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Aiming at the problems of low learning e�ciency, slow convergence speed, and low prediction accuracy of traditional data-driven
model applied to tool cutting force prediction, a prediction method of tool cutting force based on ant lion optimizer (ALO)
extreme learning machine (ELM) is proposed. ALO was used to improve the weights of input layer and hidden layer of ELM, so as
to improve its prediction accuracy. �e tool cutting force prediction models were established by using ALO-ELM, ELM, BP
(backpropagation) neural network, and support vector machine, respectively.�e experimental results show that the mean square
error, mean absolute percentage error, and mean absolute error of ALO-ELM prediction model are 0.9911%, 0.0011%, and
1.0863%, respectively, which are far lower than the other three prediction models. ALO-ELM prediction model has stronger
prediction accuracy and generalization ability, which can be e�ectively applied to the prediction of cutting force.

1. Introduction

In modern manufacturing, as an important indicator that
directly a�ects workpiece processing—cutting force, it is
closely related to product quality and production cost [1].
However, since there are many factors a�ecting the cutting
force, and there is a highly complex relationship between it
and the cutting force, it is di�cult to predict the cutting force
[2]. Scholars at home and abroad often use the empirical
formula method and the physical analysis method to model
the cutting force, but the two methods also have the fol-
lowing limitations. First, most of the parameters involved in
the model need to be determined through experiments;
second, the driving of the mathematical model must be
based on domain expert knowledge, so it takes a lot of time,
manpower, and material resources.

In this case, a data-driven model can be the solution.�e
scheme is based on the monitoring data provided by the
sensor and realizes the prediction of the cutting force of the
tool by �tting the test data, emphasizing the modeling
according to the historical data. For the problem of pre-
dicting tool cutting force, scholars have also tried to solve the
problem of tool cutting force prediction through data-driven

models. For example, Hashemitaheri et al. established
comparative models based on support vector machine and
Gaussian process regression, respectively, to predict cutting
force [3]; Wang and Chao proposed a prediction model of
cutting force based on combination algorithm [4]; Xiang and
Zhang established a prediction model of cutting force
through WOA-Kriging algorithm [5].

Although typical data-driven models (such as back-
propagation (BP) neural network and support vector ma-
chine) have good nonlinear approximation ability and
strong generalization ability, this model also has problems
such as low learning e�ciency, slow convergence speed, and
easy to fall into local optimum. Extreme learning machine
(ELM), proposed by Huang et al. [6] in 2004, is a single-
hidden-layer feedforward neural network (single-hidden-
layer feedforward neural networks) machine learning al-
gorithm. It makes up for the shortcomings of slow learning
speed and gradient descent of neural networks, has the
characteristics of fast training speed and good generalization
performance [7], and has been successfully used in classi-
�cation [8], regression prediction [9], and other �elds.
However, since the ELM randomly generates the weights of
the input layer and the hidden layer, the trained ELMmodel
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cannot achieve the optimal performance, which will affect
the generalization performance and stability of the ELM. To
ensure ELM better model, accuracy can only be achieved by
increasing the number of neurons in the hidden layer, and
increasing the number of neurons in the hidden layer will
increase the running time of the model and reduce the
efficiency. After 2015, Genetic Algorithm (GA) [10], Particle
Swarm Optimization (PSO) [11], Grey Wolf Optimizer
(GWO) [12], Simulated Annealing)e emergence of swarm
intelligence optimization algorithms (Swarm Intelligence,
SI) such as Annealing, SA) [13] has made this problem a
better solution. Because the swarm intelligence algorithm
has the characteristics of simple operation, fast convergence
speed, and good global convergence, it has become an ideal
method for scholars to optimize ELM parameters to improve
model performance. Also, ant lion optimization (ALO) is
also a swarm intelligence optimization algorithm, although
it was only proposed in 2015 [14]. However, it is widely used
in the engineering field because of its characteristics of less
parameters to be set, good convergence, and high robust-
ness. Compared the prediction performance of the PSO
algorithm and the ALO algorithm on the same problem.)e
experimental results show that ALO algorithm has better
performance in optimization accuracy, global search ability,
and parameter setting than PSO algorithm. )erefore, ALO
algorithm was used in this paper to automatically optimize
the parameters of ELM.

Based on the above content, this paper proposes a tool
cutting force prediction method based on ALO-ELM. First,
the principles and operation steps of ELM and ALO algo-
rithms are introduced, and then, ALO-ELM, ELM, BP neural
network, and SVM are used to establish a tool cutting force
prediction model. Root mean square error (RMSE), mean
absolute percentage error (MAPE), and mean absolute error
(MAE) were used to evaluate the prediction effects of the
four models. )e experimental results prove that the clas-
sification model based on ALO-ELM has higher classifica-
tion accuracy.

2. Theoretical Overview of the ALO-ELM

2.1. Extreme Learning Machine. As a relatively new data-
driven method (compared to artificial neural net-
work—ANN—and support vector machine—SVM), extreme
learning machine adopts an efficient single-hidden-layer
feedforward neural network [6]. )is is different from the
traditional backpropagation algorithm ANN, which provides
a way to solve the output weights through the least-squares
method instead of iteration. Since the input layer weights and
hidden layer thresholds are random, and the output has a
unique least-squares solution, the ELM model is able to solve
regression (or classification) problems in a short time. At the
same time, relying on the Moore-Penrose generalized inverse
[6], ELM can solve the problem that the traditional back-
propagation algorithm tends to be locally optimal.

Generally, the ELM network structure consists of an
input layer, an output layer, and a hidden layer. Input layer
weights and hidden layer thresholds are used to establish
connections between two adjacent layers. In addition, in the

ELMmodel, the weights of the input layer and the thresholds
of the hidden layer are randomly generated. )erefore, the
parameters that need to be manually set are only the acti-
vation function and the number of neurons in the hidden
layer. Suppose there are Q different training samples
(Xi, Yi) ∈ Rn × Rm, if L is the number of neurons in the
hidden layer, the standard feedforward neural network can
be described as follows:



L

i�1
βih wi · xi + bi(  � Qj, j � 1, . . . , N, (1)

where wi � [wi1, wi2, . . . , win]T is the weight connecting the
input layer node and the ith hidden layer neuron;
βi � [βi1, βi2, . . . , βin]Tis the weight connecting the ith hidden
layer neuron and the output layer node; bi is the threshold of
the ith hidden layer neuron; Qj � [Qj1, Qj2, . . . , Qjn]T is the
output of the network; h(x) represents the activation func-
tion, and the sigmoid activation function is used in this paper.
)e network structure of ELM is shown in Figure 1.

If the output matrix of ELM is set toH, the training result
of the model and the expected output result yj can be close to
zero error after a certain training time, and the expression is



L

i�1
βih wi · xi + bi(  � yj, j � 1, . . . , N. (2)

Equation (3) can also be converted into the following
matrix form:

Hβ � Y. (3)

In the formula, H represents the output matrix obtained
from the hidden layer, and its expression is

H �

h x1( 

⋮

h xN( 
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)e expression of the expected output weight matrix Y is
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y
T
1

⋮

y
T
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

)e purpose of ELM training is to calculate the mini-
mum value of the error of Hβ − Y′. When the activation
function is infinitely differentiable, the smallest β can be
determined according to the least-squares method:

min
β

Hβ − Y′
����

����. (6)

Final results are as follows:
β � H

+
Y, (7)

where H+ is generalized inverse of H, and β is the weight
matrix of the output layer.
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2.2. Antlion Algorithm. Antlion algorithm is a novel natural
heuristic algorithm proposed byMirjalili et al. in 2015 [14]. It
is based on modeling the hunting mechanism of antlions in
nature and includes �ve main steps, namely random walk of
ants, construction of traps, entrapment of ants in traps,
capture of ants, and reconstruction of traps. It has the ad-
vantages of less adjustment parameters and better optimi-
zation accuracy. �is section will introduce the
mathematical model of the antlion algorithm.

2.2.1. Ant Random Walk. Ants move through the search
space a�ected by antlion traps by random walks and change
their positions according to the following equation:

X(t) � 0, cs 2r t1( ) − 1( ), cs 2r t2( ) − 1( ), . . . , cs 2r tn( )( ) − 1[ ].

(8)

Among them, cs represents the calculation of the cu-
mulative sum, T represents the maximum number of iter-
ations, t is the current iteration number, and r(t) represents
the random function, which is de�ned as follows:

r(t) �
1 if rand> 0.5 ,

0 if rand< 0.5,
{ (9)

where rand is a uniformly distributed random number
generated in the interval [0, 1]. At the same time, in order to
ensure that the random walks of all ants fall within the
boundary of the search space, the normalization process is
carried out using the following formula:

Xt
i �

Xt
i − ai( ) × dti − c

t
i( )

bi − ai( )
+ cti , (10)

where ai and bi are the minimum and maximum values of the
randomwalk for the ith variable, and cti andd

t
i are theminimum

and maximum values for the t-th iteration of the ith variable.

2.2.2. Build a Trap. �e roulette wheel is used to simulate
the hunting ability of the antlion, and the ALO algorithm
selects the most suitable antlion through the roulette wheel
to make the probability of catching ants higher.

2.2.3. Trapped in an Antlion Trap. �e random walk of the
ants will be a�ected by the antlion trap location, which is
mathematically explained using the following formula:

cti � Antliontj + c
t

dti � Antliontj + d
t.

(11)

Among them, ct and dt are the minimum and maximum
values of all variables, and Antliontj represents the position
of the j antlion obtained in the tth iteration. �e variables c
and d together de�ne the roaming behavior of the ants
within a trap constructed by the selected antlion.

2.2.4. Ant Sliding to Antlion. When an ant walks into the
antlion’s trap, in order to slide the ant towards the antlion,
the antlion shoots sand outward until the trapped ant slips
down. �e mathematical model of the above operation can
be realized by adaptively reducing the hypersphere radius of
the ant random walk, and the formula is

ct �
ct

I

dt �
dt

I
.

(12)

In the formula, I � 10wt/T., t is the current number of
iterations, T is the maximum number of iterations, w is a
constant de�ned based on the current number of iterations,
which can adjust the accuracy of the search, expressed as

w �

2, t> 0.1T

3, t> 0.5T

4, t> 0.75T

5, t> 0.9T

6, t> 0.95T.




(13)

2.2.5. Catch the Ants and Rebuild the Trap. �e �nal stage of
antlion hunting is to capture ants that slip to the bottom of
the pit, and then, the antlion must update its position to the
latest position of the hunted ants through equation (2.14) to
increase its chances of catching other ants.

Antliontj � Antti if f Antti( )>f Antliontj( ). (14)

Among them, Antti is the position of the ith ant in the t-
th iteration, and f(·) is the �tness function.

2.2.6. Elitism. �e elite antlion is the optimal solution ob-
tained in each iteration, which a�ects the motion of all ants
during the iteration. �erefore, each ant will randomly walk
around the antlion and elite antlion chosen by the roulette
wheel, and the process can be modeled as

Antti �
RtA + R

t
E

2
, (15)
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Figure 1: ELM network structure.
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where RtAis the random walk of the antlion selected by the
roulette principle in the t-th iteration, and RtE is the random
walk of the ants around the elite antlion in the t-th
iteration.

3. Construction of Cutting Force Prediction
Model Based on ALO-ELM

Since the input layer weights and hidden layer thresholds of
the extreme learning machine are randomly generated, in
order to improve the extreme learning machine and improve
the accuracy of the model, ALO is used for the input layer
weights wi � [wi1, wi2, . . . , win]T is optimized with the
hidden layer threshold bi. In order to quantitatively analyze
the accuracy of the tool cutting force prediction model, the
statistical index mean square error (MSE) is used as the
individual �tness to evaluate the prediction results, and its
expression is as follows:

MSE �
1
n
∑
n

i�1
yi − ŷi( )2. (16)

Among them, n is the number of sample data, yi is the
actual tool cutting force, ŷi is the predicted tool cutting force,
and the prediction result with smaller MSE will be con-
sidered better.

�e relevant optimization function can be expressed as

minF(w, b)

s.t.
w ∈ (−1, 1)
b ∈ (−1, 1).

{
(17)

�e speci�c work¨ow of the extreme learning machine
tool cutting force prediction model based on ALO-ELM is as
follows (Figure 2):

(1) Data preprocessing: analyze and select the main
factors that a�ect the cutting force of the tool
according to relevant theories, determine the input
and output parameters of the model, and nor-
malize the data set to eliminate dimensional
di�erences.

(2) Prediction model establishment and data analysis:
divide the training set and test set according to the
ratio of 8 : 2, and then evaluate the �tness value of the
antlion based on the MSE value and determine the
antlion with the minimum MSE value through
multiple iterations. �e information corresponding
to the input layer weight and the hidden layer
threshold carried by the antlion is the optimal ELM
input weight parameter and the hidden layer
threshold parameter. After this, the model will be
used to predict the test data.

(3) Validation of the prediction model: input test set
data, and compare the prediction results with the
measured values to evaluate the accuracy of the
prediction model.

4. Experimental Simulation and Result Analysis

4.1. Experimental Program. Considering that the cutting
force of tooth cutting is a�ected by the workpiece speed, tool
speed, feed, and depth of cut in practice, the four cutting
parameters are selected as variables for testing.

�e machine tool used in the tooth cutting experiment is
a vertical CNC tooth cutting machine; the workpiece ma-
terial is the �nished product with 83 teeth, and thematerial is
45# steel; the tool has 40 teeth, and the material is GU20; the
measuring equipment for the cutting force is a Kistler 9171A
rotary dynamometer.

�e attribute information of the 25 groups of data
measured in this experiment is shown in Table 1.

Maximum number
of iterations

End

Result comparison

Apply the output parameters to the ELM for
prediction

Output elite optimal fitness and parameter
combination

Update the location and fitness of elite antlions

Meet the maximum number of iterations 

Random walk to update ant position

Calculate fitness and assign values to elite
antlions-Roulette picks antlion

Initialization AlO parameters and ranges of
ELM

Data set normalization and division of training
set and test set

Start

Y

N

Figure 2: Predictive model work¨ow.
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According to step 1 in the tool cutting force prediction
model, the sample data set is normalized, and �nally, 80% of
the total number of samples is selected as the training data
set by uniform random selection, and the remaining 20% is
used as the test data set.

4.2. Parameter Settings. �e ALO-ELM prediction model
mainly involves three parameters: the number of neurons in
the hidden layer, L, the population size of antlions and ants,
N, and the maximum number of iterations, T. First, in order
to determine the optimal number of hidden layer neurons,

Table 1: Experimental dataset.

Sample number Workpiece speed (r/min) Depth of cut p (mm) Axial feed (mm/r) Tool speed (r/min) Cutting force (N)
1 247.5 0.1 0.1 450 674.5369
2 275 0.1 0.12 500 698.6415
3 330 0.1 0.15 600 715.0175
4 357.5 0.1 0.18 650 680.014
5 385 0.1 0.2 700 816.1648
6 247.5 0.15 0.12 450 737.7845
7 275 0.15 0.15 500 789.5252
8 330 0.15 0.18 600 885.8945
9 330 0.15 0.2 600 1030.643
10 385 0.15 0.1 700 741.0297
11 247.5 0.2 0.15 450 876.6236
12 275 0.2 0.18 500 1118.269
13 330 0.2 0.2 600 892.9726
14 357.5 0.2 0.1 650 903.3825
15 385 0.2 0.12 700 1006.926
16 247.5 0.25 0.18 450 1416.827
17 275 0.25 0.2 500 777.2387
18 330 0.25 0.1 600 961.5092
19 330 0.25 0.12 600 1151.608
20 385 0.25 0.15 700 1061.485
21 247.5 0.3 0.2 450 863.1338
22 275 0.3 0.1 500 675.6478
23 330 0.3 0.12 600 913.7286
24 357.5 0.3 0.15 650 1037.882
25 385 0.3 0.18 700 1036.097
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Figure 3: MSE and training time of ALO-ELM under di�erent numbers of neurons in the hidden layer.
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the interval of the number of hidden layer neurons was set as
[10, 100], the population size of antlions and ants was set as
100, and the maximum iteration was set as 100. Also, the
results shown in Figure 3 are obtained by using MSE and
training time analysis. When the number of neurons in the
hidden layer is 30, its MSE is relatively small, and its training
time is the smallest among all network structures with the
same prediction accuracy, so the optimal number of neurons
in the hidden layer is determined to be 30.

Second, the population size N was set to 60, 70, 80, 90,
and 100, respectively, and the convergence of the prediction
model under 100 iterations and di�erent population sizes
was calculated. �e results are shown in Figure 4.

It can be seen from Figure 4 that under di�erent pop-
ulation sizes, the MSE values of the ALO-ELM prediction
model show a signi�cant decrease with the increase of the
number of iterations. At the same time, considering that the
training time of the model will greatly increase with the
expansion of the population size, it is necessary to com-
prehensively consider the training time and prediction ac-
curacy. It can be seen from Figure 4 that when the
population sizeN is set to 80, a good balance can be achieved
between training time and prediction accuracy. At the same
time, when the iteration reaches about 90 times, the �tness
MSE of the prediction model remains basically stable.
�erefore, in order to take into account the time factor, the
maximum number of iterations T is set to 90.

4.3. Analysis and Comparison of Experimental Results. In
order to verify the feasibility and superiority of ALO to
optimize ELM in this paper, on the basis of ALO-ELM to
predict cutting force, the prediction results of the ALO-ELM
method in this paper are compared with the traditional
ELM, BP neural network, and SVM for cutting force. And
analyze the performance of each algorithm. At the same
time, considering the randomness of the algorithm, under

the same conditions, the simulation experiments of the
above four algorithms are repeated many times, and the
average value is taken. Second, the three performance in-
dicators of mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE)
are used to comprehensively evaluate the prediction e�ects
of the three models. �e calculation formulas are as follows:

MAE � 1
n
∑
n

i�1
yi − yi
∣∣∣∣

∣∣∣∣,

MAPE �
100
n
∑
n

i�1

yi − yi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,

RMSE �

������������
1
n
∑
n

i�1
yi − yi( )2

√√

,

(18)
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where n is the total number of data samples, and yi and yi
are the actual and predicted values, respectively. �e pre-
diction results of each model are shown in Figures 4–8,
where samples 1 : 20 are training sets, and samples 21 : 25 are
test sets. �e prediction performance comparison of each
model is shown in Table 2.

As can be seen from Table 2 and Figures 4–8, compared
with BP neural network and SVM, the accuracy of ELM in
predicting cutting force has been improved to a certain
extent. Compared with the BP neural network, the mean
square error RMSE, the RMSE, MAPE, and MAE values of
ELM prediction model are numerically reduced by 84.4,
0.041, and 41.258, respectively, compared with BP neural
network, and 45.01, 0.0003, and 5.643, respectively, com-
pared with SVM. �erefore, to a certain extent, it shows the
e�ectiveness of ELM in predicting the cutting force of the
tool. At the same time, it is worth noting that the prediction
e�ect of the ALO-ELM prediction model is the best, and the

prediction results of the test set and training set have a higher
degree of �tting than the actual value. At the same time, the
mean square error RMSE, the mean absolute percentage
error MAPE, and the mean absolute error MAE all show a
signi�cant reduction compared with ELM, which is enough
to foresee the advantages of the swarm intelligence algo-
rithm. It shows that it is feasible to use the antlion opti-
mization algorithm to optimize the extreme learning
machine in the prediction of tool cutting force.

5. Conclusion

In this paper, aiming at the problems of low learning e�-
ciency, slow convergence speed, and low prediction accuracy
of traditional data-driven model applied to tool cutting force
prediction, a tool life predictionmethod based on ALO-ELM
was proposed based on ELM. At the same time, this paper
compares the model with the traditional ELM prediction
model, BP neural network prediction model, and SVM
prediction model. �e results show that the prediction e�ect
of this model is the most consistent with the actual cutting
force compared with the model without algorithm opti-
mization, and the accuracy is the highest. �erefore, it can
provide a new method for the prediction of cutting force. In
addition, the model is a black box model, so it has strong
adaptability, and the parameters can be changed according
to the actual conditions to achieve the prediction of di�erent
tools.
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