
Research Article
Task Offloading and Resource Allocation Strategy Based on Deep
Learning for Mobile Edge Computing

Zijia Yu , Xu Xu , and Wei Zhou

School of Information Engineering, Suzhou University, Suzhou, Anhui 234000, China

Correspondence should be addressed to Zijia Yu; yuzj@ahszu.edu.cn

Received 14 June 2022; Revised 2 August 2022; Accepted 13 August 2022; Published 31 August 2022

Academic Editor: Le Sun

Copyright © 2022 Zijia Yu et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the problems of unreasonable computation o�oading and uneven resource allocation inMobile Edge Computing (MEC), this
paper proposes a task o�oading and resource allocation strategy based on deep learning for MEC. Firstly, in the multiuser
multiserver MEC environment, a new objective function is designed by combining calculation model and communication model
in the system, which can shorten the completion time of all computing tasks and minimize the energy consumption of all terminal
devices under delay constraints. �en, based on the multiagent reinforcement learning system, system bene�ts and resource
consumption are designed as rewards and losses in deep reinforcement learning. Dueling-DQN algorithm is used to solve the
system problem model for obtaining resource allocation method with the highest reward. Finally, the experimental results show
that when the learning rate is 0.001 and discount factor is 0.90, the performance of proposed strategy is the best. Furthermore, the
proportions of reducing energy consumption and shortening completion time are 52.18% and 34.72%, respectively, which are
better than other comparison strategies in terms of calculation amount and energy saving.

1. Introduction

With the rise of computing-intensive applications and ex-
plosive growth of data tra�c, users’ requirements for the
computing power and service quality of mobile devices are
also increasing [1]. At present, cloud computing also faces
many problems and challenges. Due to its resource-intensive
architecture, mobile cloud computing imposes a huge addi-
tional load on the backhaul link of mobile networks [2, 3].
�us, Mobile Edge Computing (MEC) technology is pro-
posed, which physically integrates computing and storage
resources into the edge of mobile network architecture [4, 5].
�is not only e�ectively reduces the transmission delay but
also solves the problems of high load and high delay caused by
mobile cloud computing [6]. At the same time, MEC has the
characteristics of distributed architecture, being at the edge of
network, low latency, user location awareness, and network
status awareness [7, 8]. However, deploying a large number of
computing and storagedevices at the edgeofnetwork forusers

to choose and accessing neighboring service providers for
edge computing will bring a series of complexities such as
access and resource allocation strategy selection, usermobility
management, and computing task migration problems [9].

In order to achieve the goal of short completion time and
lower terminal energy consumption under delay constraint,
this paper proposes a task o�oading and resource allocation
strategy based on deep learning forMEC. In order to shorten
the completion time of computing tasks and minimize the
energy consumption of all terminal devices while satisfying
delay constraints, the proposed strategy is designed in a
multiuser multiserver MEC environment, combined with
computing model and communication model in system.
Moreover, a new objective function is designed, which uses
objective optimization to further reduce energy consump-
tion and time delay. It uses Dueling-DQN algorithm to solve
the optimization model to shorten completion time and
minimize energy consumption of all terminal devices while
meeting the delay constraints.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1427219, 11 pages
https://doi.org/10.1155/2022/1427219

mailto:yuzj@ahszu.edu.cn
https://orcid.org/0000-0002-9016-0096
https://orcid.org/0000-0002-2766-3520
https://orcid.org/0000-0001-5956-0684
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1427219


)e remaining chapters of this paper are arranged as
follows: Section 2 introduces the relevant research work on
mobile task unloading. Section 3 introduces the system
model. Section 4 introduces the new computing offload
method based on improved DQN. In Section 5, simulation
experiments are designed to verify the performance of the
proposed model. Section 6 is the conclusion.

2. Related Work

In MEC network, computation offloading may occur in
three types: full offloading, partial offloading, and local
processing [10]. An important research hotspot in the field
of computation offloading is computation offloading deci-
sions. Generally speaking, the offloading goal mainly focuses
on minimizing the overall delay or minimizing energy
consumption for user devices while meeting the minimum
delay requirements [11]. Reference [12] proposed a dis-
tributed task offloading strategy for low-load base station
groups in MEC environment. It selects the best MEC node
offloading amount by game equation on the basis of
quantifying offloading cost and delay. But it is not suitable
for high-load application environments. In reference to the
problem of unbalanced computing resources on the edge
server in vehicle edge computing network, [13] proposed a
load balancing task offloading scheme based on software-
defined network. )is solution can effectively reduce delay
and improve the efficiency of task offloading processing.
However, the processing method used has poor perfor-
mance, which affects the distribution efficiency. Reference
[14] used greedy selection to design a maximum energy-
saving priority algorithm to achieve optimal offloading of
computing tasks on mobile devices, but it does not consider
the delay constraints of task offloading. Reference [15]
combined long short-term memory (LSTM) and candidate
network set to improve the deep reinforcement learning
algorithm and used this algorithm to solve the problem of
offloading dependency of multinode and mobile tasks in
large-scale heterogeneous MEC. But they ignore the optimal
allocation problem of computing resources.

Similar to computation offloading, resource allocation is
also one of the core issues in MEC [16]. In MEC network,
technologies such as content caching and ultradense de-
ployment are introduced, and multiple resources are
deployed to mobile network edge according to the specific
needs of users. )is can further ensure the quality of service
and greatly increase system capacity [17]. However, due to
objective reasons such as physical volume and power con-
sumption, the mobile network edge has limited computing
resources, storage cache capacity, and spectrum resources.
How to allocate multiple resources and improve the system
service efficiency has a huge effect on the improvement of
MEC network system performance [18]. Reference [19]
proposed a time average computation rate maximization
(TACRM) algorithm, which allows joint allocation of radio
resources and calculation resources. However, the overall
performance and task requirements of devices were not
considered comprehensively in the allocation process, and
the allocation efficiency still needs to be improved. Reference

[20] comprehensively considered factors such as CPU, hard
disk space, and required time and distance and proposed a
comprehensive utility function for MEC resource allocation
to achieve the optimal allocation of resources in MEC and
cloud computing. However, this function considers many
factors, which will seriously affect the efficiency of allocation
in real applications. Reference [21] designed a two-layer
optimization method for MEC, which uses pruning can-
didate modes to reduce the number of unfeasible offloading
decisions. )rough ant colony algorithm to achieve the
upper-level optimization, the resource allocation effect is
better. However, the server computing resource constraints
and task delay constraints are not considered, and the overall
timeliness is not good. Reference [22] constructed a low-
complexity advanced branch model, which can be used for
resource scheduling in large-scale MEC scenarios.

Due to the lack of powerful processing algorithms, the
overall efficiency and performance are not ideal. To this end,
comprehensively considering the task offloading and re-
source allocation problem, a deep learning-based MEC task
offloading and resource allocation strategy is proposed to
coordinate and optimize the allocation and offloading be-
tween computing resources and computing tasks, which
improves the comprehensive computing efficiency of MEC.

3. System Model

)e system model is a multiuser multiserver application
scenario, in which there are N terminal devices and M MEC
servers. )e base station is used to provide communication
resources for user equipment. Each base station is connected
to an edge computing server through optical fiber, through
the wireless communication link to connect to MEC server
to calculate task data of offloading terminal devices, as
shown in Figure 1. It is assumed that each terminal device
can perform offloading computations or local calculations
for its own execution tasks. And when offloading, the task
can only be offloaded to one MEC server for calculation, and
each terminal device is within the range of wireless

MEC
server4

MEC
server5

MEC
server3

MEC
server2

MEC server1

N terminal devices

Base station

Figure 1: System model diagram.

2 Computational Intelligence and Neuroscience



connection. However, the computing power of each MEC
server is limited; it cannot accept the offloading request of
each terminal at the same time.

)e collection of terminal devices is
U � 1, 2, . . . , n, . . . , N{ }, the collection of MEC server is
H � 1, 2, . . . , m, . . . , M{ }, and the collection of all tasks is G.
Each terminal device n has a calculation-intensive task Gn to
be processed, which specifically includes the data Dn (code
and parameters) required for computing task Gn, the CPU
workload ϕn required for computing task Gn, and the
completion time of task Gn. )e extension constraint is τn,
namely, Gn � (Dn, ϕn, τn). )e set of offloading decisions for
each Gn is X � [x1, x2, . . . , xn, . . . , xN].

When xn � 0, 1, . . . , m, . . . , M{ }, and xn � 0 is local
offloading, the rest means offloading Gn to m MEC servers.

3.1. Communication Model. In the computation offloading
problem, two links are mainly studied: wireless link from
terminal devices to MEC and the wired link from MEC to
cloud in the core network. In the wireless link, Finite-State
Markov Channel (FSMC) model based on fading charac-
teristics is used. FSMC model has a wide range of appli-
cations in wireless networks [23, 24].

)e channel is divided into nonoverlapping intervals
through the division of channel-related parameter ranges,
and each interval of selected parameters represents a state in
FSMC model. )e relevant parameter used in FSMC may be
Signal-to-Noise Ratio (SNR) amplitude of received signal at
the receiving end or collected energy. SNR can be selected as
a parameter that composes SNR model [25]. )e SNR of
receiving end is divided into K levels, and each level is
associated with a state of Markov chain. )e block fading
channel is considered to be that the SNR of receiving end is a
constant within a period of time but will change according to
Markov transition probability between different periods.
Assume that random variable c is the SNR of receiving end
of terminal device n. )at is, c can be improved according to
Markov chain of finite states, and all its states can be
expressed as κ � 1, 2, . . . , K{ }. )e realization of random
variable c of terminal device n in the time period t is
represented as Γ(t), specifically expressed as

Γn(t) � k, if cn(t) ∈ h
i− 1

, h
k

 , (1)

where k ∈ κ � 1, 2, . . . , K{ } and h0 � 0< h1 < h2 < . . .. Let
ρsn
′sn
″(t) denote the probability of state Γn(t) transitioning

from state sn
′ to state sn

″ in the time period t. )e K × K

channel state transition probability matrix of terminal device
n is denoted as Φn(t) � [ρsn

′sn
″(t)]K×K, where ρsn

′sn
″(t) �

Pr (Γn(t + 1) � sn
′ | Γn(t) � sn

″), sn
′, and sn

″ ∈ κ.
In practical applications, the transfer matrix can be

observed and measured from wireless environment in the
past. In addition, it is considered that Γn(t), 1≤ t≤T  exists
independently for terminal device n. Based on FSMC
channel model, Γn,m is used here to represent SNR between
terminal device n and MEC server m. Since there is no
interference between terminal devices, its channel efficiency
can be expressed as ϑn,m � log2 (1 + Γn,m). Considering that
the bandwidth Wm of MEC server m is divided into Wm/Bm,

the bandwidth of each channel is Bm. Assuming that each
user is allocated at most one channel, the transmission rate
from terminal device n to MEC server m can be expressed as

vn,m(t) � Bmϑn,m(t). (2)

)e subchannel owned by MEC server m has certain
restrictions on receiving Wm/Bm; that is, the bandwidth
allocated by MEC server m to all connected users cannot
exceed the total bandwidth of MEC server m. Besides, MEC
server is limited by cache and computing capacity. On the
one hand, MEC server can only handle a limited number of
tasks; on the other hand, the load that MEC server can
handle is also limited (such as the number of computing
tasks). )erefore, some tasks will be further offloaded to the
core network to be processed by the core network. Use
gu(t) ∈ 0, 1{ } to represent the computation offloading de-
cision indicator, which is used to indicate the way the server
provides services. Among them, gn(t) � 0 means that the
terminal device n is processed by connected MEC server for
computing tasks. And gn(t) � 1 indicates that the task will
be further offloaded to core network for processing by
connected MEC server.

In order to further offload tasks to cloud, the wired
backhaul link from MEC server to core network is con-
sidered. Assuming that the backhaul link capacity of net-
work is Z (in bits per second), the backhaul link capacity
allocated by MEC server m is Zm. )en, the following re-
strictions must be met:



N

n�1
gn(t)θn,m(t)ϖn,m(t)≤Zm,



M

m�1


N

n�1
gn(t)θn,m(t)ϖn,m(t)≤Z,

(3)

where θn,m is the connection between terminal device n and
MEC server m and ϖn,m is the transmission rate between
terminal device n and MEC server m.

)e sum of the rates of offloading computation tasks to
the terminal device of core network byMEC server m cannot
exceed the backhaul capacity of MEC server m. And the sum
of speeds of all terminal devices processing computing tasks
in the cloud cannot exceed the total backhaul capacity of
system.

3.2. Calculation Model. If Gn is processed locally, use TL
n to

represent the time when Gn is executed locally, which is
specifically defined as

T
L
n �

ϕn

f
L
n

, (4)

where workload ϕn is the total number of CPU cycles re-
quired to complete Gn and fL

n is the local computing power
of terminal device n (i.e., the number of CPU cycles executed
per second).

Use EL
n to represent the energy consumption of devices

executed locally by Gn, which is defined as follows:

Computational Intelligence and Neuroscience 3



E
L
n � ϕn × en, (5)

where en is terminal device n to calculate the energy con-
sumption per unit of CPU cycle, en � (fL

n)2 × 10− 27.
If Gn is processed at the edge, delay TO

n and device energy
consumption EO

n under Gn edge execution should be cal-
culated from three parts: data upload, data processing, and
data return [26]. )e specific calculation is as follows.

First, terminal device n uploads data Gn to the corre-
spondingMEC server by wireless channel. Let Tn

′ be the time
when device n uploads Gn data, which is defined as

Tn
′ �

Dn

v′
, (6)

where Dn is the data size of Gn and v′ is data upload rate in
the system model (i.e., the amount of data uploaded per
second).

)en, the energy consumption En
′ of terminal device n

uploading data is

En
′ � Tn
′ × P′, (7)

where P′ is the uplink transmission power of terminal device
n.

)en, MEC allocates computing resources for calcula-
tion after receiving processed data. Use Tn

″ to represent the
time when the offloading data is calculated in MEC server,
which is defined as

Tn
″ �

ϕn

f
O
nm

, (8)

where fO
nm are the computing resources allocated by m MEC

servers for Gn offload execution (i.e., the number of CPU
cycles executed per second). When Gn is unloaded to the
local or other MEC server, fO

ij is zero and serves as a
constraint in the model, namely,

f
O
nm � 0, xn ≠m. (9)

At this time, terminal device n has no computing task
and is in a waiting state and generates idle energy con-
sumption. Suppose PI

n is the idle power of terminal device n,
then the idle energy consumption En

″ of terminal device n

under offloading computation is

En
″ � Tn
″ × P

I
n. (10)

Finally, MEC server returns the calculation result to
terminal device n. )e calculation result during backhaul is
small and downlink rate is high, so the time delay and energy
consumption when terminal device is received are ignored.
)erefore, delay TO

n under Gn edge execution is the sum of
transmission delay Tn

′ and the calculation delay Tn
″ of MEC

server, namely,

T
O
n � Tn
″ + Tn
′. (11)

)e device energy consumption EO
n under Gn edge ex-

ecution is the sum of upload energy consumption En
″ of

device n and the idle energy consumption En
″ of device n

waiting for Gn to complete calculation on MEC server,
namely,

E
O
n � En
′ + En
″. (12)

In summary, the time delay Tn and energy consumption
En of the entire calculation process of task Gn in terminal
device n are

Tn �
T

L
n, xn � 0,

T
O
n , xn ≠ 0,

⎧⎨

⎩

En �
E

L
n, xn � 0,

E
O
n , xn ≠ 0.

⎧⎨

⎩

(13)

Note that Tn and fO
nm should meet the following

restrictions:

Tn ≤ ηn,

Tn ≤ ηn.
(14)

)e time delay constraint ηn of Gn is that computing
power is twice 1.4GHz. Fm is the overall computing re-
sources of MEC server m; that is, the sum of computing
resources allocated by each Gn that is offloaded to MEC
server m should not exceed Fm.

3.3. Problem Model. )e purpose of this paper is to jointly
optimize offloading decision-making and resource allo-
cation scheme in the multiuser multi-MEC server scenario,
considering the limited computing resources and time
delay constraint of computing tasks. )is allows all com-
puting tasks to shorten the completion time and minimize
energy consumption of all terminal devices while meeting
the delay constraints and extend the use time of terminal
devices [27, 28]. )us, the system objective function Ψ is
defined as

Ψ � 
N

n�1
En + 10 × 

N

n�1

Tn

ηn

. (15)

(Tn/ηn) is the ratio of completion time Gn to the delay
constraints. According to the calculation results of simu-
lation experiment, the difference between 

N
n�1 En and


N
n�1(Tn/ηn) is a decimal order of magnitude. )erefore, to

ensure that the two are of the same order of magnitude and
optimized together, 

N
n�1(Tn/ηn) is multiplied by a factor of

10. )e objective function Ψ minimizes the ratio of overall
energy consumption of terminal devices to the task exe-
cution time and delay constraints by solving the optimal
offloading decision and resource allocation plan to achieve
research purpose. )e overall problem model is as follows:

4 Computational Intelligence and Neuroscience



minX,f(Ψ),

X � x1, x2, . . . , xn, . . . , xN ,

X � x1, x2, . . . , xn, . . . , xN ,

yn �
f

L
n, xn � 0,

f
O
nm, xn � m,

⎧⎨

⎩

s.t.

C1: xn ∈ 0, 1, . . . , m, . . . , M{ },∀n ∈ U,

C2: yn > 0,∀n ∈ U,

C3: f
O
nm � 0, xn ≠m,

C4: Tn ≤ ηn,∀n ∈ U,

C5: 
N

n�1
f

O
nm ≤Fm,∀m ∈ H,

C6:



N

n�1
gn(t)θn,m(t)ϖn,m(t)≤Zm,



M

m�1


N

n�1
gn(t)θn,m(t)ϖn,m(t)≤Z,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where X is the task offloading decision amount and Y is the
calculation resource allocation amount. Constraints C1, C2,
and C3 indicate that each task Gn can only be offloaded to the
local or one of MEC servers for calculation. C4 represents the
constraint of task completion delay, and C5 and C6 represent
the constraint that allocated computing resources should
meet.

4. New Computation Offloading Method
Based on Improved DQN

4.1. Multiagent Reinforcement Learning Algorithm. )e
multiagent reinforcement learning system is shown in
Figure 2, where multiple agents act at the same time. Under
the joint action, the entire system will be transferred, and
each agent will be rewarded immediately [29, 30].

For multiagent reinforcement learning, it is first nec-
essary to establish a Markov game model. Markov game can
be described by a multigroup (n, S, A1, . . . , An, R1, . . . , Rn).
Among them,

(1) n is the number of agents; that is, N is the number of
terminal devices. S is the system state, which gen-
erally refers to the joint state of multiple agents, that
is, the joint state of each agent. )e terminal device
shares the current load status of edge computing
servers, which can be expressed as

LD(t) � LD1(t), LD2(t), . . . , LDm(t) , (17)

where LDm is the load of MEC.
(2) Ri is the instant reward function of each agent. )at

is, in current state s, after joint action (A1, . . . , An)

taken by multiple agents, the reward is obtained in
the next system state s.

)e reward function completely describes the relationship
between multiple agents. When the reward function of each
agent is the same, that is,R1 � R2 � · · · � Rn, it means that the
agent is a complete cooperative relationship. When there are
only two agents and reward function is opposite, that is,
R1 � −R2, it means that the agents are in perfect competition.
When the return function is between the two, it is a mixed
relationship between competition and cooperation.

4.2. Problem Description and Modeling

4.2.1. Network Status. S � s(t){ } represents the network
state space, where s(t) represents the network state at time
period t, and improvements are made in the entire time
period T. )e network status consists of SNR of each ter-
minal device and cache status of each MEC server. s(t) can
be defined as

s(t) � Γ1(t), . . . , Γn(t), . . . , ΓN(t)( ,

ψ1(t), . . . ,ψm(t), . . . ,ψM(t),
(18)

where Γn � Γn,m, m ∈M  represents SNR between user
terminal device n and all MECs. ψm(t) � φk,m, k ∈ K 

represents the cache status of MEC servers.

4.2.2. Network Behavior. )e intelligent agent needs to
determine the attachment relationship between the terminal
device and MEC server in each time period. )at is the
determination of the terminal device's computing offload,
the allocation of computing resources, and the service cache
policy of each MEC server. )us, each executable action of
terminal devices in the time period t can be defined as
follows:

a(t) � A1(t), . . . , An(t), . . . , AN(t)( ,

G1(t), . . . , Gn(t), . . . , GN(t),

ψ1(t), . . . ,ψm(t), . . . ,ψM(t),

(19)

where An(t) � an,m(t), m ∈M  represents the attachment
indicator of terminal device n and Gn(t) represents the
calculation and offloading decision of terminal device n.

Agent 1

Agent 2

Agent n

st

r1

st

r2

st

rn

a1

a2

an

a

Joint action

→

…En
vi

ro
nm

en
t

Figure 2: Multiagent reinforcement learning system.

Computational Intelligence and Neuroscience 5



4.2.3. Reward Function. )e goal is to maximize total benefit
of system, but the reward function should be set to current
benefit of system. First calculate the system leased spectrum
and backhaul resources and allocate them to terminal de-
vices part of the revenue. )e unit price of spectrum leased
fromMEC server m is set to δm per Hz, and the unit price of
backhaul link from MEC server m to core network is set to
σm per bps. Corresponding to this, the calculation data is
transmitted to MEC server corresponding to terminal device
n and backhaul link from MEC server to the core network is
used for charging. )e unit price is defined as αn per Hz and
βn per bps. )erefore, by summarizing this part of the in-
come and expenditure, part of income for leased spectrum
and backhaul resources obtained by terminal device n can be
obtained:

Rn
′(t) � αn 

M

m�1
an,m(t)Bm + βngn(t) 

M

m�1
an,m(t)Rn,m(t)

− 
M

m�1
δman,m(t)Bm − gn(t) 

M

m�1
σman,m(t)Rn,m(t).

(20)

)en, calculate the profit obtained by terminal devices
from allocating computing resources. On the one hand,
when MEC side performs computing tasks, it needs to pay
communication company for the loss of processing com-
puting tasks and define the unit price of MEC server m

energy consumption as χm. On the other hand, the terminal
device needs to pay a certain price for the server on MEC
side, and computing resource allocated for each unit
computing task is set to ζn.)erefore, the benefit obtained by
allocating computing resources to terminal device n can be
calculated as

Rn
″(t) � 1 − dn(t)(  

M

m�1
αn,m

ζnFn,m(t)

Lun
− χmE

MEC,e
n,m (t)

. (21)

)e amount of computing resources allocated to each
unit computing task by the above formula has a very im-
portant impact on the completion time of computing task.
)us, the service cache cost mainly includes two parts: the
cost of replacing type of cache supported on MEC side, and
the cost of caching specific services on MEC server. Define
the unit price of replacing cache type onMEC server m as ξm

for each service type, and the unit price for caching services
on MEC server is ξm per storage space. In order to increase
the benefits of cache, the business type is quantified by weak
backhaul from MEC server to the core network, which will
be used tomeasure the cost of users.)e benefits obtained by
executing the cache service on MEC server m can be
expressed as

Rm
″(t) � 

N

n�1
βn 1 − gn(t)( Rn,m(t) − ξm I ψm(t)



−ψm(t − 1)
 − ςmκ ψm(t)


,

(22)

where |ψm(t)| represents the number of nonzero elements,
I[·] is an auxiliary function, and when x> 0, I(x) � 1;

otherwise, I(x) � 0. )e instant reward is designed as the
total income of MVNO of all current users of system during
the time period t, namely,

r(t) � 
N

n�1
Rn(t) + Rn

″(t)(  + 
M

m�1
Rm
″(t). (23)

Here the long-term return R(t) is expressed as

R(t) � 
T

t�1
ϵr(t), (24)

where ϵ ∈ [0, 1) is the discount rate of future earnings
weights. When ϵ approaches 1, the system will pay more
attention to long-term benefits, and when ϵ approaches 0,
the system will pay more attention to short-term benefits.

4.3. Dueling-DQN. DQN is an effective reinforcement
learning algorithm, which can make the agent learn good
experience from the interaction with environments [31–33].
At the same time, according to DQN learning mechanism,
there are improvements to DQN algorithm in different as-
pects. In DQN, due to the error in theQ estimated value itself,
maxa Q process can be seen according to the expression. It is
equivalent to putting forward the largest error, which also
leads to the problem of overestimation. Double-DQN is an
effective improved algorithm for this problem. In Double-
DQN algorithm, the update form of Q(S) is changed to

Q(s) � R(s) + λ · Q s,max
a

Qeval(s, a; α); α−
 , (25)

where λ is the discount factor.
)e Double-DQN algorithm takes advantage of double

neural network and uses two neural networks to learn at the
same time, effectively avoiding the overestimation problem
caused by error amplification.

Dueling-DQN is also an improvement to DQN algo-
rithm. Compared with previous algorithms, Dueling-DQN
algorithm learns faster and has better results. Compared
with DQN algorithm, Dueling-DQN retains most of the
learning mechanism, and the only difference is the im-
provement of neural network, as shown in Figure 3.

In the traditional DQN algorithm, the output result is Q
value corresponding to each action. In Dueling-DQN al-
gorithm, the output is expressed as a combination of two
parts: the value function and advantage function [34].
Among them, value function refers to the value of a certain
state, and advantage function refers to the advantage ob-
tained by each action on the state. )erefore, in Dueling-
DQN algorithm, Q value problem in DQN can be reex-
pressed as the following form:

Q s, a; α,ω1,ω2(  � V s;ω,ω2(  + l s, a;ω,ω1( 

−
1

|l|


a′

l s, a′;ω,ω1( ,
(26)

where V(·) and l(·) are the value function and advantage
function, respectively, and ω is the parameter of neural

6 Computational Intelligence and Neuroscience



network convolutional layer. ω1,ω2 are the parameters of
two control flow layers, respectively. )e latter item of the
plus sign centralizes the advantage function in order to solve
the uniqueness problem of Q value.

5. Experimental Results and Analysis

)e specific simulation parameters are as follows.
Assume that the computing power of each device n is

1.5GHz, the uplink transmission power is 800mW, the idle
power is 100mW, and the upload rate is 2.5Mb/s.M� 4 and
overall computing capacity of each MEC server is 6GHz,
5GHz, 3GHz, and 1GHz, respectively. )e data Dn in task
Gn obeys uniform distribution of (600, 1200), and the unit is
k bits. )e workload ϕn obeys uniform distribution of (1000,
1500), and the unit is Megacycles.

For the parameters of Dueling-DQN algorithm, set the
learning rate ϵ to 0.001 and discount coefficient λ to 0.90.)e

size of experience replay set is 3000, and the number of
randomly sampled samples is 40.

5.1. Parameter Analysis

5.1.1. Learning Rate Analysis. )e learning rate of the al-
gorithm will have a great impact on the performance of the
proposed strategy. )erefore, three different learning rates ϵ
of 0.01, 0.001, and 0.0001 are selected to compare the
convergence of improved DQN algorithm, as shown in
Figure 4.

5.1.2. Discount Factors Analysis. Similarly, the influence of
discount factor on improved DQN algorithm is shown in
Figure 5, where the discount factor takes values 0.8, 0.9, and
0.95.

It can be seen from Figure 5 that as the discount factor
increases, the long-term reward is continuously increasing.
When λ is 0.95, the long-term reward is 3700 when it is

Input layer

Hidden layer

Output layer

(a)

Input layer

Hidden layer

Output layer

Value
function

Dominance
function

(b)

Figure 3: Comparison between DQN algorithm and Dueling-DQN algorithm. (a) DQN. (b) Dueling-DQN.

50

52

54

56

58

60

62

64

66

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

200 500 700400100 6003000
Iterations

ε = 0.01
ε = 0.001
ε = 0.0001

Figure 4: Convergence of the proposed algorithm under different
learning rates.

500

1000

1500

2000

2500

3000

3500

4000

Lo
ng

 te
rm

 re
w

ar
d

1000500 7502500
Iterations

λ = 0.8
λ = 0.9
λ = 0.95

Figure 5: System long-term rewards with different discount rates.

Computational Intelligence and Neuroscience 7



stable. Because the discount factor will affect behavior se-
lection strategy, that is to say, a larger discount factor will
cause system to pay more attention to long-term benefits,
and a lower discount factor will cause system to pay more
attention to current benefits, a higher discount factor will
often lead to greater long-term benefits. However, in actual
use, using an overly high discount factor does not have
corresponding benefits. )is is because the system in reality
is more changeable, and too much emphasis on future
benefits will lead to excessive calculations and excessive
losses in the system, which often requires a trade-off.

5.2. Optimization Comparison under Different Objective
Functions. For multiobjective optimization problems that
reduce time delay and energy consumption, the weighted
sum of task execution time delay and terminal execution
energy consumption is usually used as the objective function
to solve problem, and the calculation is as follows:

Ψ′ �


N
n�1 ωt × Tn + 1 − ωt(  × En( 

N
, (27)

where ωt is the weight coefficient of execution delay and 1 −

ωt is the weight coefficient of execution energy.
Comparing (22) with the proposed objective function

(13) to optimize the delay and energy consumption, the
number of terminal devices is 12. Considering that the goal
of the proposed strategy is to shorten time delay and reduce
energy consumption while satisfying the time delay con-
straints, therefore, the values of ωt are, respectively, 0.8, 0.6,
and 0.4, and the joint experiments of Energy Reduced Scale
(ERS) and Time Reduced Scale (TRS) are carried out, as
shown in Table 1.

It can be seen from Table 1 that when ωt is 0.8 and 0.6,
the control strategy pays more attention to the optimization
of time delay, and when ωt is 0.4, optimization results pay
more attention to the optimization of energy consumption.
However, the optimization result of the proposed objective
function is the best, and ERS and TRS are 52.18% and
34.72%, respectively, which can shorten time delay and
reduce energy consumption under the time delay
constraints.

When computing task is 150, comparing control strat-
egies under the four objective functions with the random
offloading strategy, the results of ratio of the time delay and
energy consumption reduction are shown in Table 2.

It can be seen from Table 2 that delay and energy con-
sumption optimization effect of the proposed optimization
target is better, and the reduction ratio of delay and energy
consumption is 2.58% and 30.67%, respectively, because the
optimization objective of the proposed strategy compre-
hensively considers the offloading decision and resource
allocation plan of joint optimization system when the
computing resources are limited and computing tasks have
time delay constraints. )is allows all computing tasks to
shorten completion time and minimize the energy con-
sumption of all terminal devices while meeting the delay
constraints. )is demonstrates the effectiveness of the pro-
posed objective function.

5.3. Performance Comparison with Other Algorithms. In
order to demonstrate the performance of the proposed
strategy, compare it with [12], [19], and [14] in terms of
objective function value, calculation amount, and time
saving. Li and Jiang [12] proposed a distributed task off-
loading strategy, which selects the best MEC node offloading
amount by game equation on the basis of quantifying off-
loading cost and delay. Reference [14] used the greedy se-
lection algorithm to design the maximum energy-saving
priority algorithm and energy priority strategy to achieve
optimal offloading of computing tasks on mobile devices.
Reference [19] used the time average calculation rate
maximization algorithm to jointly and efficiently allocate
radio resources and computing resources.

5.3.1. Algorithm Comparison under Different Cumulative
Tasks. In the experiment, objective function value results of
the four strategies are shown in Figure 6 for different ac-
cumulations of computing tasks.

It can be seen from Figure 6 that the value of objective
function is gradually increasing with the increase of cu-
mulative number of tasks for the four offloading strategies.
However, the proposed strategy has a relatively lower ob-
jective function value than other strategies. )at is, the
energy consumption and delay are relatively small. For
example, when the number of tasks is 180, the objective
function value is only 298. Since the proposed strategy
considers computation offloading and resource allocation
comprehensively, improved deep learning algorithm is used
for optimization, and delay and energy consumption are
minimized. Reference [19] only matched computing re-
sources but did not rationally optimize the task offloading
scheme and computing resource allocation scheme,
resulting in high task execution time delay and energy
consumption. References [12] and [14] both used corre-
sponding algorithms for optimization to achieve better re-
source allocation and task offloading. But their analysis of
time delay is less, so the performance needs to be
strengthened.

Table 1: Comparison results of optimization for different objective
functions.

Objective function ERS (%) TRS (%)
ωt � 0.4 48.71 27.96
ωt � 0.6 41.85 31.38
ωt � 0.8 31.03 32.56
Formula (13) 52.18 34.72

Table 2: Comparison results of optimization for four objective
functions.

Objective
function

Delay reduction
ratio (%)

Energy consumption reduction
ratio (%)

ωt � 0.4 1.25 23.29
ωt � 0.6 1.97 21.16
ωt � 0.8 2.03 19.98
Formula (13) 2.58 30.67

8 Computational Intelligence and Neuroscience



5.3.2. Computation Number Comparison of Offloading Tasks
under Different Offloading Strategies. Under four different
computation offloading strategies, the comparison results
of the computing number of offloading tasks on terminal
device side are shown in Figure 7. Vertical axis represents
the total calculation number of tasks performed by all
terminal devices to perform calculation and offloading. )e
calculation number of tasks is used to represent the amount
of calculation services provided by MEC server. )erefore,

the evaluation indicators in the figure also represent the
benefits of computing terminal devices in the offloading
mode.

It can be seen from Figure 7 that as time increases,
computing tasks continue to increase, and the amount of
task calculations also increases. However, the calculation
amount of the proposed strategy is significantly better than
other comparison strategies. Taking the simulation time of
140 s as an example, compared with [12], [19], and [14], the
proposed strategy has increased by 11.54%, 20.83%, and
152.72%, respectively. It can be argued that the proposed
strategy is the best compared to task offloading. It uses
Dueling-DQN algorithm to process task offloading and
resource allocation models, and its optimization perfor-
mance is better than the greedy selection algorithm in [14]
and the game equation model in [12].

5.3.3. Energy-Saving Comparison of per Unit Terminal
Devices. Under four different computation offloading
strategies, the comparison of energy consumption saved by
each terminal device by computation offloading on average
is shown in Figure 8. In the local calculation model, all
energy consumption is generated by local calculations. In the
computation offloading mode, the energy consumption is
communication energy consumption caused by upload
tasks. For the task of performing computation offloading, the
difference between the two is energy saving.

It can be seen from Figure 8 that, compared with other
comparison strategies, the proposed strategy has the largest
energy-saving rate, which is close to 10×104 J; this also
means the least energy consumption. Aiming at the over-
estimation problem in DQN, the proposed strategy uses
Dueling-DQN algorithm for optimization. And it designs the
system benefits and resource consumption as rewards and

×104

0

5

10

15

20

25

30

Ca
lc

ul
at

io
n 

am
ou

nt

20 40 60 80 100 120 1400
Time (s)

Proposed strategy
Ref.[12]

Ref.[19]
Ref.[14]

Figure 7: Comparison results of the computation number of
offloading tasks under different offloading strategies.

×104

0

2

4

6

8

10

12

En
er

gy
 sa

vi
ng

 p
er

 u
se

r (
J)

20 40 60 80 100 120 1400
Time (s)

Proposed strategy
Ref.[12]

Ref.[19]
Ref.[14]

Figure 8: Comparison results of energy saving per unit terminal
device under different offloading strategies.

60 100 140 18020
Cumulative tasks

0

50

100

150

200

250

300

350

400

450

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

Ref.[12]

Ref.[19]

Ref.[14]

Proposed strategy

Figure 6: Comparison results of offloading strategies under dif-
ferent cumulative number of tasks.

Computational Intelligence and Neuroscience 9



losses, which improves the efficiency and rationality of task
offloading and resource allocation by optimizing problem
solution.Reference [19] onlyused the timeaverage calculation
ratemaximization algorithm to efficiently allocate computing
resources.)e optimization algorithm ismore traditional and
has poor performance. )us, the overall energy saving is not
high. Reference [12] used the game equation model to opti-
mize task offloading strategy but does not realize the
rationalization of resource allocation. )erefore, the maxi-
mum energy saving is 710×104 J. Reference [14] used greedy
selection algorithm to design an optimal energy-saving
strategy but did not consider server computing resource
constraints and task delay constraints. )erefore, the overall
performance is not as good as the proposed strategy.

6. Conclusion

MEC server has limited computing resources and computing
task has delay constraint. How to shorten completion time
and reduce terminal energy consumption under the delay
constraints becomes an important research issue. To solve
this problem, this paper proposes a task offloading and re-
source allocation strategy based on deep learning forMEC. In
themultiuser multiserverMEC environment, a new objective
function is designed to construct mathematical model. In
combination with deep reinforcement learning, the partially
improved Dueling-DQN algorithm is used to solve the op-
timization problem model, which can reduce the completion
time of computing tasks and minimize energy consumption
of all terminal devices under the delay constraints. )e
proposed strategy is demonstrated by experiments based on
Python platform. )e experimental results show that when
learning rate is 0.001 and discount factor is 0.90, the energy
saving is close to 10×104 J, which is better than other
comparison strategies. In terms of calculation amount, it
increased by 11.54%, 20.83%, and 152.72%, respectively.

In practice, different users have different concerns about
service quality. )erefore, we can refer to the different needs
of users when making computation and offloading decisions
in the following research. It can assign a certain weight to the
factors affecting the quality of service and combine the task
priority for scheduling.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by Key Disciplines of Computer
Science and Technology (2019xjzdxk1) and New Engi-
neering Pilot Project (szxy2018xgk05).

References

[1] W. P. Peng, Z. Su, C. Song, and J. Zongpu, “Research on
adaptive dual task offloading decision algorithm for parking
space recommendation service,” He Journal of China Uni-
versities of Posts and Telecommunications, vol. 26, no. 06,
pp. 33–45, 2019.

[2] K. Wang, X. F. Wang, X. Liu, and A. Jolfaei, “Task offloading
strategy based on reinforcement learning computing in edge
computing architecture of internet of vehicles,” IEEE Access,
vol. 8, no. 6, pp. 173779–173789, 2020.

[3] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta
reinforcement learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 1, pp. 242–253, 2021.

[4] Y. Sun, X. Guo, J. Song et al., “Adaptive learning-based task
offloading for vehicular edge computing systems,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 3061–3074, 2019.

[5] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with
edge computing in IoTnetworks via machine learning,” IEEE
Internet of Hings Journal, vol. 7, no. 4, pp. 3415–3426, 2020.

[6] R. Wang, Y. Cao, A. Noor, T. A. Alamoudi, and R. Nour,
“Agent-enabled task offloading in UAV-aided mobile edge
computing,” Computer Communications, vol. 149, no. 5,
pp. 324–331, 2020.

[7] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan,
“Mobility-aware multi-user offloading optimization for mo-
bile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 3, pp. 3341–3356, 2020.

[8] Z. Wei, J. Pan, Z. Lyu, J. Xu, L. Shi, and J. Xu, “An offloading
strategy with soft time windows in mobile edge computing,”
Computer Communications, vol. 164, no. 8, pp. 42–49, 2020.

[9] R. Zhang, P. Cheng, Z. Chen, S. Liu, Y. Li, and B. Vucetic,
“Online learning enabled task offloading for vehicular edge
computing,” IEEE Wireless Communications Letters, vol. 9,
no. 7, pp. 1–932, 2020.

[10] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian,
“Dynamic task offloading and resource allocation for mobile
edge computing in dense cloud RAN,” IEEE Internet of Hings
Journal, vol. 7, no. 4, pp. 3282–3299, 2020.

[11] J. Zhang, H. Guo, and J. Liu, “Adaptive task offloading in
vehicular edge computing networks: a reinforcement learning
based scheme,” Mobile Networks and Applications, vol. 25,
no. 5, pp. 1736–1745, 2020.

[12] Y. Li and C. Jiang, “Distributed task offloading strategy to low
load base stations in mobile edge computing environment,”
Computer Communications, vol. 164, no. 2, pp. 240–248, 2020.

[13] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in
vehicular edge computing networks: a load-balancing solu-
tion,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 2, pp. 2092–2104, 2020.

[14] F. Wei, S. Chen, and W. Zou, “A greedy algorithm for task
offloading in mobile edge computing system,” China Com-
munications, vol. 15, no. 11, pp. 149–157, 2018.

[15] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of
lightweight task offloading strategy for mobile edge com-
puting based on deep reinforcement learning,” Future Gen-
eration Computer Systems, vol. 102, no. 3, pp. 847–861, 2020.

[16] L. Li and H. Zhang, “Delay optimization strategy for service
cache and task offloading in three-tier architecture mobile
edge computing system,” IEEE Access, vol. 8, no. 9,
pp. 170211–170224, 2020.

10 Computational Intelligence and Neuroscience



[17] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang,
“MDP-based task offloading for vehicular edge computing
under certain and uncertain transition probabilities,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 3,
pp. 3296–3309, 2020.

[18] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and
task offloading policy for wireless powered mobile edge
computing systems,” IEEE Transactions on Wireless Com-
munications, vol. 19, no. 4, pp. 2443–2459, 2020.

[19] C. Li, W. Chen, J. Tang, and Y. Luo, “Radio and computing
resource allocation with energy harvesting devices in mobile
edge computing environment,” Computer Communications,
vol. 145, no. 09, pp. 193–202, 2019.

[20] Z. Ali, S. Khaf, Z. H. Abba, G Abbas, and L Jiao, “A Com-
prehensive Utility Function for Resource Allocation inMobile
Edge Computing,” arXiv preprint arXiv:2012.10468, vol. 66,
no. 2, pp. 1461–1477, 2020.

[21] P. Q. Huang, Y. Wang, K. Wang, and L. Zhi-Zhong, “A bilevel
optimization approach for joint offloading decision and re-
source allocation in cooperative mobile edge computing,”
IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 1–14,
2019.

[22] Y. Liu, Y. Li, Y. Niu, and D. Jin, “Joint optimization of path
planning and resource allocation in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 19, no. 9,
pp. 2129–2144, 2020.

[23] Y. A. Lei, A. Cz, B. Qy, W. Zou, and A. Fathalla, “Task off-
loading for directed acyclic graph applications based on edge
computing in Industrial Internet-ScienceDirect,” Information
Sciences, vol. 540, no. 7, pp. 51–68, 2020.

[24] X. F. He, R. C. Jin, and H. Y. Dai, “Peace: privacy-preserving
and cost-efficient task offloading for mobile-edge computing,”
IEEE Transactions onWireless Communications, vol. 19, no. 3,
pp. 1814–1824, 2020.

[25] B. Gu and Z. Zhou, “Task offloading in vehicular mobile edge
computing: a matching-theoretic framework,” IEEE Vehicular
Technology Magazine, vol. 14, no. 3, pp. 100–106, 2019.

[26] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and
G. Fortino, “Task offloading and resource allocation for
mobile edge computing by deep reinforcement learning based
on SARSA,” IEEE Access, vol. 8, no. 5, pp. 54074–54084, 2020.

[27] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei,
“Energy-efficient NOMA-based mobile edge computing off-
loading,” IEEE Communications Letters, vol. 23, no. 2,
pp. 310–313, 2019.

[28] Y. L. Jiang, Y. S. Chen, S. W. Yang, and C. H. Wu, “Energy-
efficient task offloading for time-sensitive applications in fog
computing,” IEEE Systems Journal, vol. 13, no. 3,
pp. 2930–2941, 2019.

[29] X. Xu, Q. Liu, Y. Luo et al., “A computation offloadingmethod
over big data for IoT-enabled cloud-edge computing,” Future
Generation Computer Systems, vol. 95, no. 06, pp. 522–533,
2019.

[30] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user
offloading for edge computing networks: a dependency-aware
and latency-optimal approach,” IEEE Internet of Hings
Journal, vol. 7, no. 3, pp. 1678–1689, 2020.

[31] S. Hu and G. Li, “Dynamic request scheduling optimization in
mobile edge computing for IoTapplications,” IEEE Internet of
Hings Journal, vol. 7, no. 2, pp. 1426–1437, 2020.

[32] J. Zeng, J. Sun, B. Wu, and X. Su, “Mobile edge communi-
cations, computing, and caching (MEC3) technology in the
maritime communication network,” China Communications,
vol. 17, no. 5, pp. 223–234, 2020.

[33] Q. Lin, F. Wang, and J. Xu, “Optimal task offloading
scheduling for energy efficient D2D cooperative computing,”
IEEE Communications Letters, vol. 23, no. 10, pp. 1816–1820,
2019.

[34] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan,
“Joint optimization of offloading utility and privacy for edge
computing enabled IoT,” IEEE Internet of Hings Journal,
vol. 7, no. 4, pp. 2622–2629, 2020.

Computational Intelligence and Neuroscience 11


