: outgoing medicine container (j, j’� 1,. . .,o)
k: worker (k� 1,. . .,m)
l: transfer equipment; TF (l� 1,. . .,q)

3.2. Decision Variables

xik is 1 if worker k is ass igne d for incom
ing pallet i; otherwise, 0
yjk is 1 if worker k is assigne d for outgoing
container j; otherwise, 0
Iii′k is 1 if incom ing pallet i prece de s i′ by the same
worker k; otherwise, 0
Jjj′k is 1 if outgoing container j prece de s j′ by the
sameworker k; otherwise, 0
aii′l is 1 if incoming pa llet i prece de s i′ by the
sameTF l; otherwise, 0
bjj′l is 1 if outgoing container j prece de s j′ by the s
ameTF l; otherwise, 0
Uikl is 1 if worker k an d tool l are assigne d for incom
ing pallet i; otherwise, 0
Vjkl is 1 if outgoing container j is processe d by
worker k an dTF l; otherwise, 0
αikl is the start time of medicine incoming pallet i break
down by worker k TF l
βjkl is the start time of outgoing medicine container j
preparation by worker k TF l
cikl is the completion time of incoming pallet i break
down by team k TF l
zjkl is the completion time of outgoing medicine
container j by worker k TF l
tj is the tardiness of outgoing medicine container j

4 Computational Intelligence and Neuroscience

3.3. Parameters

n is the number of incoming medicine pallets
o is the number of outgoing medicine containers
m is the number of workers
q is the number of transfer equipment
ri is the ready time of incoming medicine pallet i break
down
pMUi is the mean processing time required to break
down incoming medicine pallet i
pSTDi is the standard deviation of processing time
required to break down incoming medicine pallet i
poMUj is the mean processing time for preparing
outgoing medicine container j
poSTDj is the standard deviation of processing time for
preparing outgoing medicine container j
dUj is the upper point of due date of outgoingmedicine
container j
dLj is the lower point of due date of outgoing medicine
container j
Sij is 1 if outgoing medicine container j is pulled from
medicine pallet i; otherwise, 0
hil is 1 if incoming medicine pallet i can be transferred
by TF l; otherwise, 0
fjl is 1 if outgoing medicine container j can be
transferred by TF l; otherwise, 0
G is a large number
ρ is the confdence level for satisfaction with the
constraint set, 1≥ ρ≥ 0

3.4. Objective Function

Minimise
n

j�1
tj,∀j . (1)

Equation (1) is the objective function for minimising the
total tardiness.

3.5. Constraints. Equations (2) and (3) ensure that each
incoming medicine pallet and outgoing medicine container
must be processed by one worker, respectively.

m

k�1
xik � 1 ,∀i, (2)

m

k�1
yjk � 1,∀j. (3)

Equations (4)–(7) guarantee the precedence relationship
when incoming medicine pallets or outgoing medicine
containers are processed with the same worker [11]:

xik + xi′k − Iii′k + Ii′ik(≤ 1,∀ii′k, i≠ i′, (4)

2 Iii′k + Ii′ik(− xik − xi′k ≤ 0,∀ii′k, i≠ i′, (5)

yjk + yj′k − Jjj′k + jj′jk ≤ 1,∀jj′k , j≠ j′, (6)

2 Jjj′k + Jj′jk −yjk − yj′k ≤ 0,∀jj′k , j≠ j′. (7)

Equations (8) and (9) guarantee the relationships when
incoming medicine pallets or outgoing medicine containers
are transferred by the same transfer equipment, respectively.

Uikl + Ui′kl − aii′l + ai′il(≤ 1 ,∀ii′l , i≠ i′, (8)

Vjkl + Vj′kl − bjj′l + bj′jl ≤ 1,∀jj′l , j≠ j′. (9)

Equations (10)–(13) ensure that each incoming medicine
pallet or outgoingmedicine container must be transferred by
only one transfer equipment that is eligible for use.

m

k�1

q

l�1
Uikl � 1 ,∀i, (10)

m

k�1

q

l�1
Vjkl � 1,∀j, (11)

m

k�1

q

l�1
Uikl × hil × xik � 1 ,∀i, (12)

m

k�1

q

l�1
Vjkl × fjl × yik � 1 ,∀j. (13)

Equations (14)–(17) state that the probability of the
constraint sets must be satisfed by at least ρ to ensure
sufcient time between breaking down an incoming med-
icine pallet and to prepare an outgoing medicine container
for each worker or piece of transferring equipment.

Prob cikl ≤ c
i′

kl − pi′ + G 1 − Iii′k(≥ ρ ,∀l,∀ii′k , i≠ i′, (14)

Prob cikl ≤ c
i′

kl − pi′ + G 1 − aii′l(≥ ρ,∀k ,∀ii′l , i≠ i′, (15)

Prob zjkl ≤ zj′kl − poj′ + G 1 − Jjj′k ≥ ρ,∀ljj′k , j≠ j′, (16)

Prob zjkl ≤ zj′kl − poj′ + G 1 − bjj′l ≥ ρ ,∀kjj′l , j≠ j′. (17)

Equations (18) and (19) enforce the start time of breaking
down an incoming medicine pallet and start time of pre-
paring an outgoing medicine container, respectively.

αikl ≥ ri ,∀ikl, (18)

βjkl ≥ cikl,∀ijkl. (19)

Computational Intelligence and Neuroscience 5

Equations (20) and (21) state that the probability of the
constraint sets must be satisfed by at least ρ to ensure the

ready times of braking down an incoming medicine pallet
and preparing an outgoing medicine container, respectively.

Prob cikl − ri ≥pi ≥ ρ ,∀ikl, (20)

Prob zjkl − cikl ≥poj≥ ρ ,∀jk;   i � 1st , .., last predecessor of   j. (21)

Equations (22) and (23) state that the probability of the
constraint sets must be satisfed by at least ρ to determine the
completion time of each incoming medicine pallet and
outgoing medicine container, respectively.

Prob αikl + pi ≥ ci ≥ ρ,∀ikl, (22)

Prob βjkl + poj ≥ zj ≥ ρ,∀ikl. (23)

Equation (24) ensures that the probability of tardiness
for outgoing medicine container j must be satisfed by at
least ρ.

Prob tj ≥max 0, cjkv − dj ≥ ρ,∀j, k , v. (24)

Equation (25) specifes that all decision variables are
binary.

yik, Yjk, Iii′k, Jjj′k, aii′l, Ajj′l, Uikl, Vjkl ∈ 0, 1{ }. (25)

4. Classical Metaheuristic Approach

4.1. GA. Te genetic algorithm (GA) is an adaptive search
technique used to solve optimisation problems. Although
the GA was developed much earlier than 1975, the basic
principles of GA were frst emphasized by Holland in 1975
[50]. Te GA evolution procedure is based on the laws of
natural selection and genetics. In the GA, the solutions are
represented as chromosomes. Te chromosomes are eval-
uated for ftness values and ranked from best to worst based
on their ftness values.

During a genetic operation, chromosomes are selected
from the population and recombined to produce ofspring
that comprise the population of the next generation. Tis
process is accomplished through repeated applications of
three genetic operators: selection, crossover, and mutation.

4.2. PSO. Particle swarm optimisation (PSO) is a pop-
ulation-based random search method that imitates the
physical movements of individuals in a swarm as a searching
mechanism. Te PSO algorithm was originally proposed by
Eberhart and Kennedy in 1995 [51]. Similar to the GA, the
population in PSO is initialised with random solutions. In
PSO, a solution is represented as a particle, and the pop-
ulation of solutions is called a swarm of particles. Each
particle has two main attributes: position and velocity. Te
diference between PSO and GA lies in evolutionary pro-
cedures. Te key concept of PSO is that each particle learns
from the cognitive knowledge of its experiences (personal

best, pbest) and the social knowledge of the swarm (global
best, gbest) to guide itself to a better position. A particle
moves to a new position using an updated velocity. Once a
new position is reached, the best position of each particle
and the best position of the swarm are updated as needed.
Te velocity of each particle is then adjusted based on the
particle experiences.Tis process is repeated until a stopping
criterion is satisfed.

4.3. DE. Diferential evolution (DE), introduced by Storn
and Price in 1995 [13], is an evolutionary algorithm designed
to deal with continuous optimisation problems. Similar to
GA and PSO, DE is a population-based random search
algorithm. In DE, the initial D-dimensional vector pop-
ulation of sizeN is randomly generated and should cover the
entire search space. Typically, the DE population evolves
through repeated cycles of three main DE operators: mu-
tation, crossover, and selection. However, DE has a diferent
mechanism for generating new solutions explained as
follows.

4.3.1. Mutation. Amutant vector is generated by combining
three vectors randomly selected from the population, ex-
cluding the target vector, XG. Equation (26) shows the
combination process of three randomly selected vectors to
form the mutant vector VG as follows:

VG � X1,G + F X2,G–X3,G , (26)

where X1,G, X2,G, and X3,G are three randomly selected
vectors from the population in generation G and F is a scale
factor which is the main parameter of the DE algorithm.

4.3.2. Crossover. To increase the diversity of the perturbed
parameter vectors after mutation, a trial vector, UG, is
generated by a crossover operation. Te crossover proba-
bility (0≤Cr≤ 1) must be specifed for the crossover operator
to control the probability of selecting the value in each
dimension from a mutant vector. In classic DE, the uniform
crossover is employed, and the trial vector is generated using
the following equation:

Uj,G �
Vj,G, if  (randb(j) ≤Cr,

Xj,G, Otherwise,
⎧⎨

⎩ (27)

where randb(j) is the jth evaluation of a uniform random
number generator with the outcome ∈ [0, 1].

6 Computational Intelligence and Neuroscience

4.3.3. Selection. To determine a survival vector for the next
generation, a comparison of ftness values between a trial
vector, UG, and a target vector, XG, is performed in the
selection operator. Te simple criterion is to maintain the
vector with a better ftness value. If UG yields a better ftness
value than XG, XG+1 is set to UG; otherwise, the old value XG
is retained.

4.4. RAM-EPSDE. Ranked-Based Mutation Adaptation
(RAM), proposed by Leon and Xiong in 2018, is a selection
method of diferent mutation strategies of DE. In RAM, the
mutation strategy was selected according to probabilities of
each population subgroups. RAM was used to enhance the
classical DE algorithm by integrating with other adaptive DE
algorithms.

Ensemble of Parameters and Mutation Strategies DE
(EPSDE) algorithm, proposed by [31], was another adaptive
parameter and searching strategies DE. EPSDE randomly
selected diferent mutation and crossover strategies and
parameter values in its pool listed as follows:

(1) Mutation strategies are DE/best/2/bin, DE/rand/1,
and DE/current-to-rand/1/bin

(2) Crossover strategies are binomial crossover and
exponential crossover

(3) Parameter values are the population size (NP� 50),
F ∈ [0.5, 0.9], and CR ∈ [0.1, 0.5, 0.9]

Later, Leon et al. [19] introduced an integration of RAM
into EPSDE and named the algorithm as RAM-EPSDE with
an aim to improve the search efciency.

5. SSDE

5.1. SSDE Framework. Selective strategy DE (SSDE) is
proposed in this study to enhance the DE performance. Te
modifcations to the classical DE algorithm are listed in
Table 1. In contrast to the classical DE, SSDE uses six dif-
ferent strategies obtaining from the combination of muta-
tion and crossover schemes proposed by Price et al. [29] in
order to maintain both the exploitation and exploration
abilities of DE [29]. In the classic DE, a new population is
generated using one strategy, while a new population of
SSDE can be generated using various strategies.Te ability to
adjust itself to use diferent potential strategies towards a
better solution is the key to enhancing the search speed of
the SSDE.

In addition, to improve the computational time cost,
other termination conditions are added to SSDE as follows:

(i) Maximum iterations: similar to classical DE and
other evolutionary algorithms, SSDE algorithm is
terminated when the maximum number of itera-
tions is reached

(ii) No further improvement: diferent from the ter-
mination condition of classical DE, the algorithm is

terminated when an improvement probability does
not increase for a specifc number of n iterations

(iii) Te optimal solution is obtained: when the objective
reaches the target value, for example, zero tardiness,
the algorithm is terminated

5.2. SSDE Procedure. Te SSDE procedure is divided into
two main stages: learning and running. In the learning stage,
each strategy is used to perform the evaluation process for n
iterations. Ten, the ability to achieve a better ftness value
for each strategy is recorded according to the improvement
probability. Next, the improvement probabilities of all
strategies are sorted in ascending order to rank for qualities.
In the running stage, the improvement probability is
updated for every m iterations. First, the evolutionary
process is performed by employing the frst-rank strategy.
Subsequently, if the improvement probability of the can-
didate strategy is lower than that of the others after the
update, SSDE switches its strategy to the highest improve-
ment probability strategy. Tis process is repeated until the
algorithm terminates. Te pseudocode of the SSDE algo-
rithm with the proposed modifcation is shown in Figure 2.

6. Solution Representation

Since evolutionary algorithms were developed for contin-
uous optimisation, each individual in the population must
be transformed into a practical solution. In this study, a
solution representation with encoding and decoding was
developed to obtain the schedule of internal tasks in a cross-
dock terminal with the minimum total tardiness.

In the encoding procedure, the number of dimensions
was set to be equal to the total number of operations in a
single unloading activity. Ten, a uniform random number
was generated for each dimension in the interval [0, 1]. Te
pseudocode of the encoding procedure is shown in Figure 3.

Te decoding procedure transforms random numbers of
each dimension into a practical solution. Te decoding
procedure consists of the following steps:

Step 1: defning the condition for assigning workers to
operations according to the range and the boundary
value, which are calculated from the dimension value
and number of workers.
Step 2: allocating the transferring equipment to oper-
ations in a balanced manner. Te assignment in this
step is based on the dimension value and its eligibility
for handling that operation.
Step 3: applying a sorting list rule to generate a se-
quence of operations.
Step 4: generating random values of processing times
and due dates according to the stochastic environment
of the problem. Ten, the start time, end time, the
tardiness of each operation, and the total tardiness were
calculated according to the random processing times
and due dates. Te pseudocode of the decoding pro-

Computational Intelligence and Neuroscience 7

Table 1: Modifcations in DE algorithm.

No. Modifcation Classical DE SSDE

1 Mutation operator 1 scheme
VG �X1,G + F(X1,G −X2,G)

3 schemes VG �X1,G + F(X1,G −X2,G)
VG �Xb,G + F(X2,G −X2,G)

VG �Xb,G+ F(X1,G– X2,G)+F(X3,G −X4,G)

2 Crossover operator 1 scheme
Binomial crossover

2 schemes
Binomial crossover

Exponential crossover

3 Generating new
population Using a DE strategy in a single run

Using various DE strategies in a single run
Tere are 6 strategies from the combination of mutation and crossover

schemes

4 Termination condition 1 condition
Max iterations

3 condition
Max iterations

No more improvement
Objective reach to the target

Figure 2: Te pseudocode of the SSDE algorithm.

8 Computational Intelligence and Neuroscience

cedure is shown in Figure 4.

7. Computational Experiments

Te computational experiments were divided into two parts.
SSDE performance is frst tested using benchmark functions.
Ten, SSDE is used for solving the larger-scale problem of
internal tasks scheduling in a cross-docking terminal. Te
performance of SSDE was evaluated and compared with
other metaheuristics, GA, PSO, DE, and RAM-EPSDE. Te
analysis of numerical results in terms of solution quality and
convergence behaviour was also investigated. It is noted that
the computational experiments were run on an Intel®Pentium IntelCoreTM i5 8th Gen CPU (1.60GHz) with 8GB
RAM.

7.1. Benchmark Test Functions. In this section, the perfor-
mance of the SSDE is verifed using fve benchmark func-
tions. Tese functions are bound-constrained high-
dimensional single-objective optimisation (Dim� 100/1000/
2000) of CEC 2020 [52]. Te unimodal functions F1 and F2
have only one global optimal value, so they can be used to
test the local search ability of the algorithm, while the
multimodal functions F3–F5 with more than two optimal
values are used to evaluate the global exploration ability. Te
benchmark functions used in this study are listed in Table 2.

Te numeric experiment results obtained from SSDE
were compared with those from other algorithms, including
MFO [53], SOGWO [54], PFA [55], EO [56], and MMPA
[57]. Te parameter setting of the comparison algorithms is
shown in Table 3.

Tese parameters were selected according to the sug-
gestions presented by the developers of the algorithms in the
aforementioned references. Te population size of each
algorithm was set to 30, and the number of iterations was set
to 500. Table 4 shows the comparison results of SSDE and
other existing algorithms obtained from 30 independent
runs.

According to the results in Table 4, although the SSDE is
not able to obtain better solutions than SOGWO and
MMPA, it performs better than PSO, MFO, and PFA in both
unimodal and multimodal functions. Tis can be due to the
fact that SSDE was particularly developed for solving a
combinatorial problem, not a continuous optimisation
problem. In the next section, experiments are conducted to

demonstrate the performance of SSDE in solving internal
tasks scheduling problems in cross-docking terminals.

7.2. Parameter Setting and Instances of Internal Task Sched-
uling Problem. To determine the best set of key parameter
values of each algorithm, the Taguchi method was used to
reduce the computational load from a full factorial exper-
iment. For each algorithm, a three-factor with four-level
experiment was performed on three instances of the scenario
of the real-world cross-docking problem. It is noted that, in
this study, the parameters of the RAM-EPSDE were set
according to the original EPSDE in [31]. In addition, the
number of function evaluations (number of iter-
ations× population size) was set to a fxed value of 50,000 for
all algorithms. Te best parameter values for each algorithm
derived from the parameter settings are listed in Table 5.

Te computational experiment was performed on 15
instances. Instances 1 to 7 were small-size problems with
generated data. Instances 8 to 15 were large-size problems in
which the data were derived from the real-scenario of a
medicine distribution centre. Te problem size is identifed
by four generated parameters which are number of workers
(m), number of transfer equipment (q), number of incoming
medicine pallets (n), and number of outgoing medicine
containers (o). In addition, to make the problem more
practical, in some instances, some customer orders are re-
stricted for the use of particular transferring equipment.

7.3. Experimental Results on the Instances of Internal Task
Scheduling Problem. In this section, the performance of the
proposed SSDE was evaluated using the real-case scenarios
of a pharmaceutical distribution centre. Te experimental
results obtained from the SSDE, in terms of solution quality
and computational time, were compared to solutions ob-
tained from the optimisation solver LINGO and other
metaheuristics. It is noted that the comparison of all met-
aheuristics was executed under the same conditions of so-
lution representation and total number of function
evaluations. Table 6 shows the comparison results of total
tardiness among diferent metaheuristics. Te best, average,
and standard deviation of total tardiness obtained from
those algorithms are also reported.

It can be seen from Table 6 that, for small-size problems,
the total tardiness obtained from the metaheuristic method
was lower than the exact method. Tis may be because of a

Figure 3: Te pseudocode of the encoding procedure.

Computational Intelligence and Neuroscience 9

Figure 4: Pseudocode of the decoding procedure.

Table 2: Te benchmark functions.

ID Function Range fmin

F1 f(x) � n
i�1 |xi| +

n
i�1 |xi| [−10, 10] 0

F2 f(x) �
n
i�1 (xi + 0.5)2 [−100, 100] 0

F3 (x) �
n
i�1[x2

i − 10 cos (2πxi) + 10] [−5.12, 5.12] 0
F4 f(x) � −20 exp (−20

���������
1/n

n
i�1 x2

i

− exp (1/n

n
i�1 cos (2πxi))

[−32, 32] 0
F5 f(x) � 1/4000

n
i�1 x2

i −
n
i�1 cos(xi/

�
i

√
) + 1 [−600, 600] 0

Table 3: Parameter setting for testing the benchmark functions.

Algorithm Parameters
MFO a� −1 (linearly decreased over iterations)
SOGWO a� 2 (linearly decreased over iterations)
PFA ∼
EO a1� 2, a2�1, GP� 0.5, t� 1 (nonlinearly decreased over iterations)
MMPA FADs� 0.2
SSDE F� 0.2, Cr� 0.9

10 Computational Intelligence and Neuroscience

Ta
bl

e
4:

C
om

pa
ri
so
n
re
su
lts

am
on

g
di
fe
re
nt

al
go
ri
th
m
s
fo
r
un

im
od

al
an
d
m
ul
tim

od
al

fu
nc
tio

ns
w
ith

10
0
D
/1
00
0
D
/2
00
0
D
.

ID
D
im

en
sio

ns
PS

O
M
FO

PF
A

SO
G
W
O

M
M
PA

SS
D
E

M
ea
n

St
d

M
ea
n

St
d

M
ea
n

St
d

M
ea
n

St
d

M
ea
n

St
d

M
ea
n

St
d

Be
st

F1
10
0

3.
87
E
+
01

9.
22
E
+
00

2.
42
E
+
02

4.
33
E
+
01

2.
51
E

−
17

7.
89
E

−
02

4.
16
E

−
08

1.
45
E

−
08

0.
00
E
+
00

0.
00
E
+
00

6.
70
E
+
01

4.
39
E
+
00

5.
17
E
+
01

10
00

1.
39
E
+
03

5.
48
E
+
01

In
fe
as
ib
le

In
fe
as
ib
le

6.
62
E

−
01

3.
00
E

−
01

0.
00
E
+
00

0.
00
E
+
00

1.
28
E
+
03

6.
01
E
+
01

1.
13
E
+
03

20
00

1.
52
E
+
42

7.
71
E
+
42

In
fe
as
ib
le

In
fe
as
ib
le

9.
74
E
+
00

3.
79
E
+
00

3.
47
E

−
51

1.
32
E

−
50

2.
59
E
+
04

1.
58
E
+
03

2.
26
E
+
04

F2
10
0

2.
02
E
+
01

5.
55
E
+
00

5.
83
E
+
04

1.
31
E
+
04

4.
36
E
+
00

1.
63
E
+
00

1.
01
E
+
01

1.
10
E
+
00

4.
41
E
+
00

4.
17
E

−
01

9.
81
E
+
01

6.
40
E
+
00

6.
76
E
+
01

10
00

4.
10
E
+
04

1.
86
E
+
03

1.
30
E
+
04

4.
94
E
+
04

2.
29
E
+
05

2.
74
E
+
04

2.
03
E
+
02

2.
03
E
+
02

1.
94
E
+
02

3.
20
E
+
00

3.
63
E
+
04

3.
08
E
+
03

3.
10
E
+
04

20
00

1.
88
E
+
05

6.
32
E
+
03

5.
94
E
+
06

6.
94
E
+
04

1.
02
E
+
06

9.
48
E
+
04

8.
23
E
+
04

8.
00
E
+
04

4.
26
E
+
02

2.
52
E
+
00

7.
56
E
+
05

7.
87
E
+
04

5.
86
E
+
05

F3
10
0

6.
06
E
+
02

7.
36
E
+
01

8.
59
E
+
02

7.
15
E
+
01

4.
87
E
+
02

6.
42
E
+
01

7.
63
E
+
00

5.
54
E
+
00

0.
00
E
+
00

0.
00
E
+
00

2.
62
E
+
02

2.
94
E
+
01

1.
98
E
+
01

10
00

1.
47
E
+
04

6.
48
E
+
02

1.
55
E
+
04

2.
09
E
+
02

1.
03
E
+
04

4.
34
E
+
02

1.
99
E
+
02

4.
99
E
+
01

0.
00
E
+
00

0.
00
E
+
00

7.
31
E
+
03

4.
01
E
+
02

6.
26
E
+
03

20
00

3.
15
E
+
04

1.
03
E
+
03

3.
31
E
+
04

2.
74
E
+
02

2.
35
E
+
04

8.
57
E
+
02

5.
59
E
+
02

1.
07
E
+
02

0.
00
E
+
00

0.
00
E
+
00

1.
92
E
+
04

6.
38
E
+
02

1.
72
E
+
04

F4
10
0

3.
73
E
+
00

2.
96
E

−
01

1.
99
E
+
01

9.
58
E

−
02

6.
18
E
+
00

6.
46
E
+
00

1.
44
E

−
07

5.
68
E

−
08

8.
88
E

−
16

0.
00
E
+
00

5.
41
E
+
00

7.
62
E

−
01

3.
76
E
+
00

10
00

1.
59
E
+
01

2.
90
E

−
01

2.
04
E
+
01

2.
03
E

−
01

1.
99
E
+
01

5.
90
E

−
01

1.
92
E

−
02

2.
83
E

−
03

8.
88
E

−
16

0.
00
E
+
00

8.
23
E
+
00

5.
05
E

−
01

6.
86
E
+
00

20
00

1.
76
E
+
01

1.
13
E

−
01

2.
04
E
+
01

2.
67
E

−
01

2.
04
E
+
01

2.
99
E

−
01

1.
18
E

−
01

1.
50
E

−
02

8.
88
E

−
16

0.
00
E
+
00

9.
86
E
+
00

4.
37
E

−
01

8.
75
E
+
00

F5
10
0

3.
93
E

−
01

9.
30
E

−
02

5.
30
E
+
02

1.
62
E
+
02

6.
93
E

−
01

2.
20
E

−
01

8.
69
E

−
03

1.
25
E

−
02

0.
00
E
+
00

0.
00
E
+
00

6.
16
E
+
00

2.
23
E
+
00

1.
99
E
+
00

10
00

2.
80
E
+
02

1.
71
E
+
01

2.
45
E
+
04

5.
24
E
+
02

2.
16
E
+
03

2.
18
E
+
02

1.
55
E

−
01

1.
16
E

−
01

0.
00
E
+
00

0.
00
E
+
00

2.
84
E
+
02

3.
26
E
+
01

2.
13
E
+
02

20
00

7.
55
E
+
02

3.
21
E
+
01

5.
36
E
+
04

6.
40
E
+
02

9.
22
E
+
03

8.
38
E
+
02

1.
14
E
+
00

2.
22
E

−
01

0.
00
E
+
00

0.
00
E
+
00

7.
62
E
+
02

1.
42
E
+
02

4.
57
E
+
02

Computational Intelligence and Neuroscience 11

stochastic setting in the mathematical model of the problem.
In addition, there was no diference in the recording results
including the best, mean, and standard deviation among
metaheuristic methods. However, for large-sized problems,
LINGO could not fnd solution since it ran out of memory
for generating the model. Among metaheuristics, SSDE
generally provided superior solution quality than other al-
gorithms since most of the best, average, and standard
deviation values of total tardiness are lower. In addition,
SSDE clearly outperformed GA, PSO, classic DE, and RAM-
EPSDE by providing solutions with zero tardiness values and
zero standard deviations for most instances. It is noteworthy
that the quality of the solutions obtained by the meta-
heuristic methods deteriorated as the problem size in-
creased. Tis may suggest that newly generated solutions

could not escape from the local optimal when the problem
became more complex. Terefore, a high diversifcation for
generating new populations leads to a better solution.
Consequently, GA provided the highest total tardiness,
whereas PSO, classic DE, and RAM-EPSDE yielded lower
total tardiness. In conclusion, the numerical results showed
that SSDE yielded the best total tardiness and computational
time.

Moreover, a one-sided t-test was performed to compare
SSDE performance with those of the classical DE algorithm
and RAM-EPSDE in terms of the average total tardiness for
large-size instances. Te t-value according to equation (28)
was calculated to confrm the signifcant diference of
compared algorithms.

t �
xCompared algo − xSSDE

�������������������������������
s
2
Compared algo/nCompared algo + s

2
SSDE/nSSDE

 . (28)

In Equation (28), x and s are the mean and standard
deviations of total tardiness obtained from 30 replicated runs
(n), respectively. It is noteworthy that α is an uncertainty
level, set at 5% for this experiment, and n is the degree of
freedom (n� 30−1� 29). Hence, the critical value of t0.05, 29
is equal to 1.699. If t-value is higher than the critical value,
the average total tardiness obtained from SSDE is signif-
cantly lower. Table 7 shows the results of a one-sided t-test of
average total tardiness. It can be seen that the t-values of
average total tardiness were higher than the critical value for
all large-size instances. Tus, it was clear that the total
tardiness obtained from the SSDE was signifcantly lower
than that of the classical DE and RAM-EPSDE with 95%
confdence level.

In addition, the ability to escape from the local optimal
and attain a better solution can be observed by behaviour of
convergence. In this study, the comparison of convergence
behaviour among diferent algorithms was investigated
using the graph of average ftness values versus the number
of function evaluations as shown in Figure 5.

According to Figure 5, GA showed the lowest conver-
gence speed, while PSO and DE yielded better speeds. Tis
may be because the task scheduling problem requires di-
versifcation to generate new populations through an evo-
lutionary process and handle a large number of
prescriptions. Te convergence speeds of RAM-EPSDE were
better than the classical DE due to the use of multisearching
strategies. Although integrating RAM with EPSDE leads to
an improvement of the original DE, crossover strategies and
parameter settings are not considered in the adaptation. In
contrast, SLDE adapts both of its mutation and crossover
strategies. In addition, the parameter values of SLDE were
derived from the parameter testing using the real-case study.
Consequently, SLDE showed its robustness compared to
RAM-EPSDE in internal task scheduling problems. In ad-
dition, SSDE showed its outstanding competence in escaping
from the local optimal and reaching a better solution. Te
superior performance of the SSDE is attributed to the ap-
plication of various modifed DE strategies and self-adaptive
methods through the evolutionary processes of SSDE.

Table 5: Best parameter values for each algorithm.

Algorithm Parameters and their best level
Function evaluation Mutation rate Crossover rate, Cr

GA 100× 500 0.10 0.3
Function evaluation Inertia weight Acceleration (Cp, Cg)

PSO 200× 250 0.6–1.0 0.7, 0.7
Function evaluation Scale factor, F Crossover rate, Cr

DE 500×100 1.0 0.6
RAM-ESPDE 1000× 50 [0.5, 0.9] [0.1, 0.5, 0.9]
SSDE 100× 500 2.0 0.9

12 Computational Intelligence and Neuroscience

Ta
bl

e
6:

C
om

pa
ri
so
n
of

to
ta
lt
ar
di
ne
ss

an
d
co
m
pu

ta
tio

na
lt
im

e
am

on
g
di
fe
re
nt

al
go
ri
th
m
s.

In
s

Pr
ob

le
m

siz
e

Li
ng

o
G
A

PS
O

D
E

RA
M
-E
PS

D
E

SS
D
E

(m
,q

,n
,o

)
Ta
rd
in
es
s

Ru
n
tim

e
(s
)

Ta
rd
in
es
s

Ru
n

tim
e

(s
)

Ta
rd
in
es
s

Ru
n

tim
e

(s
)

Ta
rd
in
es
s

Ru
n

tim
e

(s
)

Ta
rd
in
es
s

Ru
n

tim
e

(s
)

Ta
rd
in
es
s

Ru
n

tim
e

(s
)

Be
st

A
vg

SD
A
vg

Be
st

A
vg

SD
A
vg

Be
st

A
vg

SD
A
vg

Be
st

A
vg

SD
A
vg

Be
st

A
vg

SD
A
vg

1
2,

2,
3,

3
0.
97

35
.2

1.
0

1.
4

0.
4

0.
1

1.
0

1.
4

0.
3

0.
2

1.
1

1.
6

0.
5

0.
1

1.
0

1.
3

0.
3

0.
2

1.
0

1.
5

0.
4

0.
2

2
2,

2,
4,

3
9.
15

13
7.
4

6.
9

8.
5

0.
8

0.
2

6.
3

8.
2

1.
0

0.
2

6.
2

8.
5

1.
3

0.
2

9.
2

10
.0

1.
0

0.
3

6.
8

8.
9

1.
0

0.
3

3
2,

2,
4,

4
12
.1
2

51
3.
5

12
.6

14
.0

0.
7

0.
2

12
.9

13
.9

0.
6

0.
2

12
.5

14
.0

0.
5

0.
2

13
.2

14
.0

0.
4

0.
3

12
.7

14
.0

0.
5

0.
3

4
3,

3,
4,

5
30
.3
1

11
69
.2

9.
5

10
.5

0.
6

0.
2

9.
0

10
.7

0.
7

0.
3

9.
2

10
.4

0.
6

0.
2

9.
4

10
.3

0.
6

0.
3

9.
3

10
.4

0.
6

0.
3

5
3,

3,
4,

6
29
.3
9

14
52
.1

8.
4

9.
5

0.
5

0.
3

8.
5

9.
5

0.
5

0.
3

8.
8

9.
5

0.
4

0.
3

9.
1

9.
7

0.
5

0.
3

8.
5

9.
6

0.
5

0.
3

6
3,

3,
4,

7
72
.6
3

15
57
9.
7

18
.8

19
.8

0.
5

0.
3

18
.5

19
.6

0.
7

0.
4

18
.4

19
.7

0.
5

0.
3

21
.3

21
.9

0.
4

0.
3

19
.4

21
.4

1.
4

0.
3

7
3,

3,
4,

8
84
.4
1

19
76
96
.9

28
.4

29
.9

0.
9

0.
3

28
.4

30
.0

0.
9

0.
4

28
.6

30
.0

0.
7

0.
3

28
.4

29
.5

0.
8

0.
4

28
.6

30
.7

1.
2

0.
4

8
5,
5,
40
,2
39

n/
a

n/
a

23
59
.4

26
75
.5

15
0.
8

51
.5

23
.9

34
3.
5

22
2.
4

55
.7

0.
0

21
.6

29
.4

50
.9

0.
0

33
.6

33
.3

51
.3

0.
0

0.
0

0.
0

11
.7

9
5,
5,
40
,2
47

n/
a

n/
a

27
79
.6

33
15
.4

18
9.
1

55
.2

6.
6

34
0.
2

27
1.
4

56
.1

0.
0

32
.7

31
.6

53
.9

1.
9

28
9.
6

14
4.
8

54
.6

0.
0

1.
2

3.
8

24
.1

10
5,
5,
40
,2
50

n/
a

n/
a

17
24
.2

21
13
.6

21
9.
9

58
.0

4.
7

51
8.
4

41
0.
5

57
.3

0.
0

4.
6

6.
8

55
.1

0.
0

8.
3

10
.8

55
.9

0.
0

0.
0

0.
0

9.
7

11
5,
5,
40
,2
56

n/
a

n/
a

33
27
.2

38
31
.0

21
0.
6

59
.9

10
4.
5

75
7.
9

39
9.
2

59
.1

2.
6

64
.9

52
.8

57
.6

23
.9

30
7.
3

15
6.
0

58
.9

0.
0

0.
0

0.
0

14
.8

12
5,
5,
40
,2
64

n/
a

n/
a

26
15
.2

30
10
.5

21
7.
4

61
.2

62
.1

46
4.
9

29
2.
9

64
.6

0.
0

27
.1

29
.2

60
.3

0.
0

12
9.
3

16
3.
8

60
.8

0.
0

0.
0

0.
0

13
.1

13
8,
8,
60
,3
28

n/
a

n/
a

17
88
.8

21
83
.7

18
2.
5

89
.8

12
.9

42
6.
6

37
0.
3

91
.6

22
.1

60
6.
8

40
5.
3

92
.3

0.
0

17
8.
1

17
2.
2

61
.3

0.
0

0.
0

0.
0

22
.3

14
8,
8,
60
,3
70

n/
a

n/
a

52
63
.1

61
44
.6

44
3.
3

10
8.
9

17
81
.7

34
41
.9

92
4.
6

10
4.
9

19
78
.3

30
72
.9

70
6.
9

11
0.
2

10
19
.2

26
41
.6

85
8.
3

10
9.
4

0.
0

1.
5

6.
4

42
.2

15
10
,1
0,
80
,5
18

n/
a

n/
a

12
24
7.
5

14
26
5.
1

91
9.
1

19
7.
3

78
28
.5

11
06
4.
3

16
35
.4

20
2.
8

90
15
.9

10
92
8.
3

10
04
.5

19
8.
8

64
65
.9

99
17
.7

13
56
.9

19
8.
6

0.
0

71
.3

16
7.
2

13
9.
6

N
ot
es
:(
1)

n/
a
w
as

du
e
to

LI
N
G
O

ru
nn

in
g
ou

to
fw

or
ki
ng

m
em

or
y
to

ge
ne
ra
te
th
e
m
od

el
.(
2)

A
ll
cu
st
om

er
or
de
rs
in

in
st
an
ce
s1

,4
,8
,9
,1
1,
12
,a
nd

14
co
ul
d
us
e
an
y
tr
an
sf
er
ri
ng

eq
ui
pm

en
t.
(3
)S

om
e
cu
st
om

er
or
de
rs

in
in
st
an
ce
s
2,

3,
5,

6,
7,

10
,1

3,
an
d
15

co
ul
d
no

tu
se

so
m
e
of

tr
an
sf
er
ri
ng

eq
ui
pm

en
t.

Computational Intelligence and Neuroscience 13

Table 7: Te t-values of average total tardiness from the one-sided t-test.

Ins Problem size t-value of avg total t-value of avg total
(m, q, n, o) μDE − μSSDE μRAM-EPSDE − μSSDE

8 5-5-40-239 4.02 5.53
9 5-5-40-247 5.42 10.91
10 5-5-40-250 3.71 4.21
11 5-5-40-256 6.73 10.79
12 5-5-40-264 5.08 4.32
13 8-8-60-328 8.20 5.66
14 8-8-60-370 23.80 16.85
15 10-10-80-518 58.40 39.45

0
500

1000
1500
2000
2500
3000
3500
4000

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 9

0

500

1000

1500

2000

2500

3000

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 10

0

1000

2000

3000

4000

5000

6000

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 11

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 12

0
500

1000
1500
2000
2500
3000
3500

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 13

GA
PSO
DE

RAM-EPSDE
SSDE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 14

0

5000

10000

15000

20000

25000

5 40 75 11
0

14
5

18
0

21
5

25
0

28
5

32
0

35
5

39
0

42
5

46
0

49
5

Ta
rd

in
es

s

Function evaluation (×102)

Instance 15

Figure 5: Comparison of convergence behaviour among algorithms.

14 Computational Intelligence and Neuroscience

8. Conclusion

A novel SSDE algorithm was proposed to handle the
complexity of stochastic internal task scheduling problems
in cross-dock terminals. Te aim of this study was to assign
workers and transfer equipment to operations and to se-
quence those operations to minimise total tardiness. Te
ability to adapt itself to execute the best strategy was the key
to the success of SSDE. In SSDE, ftness values were con-
sidered to prioritise the capability of each strategy in the
learning stage. Subsequently, the improvement probability
was used in the strategy selection during the running stage.

In this study, a solution representation with encoding
and decoding procedures was also developed to transform a
random number into a scheduling solution. Ten, an exact
method using the LINGO optimisation solver and meta-
heuristics was applied to solve 15 instance problems using
generated data based on a real-case scenario of a pharma-
ceutical distribution centre. Te performance of the SSDE
was compared with the results obtained from LINGO and
other classical metaheuristics in terms of solution quality
and computational time. Based on the experimental results,
there was no diference in the solution quality when solving
small problems. However, LINGO took a long time to solve
small problems and sufered from insufcient working
memory when attempting to solve large problems. In
contrast, all metaheuristic algorithms required less com-
puting time to provide solutions for all instances. Based on
numerical results and convergence behaviour, SSDE sig-
nifcantly outperformed classical DE and other algorithms in
terms of both solution quality and computational time. In
addition, SSDE presented faster convergence than the other
algorithms. Hence, SSDE is an alternative approach for
solving stochastic internal task scheduling problems in
cross-dock terminals.

Data Availability

Access to data is restricted due to third party rights.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was partially supported by ChiangMai University
(CMU), Tailand, and Prince of Songkla University (PSU),
Tailand.

References

[1] A. Rijal, M. Bijvank, and R. de Koster, “Integrated scheduling
and assignment of trucks at unit-load cross-dock terminals
with mixed service mode dock doors,” European Journal of
Operational Research, vol. 278, no. 3, pp. 752–771, 2019.

[2] Z. Feifeng, Y. Pang, Y. Xu, and M. Liu, “Heuristic algorithms
for truck scheduling of cross-docking operations in cold-
chain logistics,” International Journal of Production Research,
vol. 59, no. 3, pp. 1–22, 2020.

[3] S. Amin andM. S. Sajadieh, “Truck scheduling in amulti-door
cross-docking center with partial unloading–Reinforcement
learning-based simulated annealing approaches,” Computers
& Industrial Engineering, vol. 139, p. 106134, 2020.

[4] C. Issi, Gustavo, R. Linfati, John, and W. Escobar, “Mathe-
matical optimization model for truck scheduling in a dis-
tribution center with a mixed service-mode dock area,”
Journal of Advanced Transportation, vol. 2020, p. 13, Article
ID 8813372, 2020.

[5] T. Chargui, A. Bekrar, M. Reghioui, and D. Trentesaux,
“Scheduling trucks and storage operations in a multiple-door
cross-docking terminal considering multiple storage zones,”
International Journal of Production Research, vol. 60, no. 4,
pp. 1153–1177, 2020.

[6] M. Kłodawski and J. Żak, “Order picking area layout and its
impact on the efciency of order picking process,” Journal of
Trafc and Logistics Engineering, vol. 1, no. 1, pp. 41–45, 2013.

[7] D. Buakum and W. Wisittipanich, “Stochastic internal task
scheduling in cross docking using chance-constrained pro-
gramming,” International Journal of Management Science and
Engineering Management, vol. 15, no. 4, pp. 258–264, 2020.

[8] L. Yanzhi, A. Lim, and B. Rodrigues, “Crossdocking–JIT
scheduling with time windows,” Journal of the Operational
Research Society, vol. 55, no. 12, pp. 1342–51, 2004.

[9] M. Afshar-Bakeshloo, F. Jolai, M. Mazinani, and R. Tavakkoli-
Moghaddam, “A satisfactory multi-agent single-machine
considering a cross-docking terminal,” International Journal
of System of Systems Engineering, vol. 9, no. 4, pp. 307–330,
2019.

[10] H. Imen and M. Fadhel Tekaya, “A genetic algorithm to
minimize the makespan in a two-machine cross-docking fow
shop problem,” Journal of the Operations Research Society of
China, vol. 8, pp. 1–20, 2019.

[11] G. A. Álvarez-Pérez, J. L. González-Velarde, and J. W. Fowler,
“Crossdocking-just in time scheduling: an alternative solution
approach,” Journal of the Operational Research Society, vol. 60,
no. 4, pp. 554–564, 2009.

[12] D. Buakum andW.Wisittipanich, “Amathematical model for
internal task scheduling in cross docking,” in Proceedings of
the 2019 IEEE International Conference on Industrial Engi-
neering and Engineering Management (IEEM), Macao, China,
December 2019.

[13] R. Storn and K. Price, “Diferential evolution–a simple and
efcient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[14] G. Onwubolu and D. Davendra, “Scheduling fow shops using
diferential evolution algorithm,” European Journal of Oper-
ational Research, vol. 171, no. 2, pp. 674–692, 2006.

[15] N. Damak, B. Jarboui, P. Siarry, and T. Loukil, “Diferential
evolution for solving multi-mode resource-constrained
project scheduling problems,” Computers & Operations Re-
search, vol. 36, no. 9, pp. 2653–2659, 2009.

[16] W. Wisittipanich and V. Kachitvichyanukul, “Two enhanced
diferential evolution algorithms for job shop scheduling
problems,” International Journal of Production Research,
vol. 50, no. 10, pp. 2757–2773, 2012.

[17] W. Wisittipanich and P. Hengmeechai, “A multi-objective
diferential evolution for Just-In-Time door assignment and
truck scheduling in multi-door Cross docking problems,”
Industrial Engineering and Management Systems, vol. 14,
no. 3, pp. 299–311, 2015.

[18] J. Vesterstrom and R. Tomsen, “A comparative study of
diferential evolution, particle swarm optimization, and

Computational Intelligence and Neuroscience 15

evolutionary algorithms on numerical benchmark problems,”
in Proceedings of the 2004 congress on evolutionary compu-
tation (IEEE Cat. No. 04TH8753), Portland, OR, USA, June
2004.

[19] M. Leon, N. Xiong, D. Molina, and F. Herrera, “A novel
memetic framework for enhancing diferential evolution al-
gorithms via combination with alopex local search,” Inter-
national Journal of Computational Intelligence Systems,
vol. 12, no. 2, pp. 795–808, 2019.

[20] J. Zhang and A. C. Sanderson, “JADE: adaptive diferential
evolution with optional external archive,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 945–958,
2009.

[21] X. Gou, T. Huang, S. Yang, M. Su, and F. Zeng, “Optimized
diferential evolution algorithm for software testing,” Inter-
national Journal of Computational Intelligence Systems,
vol. 12, no. 1, pp. 215–226, 2018.

[22] M. Pant, M. Pant, H. Zaheer, L. Garcia-Hernandez, and
A. Abraham, “Diferential evolution: a review of more than
two decades of research,” Engineering Applications of Artifcial
Intelligence, vol. 90, Article ID 103479, 2020.

[23] J. Liu and J. Lampinen, “A fuzzy adaptive diferential evo-
lution algorithm,” Soft Computing, vol. 9, no. 6, pp. 448–462,
2005.

[24] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in diferential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6,
pp. 646–657, 2006.

[25] J. Brest and M. Sepesy Maučec, “Population size reduction for
the diferential evolution algorithm,” Applied Intelligence,
vol. 29, no. 3, pp. 228–247, 2008.

[26] R. Tanabe and A. Fukunaga, “Success-history based parameter
adaptation for diferential evolution,” in Proceedings of the
2013 IEEE congress on evolutionary computation, Cancun,
Mexico, June 2013.

[27] R. Tanabe and A. S. Fukunaga, “Improving the search per-
formance of SHADE using linear population size reduction,”
in Proceedings of the 2014 IEEE congress on evolutionary
computation (CEC), Beijing, China, June 2014.

[28] T. N. Huynh, D. T. Do, and J. Lee, “Q-Learning-based pa-
rameter control in diferential evolution for structural opti-
mization,” Applied Soft Computing, vol. 107, Article ID
107464, 2021.

[29] K. Price, R. Storn, and J. Lampinen, “Diferential evolution-a
practical approach to global optimization,” Natural Com-
puting, vol. 141, 2005.

[30] W. Gong, Z. Cai, C. X. Ling, and H. Li, “Enhanced diferential
evolution with adaptive strategies for numerical optimiza-
tion,” IEEE Transactions on Systems, Man, and Cyberne-
tics—Part B: Cybernetics: A Publication of the IEEE Systems,
Man, and Cybernetics Society, vol. 41, no. 2, pp. 397–413, 2011.

[31] R. Mallipeddi and P. N. Suganthan, “Diferential evolution
algorithm with ensemble of parameters and mutation and
crossover strategies,” in Proceedings of the International
conference on swarm, evolutionary, and memetic computing,
Chennai, India, December 2010.

[32] Y. Wang, Z. Cai, and Q. Zhang, “Diferential evolution with
composite trial vector generation strategies and control

parameters,” IEEE Transactions on Evolutionary Computa-
tion, vol. 15, no. 1, pp. 55–66, 2011.

[33] D. Buakum and W. Wisittipanich, “Self-learning diferential
evolution algorithm for scheduling of internal tasks in cross-
docking,” Soft Computing, vol. 26, no. 21, pp. 11809–11826,
2022.

[34] A. K. Qin and P. N. Suganthan, “Self-adaptive diferential
evolution algorithm for numerical optimization,” in Pro-
ceedings of the 2005 IEEE Congress on Evolutionary
Computation, Edinburgh, UK, September 2005.

[35] J. Brest andM. S. Maučec, “Self-adaptive diferential evolution
algorithm using population size reduction and three strate-
gies,” Soft Computing, vol. 15, no. 11, pp. 2157–2174, 2011.

[36] Q.-K. Pan, P. N. Suganthan, L. Wang, L. Gao, and
R. Mallipeddi, “A diferential evolution algorithm with self-
adapting strategy and control parameters,” Computers &
Operations Research, vol. 38, no. 1, pp. 394–408, 2011.

[37] W. Gong, A. Fialho, Z. Cai, and H. Li, “Adaptive strategy
selection in diferential evolution for numerical optimization:
an empirical study,” Information Sciences, vol. 181, no. 24,
pp. 5364–5386, 2011.

[38] Q. Fan and X. Yan, “Diferential evolution algorithmwith self-
adaptive strategy and control parameters for P-xylene oxi-
dation process optimization,” Soft Computing, vol. 19, no. 5,
pp. 1363–1391, 2015.

[39] Q. Fan and X. Yan, “Self-adaptive diferential evolution al-
gorithm with zoning evolution of control parameters and
adaptive mutation strategies,” IEEE Transactions on Cyber-
netics, vol. 46, no. 1, pp. 219–232, 2016.

[40] Z. Zhao, J. Yang, Z. Hu, and H. Che, “A diferential evolution
algorithm with self-adaptive strategy and control parameters
based on symmetric latin hypercube design for unconstrained
optimization problems,” European Journal of Operational
Research, vol. 250, no. 1, pp. 30–45, 2016.

[41] Q. Fan and Y. Zhang, “Self-adaptive diferential evolution
algorithm with crossover strategies adaptation and its ap-
plication in parameter estimation,” Chemometrics and In-
telligent Laboratory Systems, vol. 151, pp. 164–171, 2016.

[42] G. Wu, R. Mallipeddi, P. Suganthan, R. Wang, and H. Chen,
“Diferential evolution with multi-population based ensemble
of mutation strategies,” Information Sciences, vol. 329,
pp. 329–345, 2016.

[43] K. M. Sallam, S. M. Elsayed, R. A. Sarker, and D. L. Essam,
“Landscape-based adaptive operator selection mechanism for
diferential evolution,” Information Sciences, vol. 418-419,
pp. 383–404, 2017.

[44] T. M. Moussa and A. A. Awotunde, “Self-adaptive diferential
evolution with a novel adaptation technique and its appli-
cation to optimize ES-SAGD recovery process,” Computers &
Chemical Engineering, vol. 118, pp. 64–76, 2018.

[45] K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and
M. J. Ryan, “Improved multi-operator diferential evolution
algorithm for solving unconstrained problems,” in Proceed-
ings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, July 2020.

[46] D. T. T. Do, S. Lee, and J. Lee, “A modifed diferential
evolution algorithm for tensegrity structures,” Composite
Structures, vol. 158, pp. 11–19, 2016.

16 Computational Intelligence and Neuroscience

[47] H. Tang and J. Lee, “Adaptive initialization LSHADE algo-
rithm enhanced with gradient-based repair for real-world
constrained optimization,” Knowledge-Based Systems,
vol. 246, Article ID 108696, 2022.

[48] Q. Fan, X. Yan, and Y. Zhang, “Auto-selection mechanism of
diferential evolution algorithm variants and its application,”
European Journal of Operational Research, vol. 270, no. 2,
pp. 636–653, 2018.

[49] Q. Fan, Y. Jin, W. Wang, and X. Yan, “A performance-driven
multi-algorithm selection strategy for energy consumption
optimization of sea-rail intermodal transportation,” Swarm
and Evolutionary Computation, vol. 44, pp. 1–17, 2019.

[50] J. H. Holland, Adaptation in Natural and Artifcial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol, and Artifcial Intelligence, MIT press, Cambridge, MA,
USA, 1992.

[51] R. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the Sixth International
Symposium on Micro Machine and Human Science MHS’95,
Nagoya, Japan, October 1995.

[52] A. W. Mohamed, A. A. Hadi, A. K. Mohamed, P. Agrawal,
A. Kumar, and P. N. Suganthan, “Problem defnitions and
evaluation criteria for the CEC 2021 special session and
competition on single objective bound constrained numerical
optimization,” Technical Report D, Nanyang Technological
University, Singapore, 2020.

[53] S. Mirjalili, “Moth-fame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[54] S. Dhargupta, M. Ghosh, S. Mirjalili, and R. Sarkar, “Selective
opposition based grey wolf optimization,” Expert Systems with
Applications, vol. 151, Article ID 113389, 2020.

[55] H. Yapici and N. Cetinkaya, “A newmeta-heuristic optimizer:
pathfnder algorithm,” Applied Soft Computing, vol. 78,
pp. 545–568, 2019.

[56] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili,
“Equilibrium optimizer: a novel optimization algorithm,”
Knowledge-Based Systems, vol. 191, Article ID 105190, 2020.

[57] Q. Fan, H. Haisong, C. Qipeng, Y. Liguo, Y. Kai, and H. Dong,
“A modifed self-adaptive marine predators algorithm:
framework and engineering applications,” Engineering with
Computers, vol. 38, pp. 1–26, 2021.

Computational Intelligence and Neuroscience 17

