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With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly
important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs
complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous
action space is studied based on the deep reinforcement learning strategy optimizationmethod..eUCAV platformmodel of continuous
action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy
in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic ex-
ploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. .e
superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of
the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.

1. Introduction

From a macro point of view, air combat decision making
refers to one party in air combat providing corresponding
control instructions to fighter jets after analyzing and
judging battlefield information so that it can complete the
dominant attack position occupying the enemy. Decision
making is the core of air combat, and its rationality will
determine the final outcome of air combat [1].

In recent years, with the continuous improvement and
development of deep learning (DL) theory, the deep rein-
forcement learning (DRL) algorithm combined with deep
learning and reinforcement learning has become a research
hotspot in artificial intelligence. With no training samples,
not limited by specific models, and able to take into account
the long-term impact of actions and other advantages, deep
reinforcement learning methods have gradually received
attention in the research of air combat maneuver decision
making. Deep reinforcement learning can be divided into
two types: value-based reinforcement learning algorithms
and policy-based reinforcement learning algorithm. [2–4].

Watkins proposed Q learning on the basis of dynamic
programming, which forms the evaluation value of each
state action through repeated experiments and iterations.
However, due to the limitation of the look-up table method,
its algorithm is only applicable to the applications of finite
state space and action space. Subsequently, with the in-
creasing dimension of the state space of the research object,
DNNs, CNNs, or RNNs were used to replace the action value
function Q, forming the deep Q network algorithm (DQN)
[5, 6] and introducing the experience replay target q-value
network. In reference [7], the DQN algorithm is used to
construct autonomous obstacle avoidance decisions for
UAVs. By transforming the obstacle avoidance process of
UAVs into a Markov decision problem and introducing
neural networks for the decision model and improving the
replay process, random dynamic obstacle avoidance of
UCAVs in a 3D environment is realized, which effectively
improves the efficiency of task execution. .e DeepMind
team realized autonomous learning in the Openai Gym
simulation platform based on the DQN algorithm [8] and
won the battle with professional players with absolute
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results, which again proved that DQN has obvious advan-
tages over traditional algorithms and humans in decision-
making ability. Subsequently, the AlphaGO System and the
AlphaGO Master were developed and used to defeat all the
world champions, which caused a sensation and made
people reunderstand artificial intelligence technology. In
2017, AlphaGo Zero realized a self-game, started training
without task samples, and further improved both speed and
effect. Silver et al. [9] and Liu and Ma [10] constructed a
discrete UAV maneuvering action library and realized the
autonomous attack of a low-dynamic UAV by using a DQN.
In reference [11], the DQN algorithm is used in UAV air
combat confrontation, and themin-max algorithm is used to
solve value functions in different states. .e simulation
result verifies that this method has good effects.

Value-based reinforcement learning methods cannot
deal with the problem of continuous action space [12–15].
Lillicrap combined the deterministic policy gradient algo-
rithm [16] and actor-critic framework, and a deep deter-
ministic policy gradient (DDPG) algorithm is proposed to
address continuous state space and continuous action space
problems [17].

Wang et al. used the DDPG algorithm to study the
pursuit strategy of a car in a plane. [18] Yang used the DDPG
algorithm to construct an air combat decision system. Fo-
cusing on the problem of low data utilization due to the lack
of prior knowledge of air combat in the DDPG algorithm,
they proposed adding the sample data of the existing mature
maneuvering decision-making system into the replay buffer
in the initial training stage to prevent the DDPG algorithm
from falling into a local optimum during training. .us, the
convergence speed of the algorithm was accelerated. [19].

At present, deep reinforcement learning has been widely
applied in unmanned vehicle control, [20] robot path
planning and control, [21] pursuit and avoidance of targets,
[22] unmanned driving [23, 24], and real-time strategy
games [25, 26]. However, most of the reinforcement learning
algorithms used in air combat maneuvering decisionmaking
are discrete action space algorithms, which inevitably face
the problems of rough flight paths and limited reachable
domains. At the same time, model-free deep reinforcement
learning algorithms are widely used at present, which are
capable of self-learning effective air combat maneuver
strategies independent of human air combat expert expe-
rience and have a general learning framework. However,
model-free deep reinforcement learning algorithms need to
interact with the environment to obtain a large number of
training samples, and inefficient data utilization and learning
efficiency become important bottlenecks in the practical
application of model-free reinforcement learning methods.
[3, 27–30].

According to the above problems, in this paper, the
UCAV maneuvering decision-making problem in contin-
uous action space is studied. By introducing a heuristic
exploration strategy, the problem of insufficient exploration
strategy exploration ability and low data utilization in the
DDPG algorithm is improved, and then a UCAV air combat
maneuver decision-making method based on the heuristic
DDPG algorithm is proposed.

2. Air Combat Environment Design

2.1. Flight Motion Model. To consider the coupling rela-
tionship between the control quantities when continuous
control quantities are independently sought, the UCAV
platform model based on the angle of attack, engine thrust,
and roll angle as control quantities is adopted to fully
consider the influence of the aerodynamic characteristics of
the platform on the flight state so that the model is closer to
reality and the flight trajectory is more realistic, increasing its
engineering use value. Its three-degree-of-freedom mass
kinematic model is as follows:

_x � v cos c cosψ,

_y � v cos c sinψ,

_z � v sin c,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where _x, _y, and _z are the components of the velocity of the
UCAV in the inertial coordinate system. c represents the
flight path angle, and ψ represents the yaw angle.

.e updated equations for its velocity v, flight path angle
c, and yaw angle ψ, i.e., the particle dynamics model, are as
follows:

_v �
T cos α − D

m
− g sin c,

_c �
(L + T sin α) cos ϕ

mv
−

g

v
cos c,

_ψ �
(L + T sin α) sinϕ

mv cos c
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where m is the mass of the UCAV, g is the acceleration of
gravity,D is the drag parameter, and T, α, and ϕ are the three
control quantities of the model, that is, the angle of attack,
engine thrust, and roll angle, respectively.

As seen from the above equation, to obtain a direct
mapping relationship between the model control quantities
u � [T, α,ϕ] and the state change, the drag parameter D, the
lift parameter L, and the thrust T need to be solved;
however, as the drag, lift, and thrust are influenced by
various factors, such as altitude, atmospheric density,
aerodynamic shape, and flight speed, and are strongly
coupled and nonlinear, their parameter expressions are
difficult to derive through traditional mechanics. In this
paper, the relevant aerodynamic parameters of a publicly
available storm shadow UAV [31] are fitted by a BP neural
network [32–35] to determine the important aerodynamic
and dynamic characteristics, with the aim of establishing a
more detailed and realistic model of the UCAV platform,
which will provide the basis for subsequent maneuvering
decision making in continuous action space.

2.2. Geometry of Air Combat. When describing the geo-
metric relationship between aircraft in air combat, the
important factors usually considered are the distance be-
tween two aircraft, heading crossing angle (HCA), line of
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sight (LOS), antenna train angle (ATA), and aspect angle
(AA). .e distance between two aircraft is usually expressed
by the calculation R � norm(xe − x, ye − y, ze − z), which is
an important factor to evaluate the air combat situation and
judge the launching conditions of weapons. HCA refers to
the angle formed by two aircraft courses. LOS is the line
between the UCAV and the enemy aircraft. AA refers to the
included angle between the LOS and the direction of the
enemy aircraft, which represents the angle relation between
our aircraft and the enemy under the current attitude. When
AA� 180, it indicates that our aircraft is on the extension
line of the axis direction of the enemy aircraft’s body; that is,
the nose of the enemy aircraft is facing our aircraft. ATA
refers to the included angle between the sighting line vector
and the pointing direction of the axis of the aircraft body and
represents the angle relation between the enemy aircraft and
the current attitude of the aircraft. ATA� 0° when the enemy
aircraft is directly in front of the nose of the aircraft. .e
above geometric relationship between the enemy and us is
shown in Figure 1.

ATA and AA can be expressed as

ATA � arccos
R × Vu

‖R‖ × Vu
����

����
,ATA ∈ [0, π],

AA � π − arccos
R × Ve

‖R‖ × Ve

����
����
,AA ∈ [0, π].

(3)

2.3. Reward Shaping. .e objective of maneuver decisions in
close air combat based on reinforcement learning is to find
an optimal maneuver strategy to enable the UCAV to
complete the attack position to maximize the current cu-
mulative reward. Reward is the only quantitative index of
strategy evaluation, which determines the final learning
strategy of an agent and directly affects the convergence and
learning speed of the algorithm. When the UCAV conducts
air combat decision making through deep reinforcement
learning, except for the reward for completing the task, there
is no reward in the middle process, and there is the problem
of sparse reward..erefore, it is not only necessary to design
the reward for completing the task but also crucial to design
the guiding reward for each step in each round. In this paper,
a reward function including angle, height, distance, and
speed factors is designed.

2.3.1. Angle Factor. When the maximum firing range of the
UCAV weapon is superior to that of the enemy, the UCAV
missile firing conditions can be preferentially met in the
head-on encounter with the enemy. Due to the omnidi-
rectional attack capability of the fourth-generation short-
range air-to-air missile, there is no need to consider the
attitude of the enemy at this time. .erefore, under the
current weapon advantage, the angle factor is mainly de-
termined by the ATA of the UCAV. As long as the ATA
angle is within the range of the maximum off-axis launch
angle, the angle reward can be obtained, specifically
expressed as

if L
u
max >L

e
max:

r
t
A−FRO st( 􏼁 �

1, ATA≤ θu
max,

−1, others,
􏼨

(4)

where Lu
max is the maximum launching distance of the

UCAV airborne weapon, Le
max is the maximum launching

distance of the enemy aircraft weapon, and θu
max is the

maximum off-axis launching angle of the UCAV airborne
missile.

When the maximum firing distance of the UCAV
weapon is weaker than that of enemy aircraft, it is extremely
detrimental to UCAV security. At this time, to ensure their
own safety, UCAV should be guided to give full play to their
maneuverability and always be located beyond the maxi-
mum off-axis angle of enemy aircraft and attack enemy
aircraft as far as possible with the tactics of tail attack. In this
case, the angle factor should consider both the ATA of the
UCAV and AA of the enemy aircraft, and the angle factor
design is as follows:

if L
u
max <L

e
max: r

t
A−BAC st( 􏼁 �

1,

if ATA≤ θu
max,

π
2
≤AA,

0, if AA≤
π
2

,

−1, if others,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Lu
max is the maximum launching distance of the

UCAV airborne weapon, Le
max is the maximum launching

distance of the enemy aircraft weapon, and θu
max is the

maximum off-axis launching angle of the UCAV airborne
missile.

2.3.2. Height Factor. .e height factor not only represents
the relationship between the two in the vertical plane in the
geometry situation of air combat but also measures the
energy advantage of the UCAV. .e side that satisfies the
height advantage not only has the advantage of energy

Vu
Ve

HCA
AA

ATA

UCAV

Enemy

LOS

Figure 1: Geometric relation of air combat position.
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mobility but can also exert themissile’s larger attack range. A
high reward factor is achieved when the UCAV is in the
desired altitude range relative to the enemy aircraft:

r
t
H st( 􏼁 �

1, ΔHdown ≤ΔH≤ΔHup,

−1, others,
􏼨 (6)

where ΔH � zu − ze represents the relative height of the
UCAV and the enemy aircraft, ΔHup is the upper limit of
maintaining the altitude advantage, and ΔHdown is the lower
limit of maintaining the altitude advantage.

2.3.3. Distance Factor. Distance is an important factor for
UCAV platform situation assessment and weapon launch
conditions. When the relative distance between two aircraft
meets the maximum missile launch distance, the maximum
distance factor can be obtained, which is defined as

r
t
R st( 􏼁 �

1, L
u
min ≤RLOS ≤ L

u
max,

−1, others,
􏼨 (7)

where RLOS � norm[xe − xu, ye − yu, ze − zu] and Lu
max and

Lu
min are themaximum andminimum firing ranges of UCAV

airborne weapons, respectively.

2.3.4. Speed Factor. When the distance between the two
planes reaches the maximum launching distance of the
missile, the UCAV sees the speed of the enemy aircraft as the
best attack speed. When the distance between the two planes
is relatively far, the UCAV should maintain a large flight
speed to rapidly form a favorable situation and maintain a
kinetic energy advantage with the help of high speed and
maneuverability. .e speed factor is established as follows:

r
t
V st( 􏼁 �

1, L
u
min ≤RLOS ≤L

u
max ∩ |Δv|≤ δv,

0.5, RLOS ≤L
u
min ∩ vu > ve,

0.5, RLOS ≥L
u
max ∩ vu > ve,

−1, others,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where Δv � vu − ve represents the relative speed of the
UCAV and enemy aircraft and δv is the allowable relative
speed difference from the optimal attack speed.

2.3.5. Environmental Factor. When the UCAV air combat
strategy is learned through reinforcement learning, in ad-
dition to making the UCAV capable of attacking enemy
aircraft, the more important prerequisite is that the UCAV
has the ability to adapt to the battlefield environment and
maintain a safe flight altitude. .erefore, to train the air
combat strategy with both air combat capability and safe
flight capability, it is necessary to set negative returns in the
form of punishment for dangerous flight maneuvers, so the
environmental factor rt

ENV is constructed as follows:

r
t
ENV �

−50, xu, yu, zu, vu( 􏼁 ∉ xlimit, ylimit, zlimit, vlimit( 􏼁,

0, others,
􏼨

(9)

where xlimit � [xmin, xmax],ylimit � [ymin, ymax], and zlimit �

[hmin, hmax] represent the range of the operational airspace
on the X, Y, and Z axes of the inertial coordinate system, and
vlimit � [vmin, vmax] represents the extreme value of the safe
flight speed of the UCAV.

2.3.6. End Factor

r
t
END �

100, if End � Win,

−100, if End � Loss,

0, others,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where End is the result of outcome determination. When the
angle, height, distance, and speed reward factors of the
UCAV are 1 at the same time, the weapon launch condition
is reached, and the UCAV is judged to win, where End can
be expressed as

End(t) �
Win, if r

t
A �

r
t
A−FRO st( 􏼁, if L

u
max >L

e
max

r
t
A−BAC st( 􏼁, if L

u
max <L

e
max

⎧⎨

⎩

⎫⎬

⎭ � r
t
R � r

t
H � r

t
V � 1,

Loss, if enemywin.

⎧⎪⎪⎨

⎪⎪⎩
(11)

2.3.7. Total Reward Function. Based on the above analysis,
the total reward function is

rt st( 􏼁 �
r

t
A−FRO st( 􏼁, ifLu

max > L
e
max

r
t
A−BAC st( 􏼁, ifLu

max < L
e
max

⎧⎨

⎩

⎫⎬

⎭ + r
t
H + r

t
R + r

t
V + r

t
ENV + r

t
END. (12)
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3. Heuristic DDPG Algorithm

.is section constructs an exploration strategy that is more
effective than traditional Gaussian noise or OU noise. At
present, the traditional exploration strategy such as OU
usually acts directly on the actions of the strategy network
output and makes the actions randomly disturbed in the
form of addition to realize the exploration of unknown
space. In an air combat environment, unmanned combat
aircraft control the amount of high dimensionality and large
amplitude range; therefore, the DDPG algorithm is based on
the strategy of OU explores noise and is likely to create many
blind spots in the search. .e serious influence training
effect, at the same time, is based on the limited performance
and flight safety, UCAV variation and volume control of
each dimension has a strict limit. When the output action of
the policy network is close to the boundary of its scope, it is
blind and ineffective to implement exploration by adding
noise directly.

A large number of current research exploration methods
that potentially set the exploration strategy πe and action
generation strategy π are highly similar and can be improved
by applying various forms of random noise to the action
generation strategy. However, this setting is not conducive
to the expansion of state exploration. In contrast, the space
that has not been explored in the past will be explored only
when there is a significant difference between exploration
strategy πe and action generation strategy π. .e amplitude
of Gaussian noise is an important parameter that has been
discussed for a long time, even in the method of using
Gaussian noise as the exploration mode. .erefore, it is of
great theoretical value and engineering significance to
construct an adaptive exploration system method to replace
the traditional probabilistic method.

As the DDPG algorithm is a typical off-policy learning
method, its exploration process and learning process are
independent from each other, so the exploration strategy πe

can be decoupled from the action generation strategy π. .e
specific idea is to construct a more efficient heuristic ex-
ploration strategy acting on the experience replay space to
have a more positive role in the training of the action
generation strategy π.

3.1. Algorithm Design. .e framework proposed in this
section can be regarded as a heuristic learning framework, in
which the exploration strategy πe acts as the heurist and
generates a set of heuristic information D0 during each
iteration, and the action generation strategy π learned by the
DDPG algorithm acts as the heurist and receives the D0
heuristic strategy πe and carries out training and learning.
.erefore, the decisive factor is changed to adaptively im-
prove the exploration strategy πe to generate optimal value
heuristic information D0 according to the learning efficiency
of the DDPG algorithm so that DDPG can learn as quickly
and effectively as possible.

.e generation of heuristic information D0 can be
considered as the action ae performed by the exploration
strategy πe, and its related reward function should be defined

as the improvement of the DDPG algorithm through heu-
ristic information D0:

J πe( 􏼁 � ED0∼πe
R π, D0( 􏼁􏼂 􏼃

� ED0∼πe
Rπ′ − Rπ􏼂 􏼃,

(13)

where π′ � DDPG(π, D0) represents the new strategy ob-
tained by one or more updated steps of the DDPG algorithm
on the basis of heuristic information D0, Rπ′, and Rπ rep-
resent the cumulative rewards of the DDPG algorithm
obtained by strategy π′ and strategy π interaction with the
environment, respectively, which have no relationship with
exploration strategy πe. R(π, D0) represents the extent to
which the heurist (exploration strategy πe) helps the heurist
(DDPG algorithm) in the learning process.

Referring to the parameterized representation of the
policy network in traditional DDPG, the policy πe can be
parameterized by parameters θπe. Similar to the traditional
reinforcement learning method, the gradient J(πe) of pa-
rameters θπe can be calculated as follows:

∇θπe J πe( 􏼁 � ED0∼πe
R π, D0( 􏼁∇θπe logP D0 | πe( 􏼁􏼂 􏼃, (14)

where P(D0 | πe) represents the probability of generating
heuristic information D0 :� st, at, rt􏼈 􏼉

T

t�1 in the search
strategy πe, and its distribution can be decomposed into

P D0 | πe( 􏼁 � p s1( 􏼁 􏽙

T

t�1
πe at | st( 􏼁p st+1 | st, at( 􏼁, (15)

where p(st+1 | st, at) is the state transition probability and
p(s1) is the initial distribution. Since the probability
p(st+1 | st, at) has no relationship with the exploration
strategy parameters θπe, a gradient of approximately θπe can
be obtained as follows:

∇θπe logP D0 | πe( 􏼁 � 􏽘
T

t�1
∇θπe log πe at | st( 􏼁. (16)

.is value can be calculated from the data that the DDPG
algorithm interacts with the environment.

To estimate the difference reward valueR(π, D0), a heuristic
strategy is adopted in this paper. .e heuristic is realized by
calling theDDPG algorithmone step or n steps in advance. First,
a new action strategy is obtained by calling DDPG based on
heuristic information D0, and then heuristic information is
obtained by using the newly obtained action strategy
π′ � DDPG(π, D0). .e cumulative reward value 􏽢Rπ′ of action
strategy π′ can be estimated through heuristic information D1
so that the reward of travel value can be estimated as follows:

􏽢R π, D0( 􏼁 � 􏽢Rπ′ −
􏽢Rπ , (17)

where 􏽢Rπ is the estimation of the reward function value of
action strategy π, which is obtained by the previous iteration
of the cycle.

After the difference reward R(π, D0) is obtained, the
following parameters of the exploration strategy πe are
updated along the gradient direction of (16) by referring to
the parameter θπe updating idea of the DDPG algorithm:
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θπe⟵ θπe + η􏽢R D0( 􏼁 􏽘

T

t�1
∇θπe log πe at | st( 􏼁. (18)

After the exploration strategy πe is updated, the heuristic
information D0 and D1 are added to the experience replay
space, that is, B⟵B∪D0 ∪D1. .e action strategy π is
updated through the DDPG algorithm after sampling from
the experience replay space, that is, π⟵DDPG(π, B). .e
specific Algorithm 1 process is as follows:

Although the improvement of the DDPG algorithm in
this section increases the amount of computation in the
calculation of heuristic data D1, the high efficiency D1
brought to the overall algorithm can compensate for this
shortcoming. .e construction of DDPG can not only be
used to evaluate the improvement of learning perfor-
mance but also participate in the update of action
strategy π.

3.2. Performance Test of Algorithm. To test the performance
of the improved algorithm proposed in this paper, Half
Cheetah-v1, a Mujoco robot control environment in the
OpenAI Gym toolkit, is selected as the test environment.
Considering that the UCAV air combat in this paper is a
decision-making process with air combat status information
as input, without considering the image input, the RAM
version of the environment is chosen and the state infor-
mation is obtained directly, rather than the RGB version
with the game graphics as input. To reflect the performance
of the algorithm, 20 Monte Carlo simulations were per-
formed for each algorithm. .e Q(s0) curves of the three
algorithms are shown in Figure 2.

In Figure 2, the ordinate ‘performance’ is the cumulative
reward value of completing a task. .e areas covered by red,
dark blue, and light blue are the heuristic DDPG algorithm
proposed in this paper, the PPO algorithm and the tradi-
tional DDPG algorithm, respectively, after 20 Monte Carlo
simulations of the Q(s0) distribution. .e solid lines of the
three colors are the average values of their distribution data.
.rough comparison, it can be seen that the heuristic DDPG
algorithm has a stronger scoring ability after strengthening
the exploration performance, which reflects a stronger
ability to explore the optimal solution. Simulation

comparison tests verify the effectiveness and superiority of
the proposed algorithm.

4. Maneuver Decision Scheme Design

To increase the generalization ability of strategic networks,
this paper considers the relative relationship between the
enemy and the UCAV in the selection of state variables and
takes the three-dimensional relative position coordinates of
two aircraft, the relative flight speed, AA, and ATA as state
variables; that is, the state variables are

s � Δx,Δy,Δz, V, Ve,ΔV, c, ce,ψ,ψeAA,ATA􏼂 􏼃, (19)

where Δx,Δy,Δz and ΔV are the relative position coordi-
nates and relative flight speed of the two aircraft,
respectively.

In the selection of the action, it is designed as the var-
iation of the model control variable u � [κ, α, ϕ] of the
UCAV platform in consideration of generating the
smoothness of the maneuver trajectory.

ai � Δκi,Δαi,Δϕi􏼂 􏼃, (20)

where Δκi,Δαi,Δϕi represents the change in throttle lever,
change in the angle of attack, and change in roll angle,
respectively. .e control variable at of the strategy network
output at time t acts on the environment to produce the state
st+1 at the next step. Together with the state st at time t, the
reward rt constitutes the state transfer information
[st, at, rt, st+1].

5. Simulation and Analysis

5.1. Network and Parameter. Combined with the maneuver
decision scheme, the actor network and critic network
structures in our algorithm are designed. .e structures of
the actor network and actor target network are the same, and
the input value is the state input
s � [Δx,Δy,Δz, V, Ve,ΔV, c, ce,ψ,ψeAA,ATA], so the in-
put layer with 12 nodes is set. .e output is the maneuvering
action control variable ai � [Δκi,Δαi,Δϕi] in the current
state; therefore, the number of nodes in the output layer is 3.
.e structure of actor network is shown in Table 1.

(1) Initialize exploration strategy πe and DDPG action strategy π;
(2) Action strategy π generates D1 to estimate the reward 􏽢Rπ of the strategy π.
(3) Initialize the replay buffer. B � D1
(4) for episode � 1, M do
(i) Heuristic strategy πe generate heuristic information D0;
(6) Call DDPG: π′⟵DDPG(π, D0)

(7) Action strategies π′ generate heuristic information D1 and calculate rewards 􏽢Rπ′
(8) Calculate the reward of the exploration strategy 􏽢R(π, D0) � 􏽢Rπ′ −

􏽢Rπ
(9) Update network parameters according to the gradient of exploration strategy: θπe⟵ θπe + η∇θπe logP(D0 | πe)

􏽢R(π, D0)

(10) Add heuristic information D0 and D1 together to the replay buffer: B⟵B∪D0 ∪D1
(11) Update action strategy π based on heuristic information in replay buffer, calculate new 􏽢Rπ
(12) End for

ALGORITHM 1: Heuristic DDPG pseudocode.
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.e critic network has the same structure as the critic
target network. .e input value is the combination of the
state input s � [Δx,Δy,Δz, V, Ve,ΔV, c, ce,ψ,ψeAA,ATA]

and the change rate of the control value ai � [Δκi,Δαi,Δϕi]

generated by the current actor network. .erefore, the input
layer of 15 nodes is constructed, and the network output is
the action value function Q..e structure of critic network is
shown in Table 2.

.e neural network training platform is a TensorFlow
open-source deep learning computing platform based on an
NVIDIA GeForce GTX 1080Ti GPU in an Ubuntu 16.04
system. .e specific hyperparameter settings of the
H-DDPG algorithm are shown in Table 3.

5.2. Initial Situation Setting. To verify the effectiveness of
the algorithm, it is assumed that the enemy fighter and the
UCAV adopt the same platform model and the same
maneuverability constraints. .e decision method of
enemy adopts the rolling time-domain maneuver deci-
sion method proposed in reference [36]. In order to
reflect the antagonism of air combat, we suppose the two
sides enter the battle in a head-on encounter and set the
UCAV height slightly lower than the enemy aircraft at a
disadvantage. .e simulation initialization state is shown
in Table 4.

5.3. Enemy Making Random Maneuvers

Case 1. .e UCAV weapon is stronger in the head-on
situation, and the launching distance of the UCAV weapon
is superior. .e winning conditions of the UCAV are as
follows: ATA≤ 30° &200m≤D≤ 2500m &0m≤ hr −

hb ≤ 1000m. .e air battle trajectory is shown in Figure 3.
As shown in Figure 3, the enemy aircraft chooses to dive

downward through a random maneuver. .e UCAV ap-
proaches the enemy aircraft in flat flight and then dives
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Figure 2: Comparison of the algorithm cumulative reward curve in the half Cheetah environment. (a) Half Cheetah environment interface.
(b) Comparison of the algorithm cumulative reward curve.

Table 1: Actor/Actor target network structure.

Layer Input Activation function Output
Input layer 1 × 12 None 128
Full connection layer 1 128 tanh 128
Full connection layer 2 128 tanh 128
Output layer 128 Linear 1 × 3

Table 2: Critic/Critic target network structure.

Layer Input Activation function Output
Input layer 1 × 15 None 128
Full connection layer 1 128 tanh 128
Full connection layer 2 128 tanh 128
Output layer 128 Linear 1 × 1

Table 3: Hyperparameter setting of heuristic DDPG algorithm.

Parameter Parameter value
Size of replay buffer D 50000
Size of minibatch NT 64
Actor learning rate α 0.0001
Critic learning rate β 0.001
Discount rate c 0.99

Table 4: Initial state of UCAV and enemy.

x (m) y (m) z (m) v (m/s) c (°) ψ (°) Max step
(s)

UCAV 0 0 10000 250 0 45 200
Enemy 10000 10000 12000 200 0 −135.
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downward to gain altitude superiority. It finally gives pri-
ority to meet the weapon firing conditions and launches
missiles to win air battles. It can be seen from the changes of
reward factors in Figure 4 that at the beginning of the battle,
the UCAV had already met the maximum angle reward
factor, approached the enemy aircraft through flat flight and
dove at 21 s to obtain the height advantage, and reached the
weapon launch range at 26 s. At this time, all the reward
functions achieved 1, meeting the winning conditions in the
air battle. Figure 5 shows the curve of the average cumulative
reward function value of training for this air combat mis-
sion. Each epoch on the horizontal axis contains 200 training
missions, and the ordinate axis is the average cumulative
reward value obtained for every 200 missions.

Case 2. .e enemy weapon is stronger when the firing
distance of the enemy weapon is dominant; the UCAV

winning conditions are as follows: ATA≤ 30° &AA≥ 90°
&200m≤D≤ 2500m &0m≤ hr − hb ≤ 1000m. Air battle
trajectory is shown in Figure 6.
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Figure 3: Air combat trajectory. (a) 3D view of air combat trajectory. (b) Aerial view of the air combat trajectory. (c) Horizontal view of the
air combat trajectory.
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As seen from Figure 6, the enemy swooped down to the
left through randommaneuvers and then climbed to the left.
Due to the low altitude at the beginning, the UCAV first
shortened the distance with the enemy and improved the

height advantage by climbing. Before entering the enemy
attack range, it made a sharp right turn. .e UCAV achieves
a height advantage by successfully diving behind the enemy’s
tail and by turning to the right with a small overload. Finally,
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Figure 6: Air combat trajectory. (a) 3D view of air combat trajectory. (b) Aerial view of the air combat trajectory. (c) Horizontal view of the
air combat trajectory.
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the UCAV achieves a height advantage by continuously
following the enemy with a small overload deceleration and
pulling up to the left to meet the rear attack conditions and
win the air battle. As seen from the changes in reward factors
in Figure 7, at the early stage of air combat, due to the long
distance, low altitude, and enemy meeting the attack angle,
all reward factors are −1. With the implementation of a large
overload maneuver, the UCAV gradually obtains each sit-
uation advantage and finally meets the weapon launch
conditions at 89 s by tracking the enemy aircraft. At the
beginning of the battle, the UCAV has already met the
maximum angle reward. It approaches the enemy through
flat flight and dives at 21 s to gain an altitude advantage. At
26 s, the UCAV reaches the weapon launch range. Figure 8
shows the curve of the cumulative reward value during the
task training process in this section.

5.4. Enemy Making Intelligent Maneuvers. Under this task,
the enemy makes intelligent maneuvers using the rolling
time-domain maneuver decision method proposed in ref-
erence [36], which is adopted to traverse 216 trial maneuvers
generated by the discrete variation of control variables, and
the maneuvers corresponding to the optimal membership
function value are selected and executed through the
membership function of the air combat situation.

Mission setting: the enemy weapon is stronger. Under
this mission, the UCAV adopts the rear attack mode to
attack the enemy aircraft. .e enemy does not need to go
around the rear but adopts an omnidirectional attack
strategy. .e UCAV winning conditions are as follows:
ATA≤ 30° &AA≥ 90° &200m≤D≤ 2500m &0m≤ hr −

hb ≤ 1000m. After training, the maneuvering UCAV strategy

gradually converges. Under this strategy, the air battle
trajectory is shown in Figure 9.

As shown in Figure 9, after the two sides entered the
air combat airspace in a head-on encounter, the enemy
aircraft adopted an accelerated dive maneuver at a high
altitude to quickly approach the UCAV to meet the
priority conditions of weapon launch. .e UCAV first
adopted an accelerated flat flight to quickly shorten the
distance between the two sides and pulled off to the upper
left and right of the enemy aircraft before entering the
enemy missile attack range. .e enemy aircraft lost alti-
tude advantage due to the rapid speed of the dive and then
leveled out and pulled up to the left, regained altitude
advantage and turned, but due to the climb maneuver
reduced speed resulting in a larger turning radius. At this
point, the UCAV performs a loop to increase its speed and
power advantage and finally wins by following the enemy
aircraft to reach the weapon firing conditions.

12000

10000

8000

6000

4000

2000

0

–2000
–2000 0 60002000 4000

X (m)

80000 10000 12000

Y 
(m

)

UCAV

Enemy

(b)

13000

12000

11000

10000

8000

9000

6000

7000

5000
12000 10000 8000 6000

X (m)

4000 2000 0 –2000

Z 
(m

)
UCAV
Enemy

(c)
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Figure 10 shows the reward function curve. It can be seen
from the figure that in the 30 s–50 s range, the UCAV gained
a temporary altitude advantage through a loop and then
repositioned below the enemy aircraft until 105 s the UCAV
remained level and dived, adjusting the angle by sacrificing
its altitude advantage. After that, the UCAV succeeded in
placing itself behind the enemy aircraft at 110 s gaining
altitude and angle advantages. After that, the UCAV closed
the distance by adjusting its attitude and defeated the enemy
aircraft at 133 s. Figure 11 shows the curve of control variable
of UCAV. Figure 12 shows the curve of the average cu-
mulative reward value of training for this air combat mis-
sion. Each epoch on the horizontal axis contains 200 training
missions, and the ordinate axis is the average cumulative
reward value obtained for every 200 missions.

6. Conclusions

In this paper, a continuous action space air combat decision-
making technology for UCAVs based on reinforcement
learning is studied. Starting with the UCAV continuous
action space model, a continuous action space air combat

model is constructed based on the aerodynamic parameters
of the unmanned stealth fighter. Focusing on the problems
of weak exploration ability and low data utilization rate of
the DDPG algorithm, a heuristic exploration strategy was
introduced to propose a heuristic DDPG algorithm to im-
prove the exploration ability of the original algorithm. .e
effectiveness and superiority of the proposed algorithm are
verified by the Monte Carlo simulation in a typical con-
tinuous motion control environment (Half Cheetah). In the
simulation verification stage, two subtasks with increasing
difficulty, random maneuvers, and intelligent attack ma-
neuvers are adopted for enemy aircraft, and the results show
that the method presented in this paper can accomplish
maneuver decisions under various tasks as well.

Data Availability

All data included in this study are available from the cor-
responding author upon request.
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