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(e spread of seeds of rare and dangerous plants affects the regeneration, pattern, genetic structure, invasion, and settlement of
plant populations. However, seed transmission is a relatively weak research link.(e spread of plant seeds is not controlled by the
communicator. Rather, this event results from the interaction between the host and the external environment determined by the
mother. (e way plants transmit and accept seeds is similar to how user nodes accept data transmission requests in social
networks. Plants select the characteristics including seed size, maturity time, and gene matching, which are consistent with the
size, delay, and keywords of the data received by the user. In this study, we selected rare and endangered Pterospermum
heterophyllum as the research object and applied them to a social network. All plants were considered nodes and all seeds as
transmitted data.(ismethod avoids the influence of errors in actual sampling and statistical laws. By using historical information
to record the reception of seeds, the Infection and Immunity Algorithm (IAIA) in opportunistic social networks was established.
(is method selects healthy plants through plant social populations and reduces the number of diseased plants. (e experimental
results show that the IAIA algorithm has a good effect in distinguishing dominant seedlings from seedlings with disease genes and
realizes the selection of dominant plants in social networks.

1. Introduction

Precious rare plants are plant species that are important in
economics, science, culture, and education. In recent years,
the number of precious plants has rapidly decreased,
resulting in their rarity, with several species becoming ex-
tinct. About 20,000–25,000 species of higher plants in the
world are on the verge of extinction, accounting for about
10% of the total number of higher plant species [1–4]. (e
2015 American Institute of Plant Research reported 761
species of endangered plants, 1,238 threatened species, and
100 extinct species, totaling 1,099 species; this number ex-
ceeds 10% of the total number of plant species in the United
States. (e total number of endangered, threatened, and
extinct species in the Hawaiian Islands of the United States
has accounted for 49.4% of the total number of plant species

in the island. (us, protecting rare plants has become a
common concern among researchers in various industries
around the world [5–9].

At present, biologists’ research on the protection of
cherished plants is mainly focused on the prevention and
control of diseases in cherished plants. (e existing work is
mainly carried out through actual sampling and a large
number of statistical laws. However, these research works
have the following problems:

(1) (e work of seedling screening was ignored. Existing
work is the study of statistics, that is, the study of
plant survival or after survival. (is results in a large
area of plants being completely random from the
seedling stage, and there is no way to screen seedlings
at this stage.
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(2) (e effective division of seedlings has not been re-
alized. (e work that biologists hope is not only to
inhibit the spread of undesirable genes but also to
effectively distinguish between dominant seedlings
and seedlings with disease genes through prediction
and judgment.

(3) Seed propagation by wind is the main way for plant
populations to reproduce. (rough long-term ob-
servation of the region, after obtaining statistical
predictive indicators such as wind force and wind
direction, the potential seedlings of the disease can be
separated to avoid the spread of inferior genes in a
large area.

(4) Plant growth is affected by both genes and the ex-
ternal environment. (e existing methods for
selecting the best plants through plant marker gene
technology are restricted by the plant growth envi-
ronment. (e resulting statistical errors are not
conducive to the statistics of dominant plants and the
elimination of diseased plants.

Although seed propagation occurs randomly, plants ex-
hibit a propensity for seed selection. (e mechanism of plant
seed transmission and receipt is similar to how user nodes
accept data transmission requests in an opportunistic social
network [10]. Plants select the characteristics of seed size,
maturity time, and gene matching, which are consistent with
the size, delay, and keywords of the data received by the user.
(us, we considered plants to be similar to users and seeds to
the data transmitted between users. We can then perform the
following comparisons. First, in an opportunistic social
network, data transmission is intermittent; the characteristics
of seed transmission include mature and intermittently
spreading batches. Second, whether the data are received by
the user is determined by the data characteristics in the social
network. (is condition is consistent with plant evolution.
(ird, in social networks, establishing a trust mechanism and
transferring data between the nodes that have cooperated in
the past is easily achieved. In plant seed transmission,
healthier seeds are more likely to be accepted by other plants,
establishing more pollination or breeding cooperation
models.(rough analysis, we can transform the plant through
the pattern of wind-borne seeds into a research method of
plant social population in the social network.

Based on the above analysis, this study selected the rare
and endangered Pterospermum heterophyllum Dutch plant
as the research object and applied it to an opportunistic social
network. Among them, all plants are regarded as nodes, and
all seeds are regarded as transmission data in the network. In
this way, the influence of errors in actual sampling and
statistical laws is avoided. (en, this paper proposes an in-
fection and immunity algorithm (IAIA) for plant health seed
selection in opportunistic social networks. (is method uses
historical information to record the receipt of seeds to identify
healthy plants. Effective screening is carried out at the plant
seed stage to avoid the spread of inferior genes in a large area.
In addition, a method for dividing plant ecosystems has been
established to effectively classify dominant plants and disease-

bearing plants. (e IAIA method proposed in this paper
effectively reduces the number of diseased plants and realizes
the selection of dominant plants in the network.

(e contributions of this paper mainly include the
following:

(1) (is study designed a plant ecosystem that describes
the social characteristics of wind-borne seeds. (e
model of wind-borne seeds is transformed into the
study of plant populations in opportunistic social
networks, and healthy plants are selected through
historical records, which realize the effective sepa-
ration of disease potential seedlings, and enable
better selection of dominant plants.

(2) (is article establishes a method for the classification
of plant ecosystems and divides plants into four
categories: diseased, susceptible, latent, and immune.
It effectively divides plant seedlings and plays an
important role in recording the social characteristics
of plants.

(3) Four groups of impact calculation models are
designed. (rough the analysis of the four types of
plants in the ecosystem, the dominant plants are
selected, which effectively improves the activity of
healthy immune groups and reduces the transmis-
sion efficiency of diseased groups.

(4) (e experimental results of comparison with classic
algorithms show that the IAIA algorithm not only
can reduce the impact of disease-borne seed trans-
mission but also improve the overall population
receiving healthy seeds. It also has better perfor-
mance in terms of delivery success rate.

2. Related Works

Plant disease detection is the basis for screening healthy
plants, and it has always been a hot topic of research bymany
scholars. Literature [7] proposed an image segmentation
algorithm for the automatic detection and classification of
plant leaf diseases. It is realized by genetic algorithm, and it
also covers the investigation of different disease classification
technologies that can be used for plant leaf disease detection.
Literature [8] established an algorithm that combines a
supervised machine learning algorithm with image pro-
cessing. (e author tested methods such as random forests
(RF), support vector machines (SVM), decision trees (DT),
and so on. After the experiments, RF had obtained the best
classification accuracy after image feature extraction in the
tomato disease dataset. Literature [9] proposed a machine
learning method combined with a deep neural network
(DNN) algorithm to classify the disease degree of tomatoes.
(e author first used the hybrid principal component
analysis (PCA)-whale optimization algorithm to extract a
small number of refined key features from the massive
features, and then input them into the DNN for classifi-
cation. (is algorithm not only significantly reduces the
computational cost of DNN through feature dimensionality
reduction but also improves the accuracy of classification.
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Literature [10] proposed a plant system. (e system
described free programmable true-color sensors for real-
time recognition and identification of individual weed and
crop plants. (e application of this type of sensor is suitable
for municipal areas and farmland with and without crops to
perform the site-specific application of herbicides. Initially,
databases with reflection properties of plants, and natural
and artificial backgrounds were created. Crop and weed
plants should be recognized by the use of mathematical
algorithms and decision models based on these data. (ey
include the characteristic color spectrum, as well as the
reflectance characteristics of unvegetated areas and areas
with organic material.

Literature [11] proposed a robust PIλDμ controller
method for interval plants. (is method is given to show
how the presented algorithm can be used to compute all the
parameters of a PIλDμ controller which stabilizes an interval
plant family. Literature [12] proposed a crow search algo-
rithm, which can select the best parameters and exclude
irrelevant parameters. (e author used it in combination
with DNN to improve the accuracy of classification.

Literature [13] presents agro bacterium tumefactions
Atu4860 into the gene regulation algorithm; a plant gene
regulation algorithm based on agro bacterium tumefactions
Atu4860 is realized. Experiments show that the proposed
algorithm can effectively improve the quality of plant
transgenic, and the implementation process is relatively
easy. Literature [14] uses the ensemble–stacking (E-S)
method to evaluate and combine versions of machine
learning algorithms based on the hyperspectral reflectance of
soybeans as a complete or selected input variable to predict
soybean yield. Soybean breeders can choose high-yielding
soybean genotypes from a large number of genotypes in the
early growth stage.

Literature [15] presents a robust plant intelligence-based
Adaptive Plant Propagation Algorithm (APPA) which is
used to solve the classical ED problem.(e application of the
proposed method to the 3-generator and 6-generator sys-
tems shows the efficiency and robustness of the proposed
algorithm. It demonstrates the quality of the solution
achieved by the proposed method along with the conver-
gence characteristics of the proposed approach.

In Table 1, we have integrated all the documents and
performed a simple comparative analysis. Based on the
above research, we integrated plant information with
computer science to establish an ecosystem research model.

3. System Model Design

In the plant ecosystem, how to guarantee the next generation
plants’ birth and growth is important, especially in rare
plants [16–19]. An illness may cause the extinction of rare
plants. (e purpose in this work is improving the survival
rate of rare plants [20]. We adopt Pterospermum hetero-
phyllum, which is a kind of rare plant in the plant ecosystem
to explain the network communication system.

Figure 1 shows a Pterospermum heterophyllum network
communication system. In this ecosystem, the production of
the plant’s second generation was released by the plant body

and cultured. In the wild ecosystem, the semi-maple seed
was spread by the wind. Half-maple will “send” seeds into
the air [21, 22]. Seeds are similar to “data packets” in the
networks and are “received” by the other half of the
“nodes.” When spreading out semi-maple seeds, they can
be used as the “source node,” and the half-maple receiving
the seeds is the “neighbor node.” During this process, the
time of seed release depends on the humidity of the at-
mosphere, temperature, and oxygen content in the air. If
the number of seeds in the air is large, the oxygen content
will decrease.(e plant will retain a part of the seed, and the
seed will be released after the oxygen content has reached
the required level. (e “carry-transmit-receive” feature of
the opportunistic social network was constructed by means
of “carrying seed-transporting seed-receiving seed”
[23–25].

However, for endangered plants, the next generation of
unhealthy seeds exhibits low survival rates. Plants that are
self-immune will not only improve their disease resistance
but also their reproductive ability. Figure 1 shows that plant
systems can be divided into susceptible, exposed, effective,
and recover classes. Detecting and filtering “unhealthy
nodes,” resisting the seeds of “sick nodes,” and finding the
“source nodes” through second-generation plants is an ef-
fective method of ensuring population reproduction.

To accomplish the research objective, we need to define
several relationships in the plant ecosystem and use them as
social network ecosystems [25].

Divide individuals in an ecosystem into four categories:

(1) Class S. Susceptible, that is, all the uninfected indi-
viduals in the ecosystem. If they have effective
contact with the virus, they are easily infected and get
sick.

(2) Class E. (e exposed class, that is, the entire pop-
ulation of individuals who have been in effective
contact with the virus in the ecosystem but have not
yet developed the disease. (is type of individual is a
potential cause.

(3) Class I. (e inefective class, that is, the whole of
individuals who have been infected with infectious
diseases in the ecosystem. If such individuals have
effective contact with individuals of susceptible in-
dividuals, it is easy to transmit the disease to the
susceptible.

(4) Class R. Recover class, that is, the entire population
of an individual who has contracted an infectious
disease and is cured and has immunity in the
ecosystem.

Table 2 shows the commonly used symbols and their
explanations in this article. To solve the optimization
problem (1) quickly, we simplify the hypothesis of the IAIA
model:

Definition 1. (e total number of individuals is N(t) �

S(t) + E(t) + I(t) + R(t), where S(t) represents the number
of susceptible individuals during period t; E(t) represents
the number of exposed individuals during period t, at
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which time the disease is contagious; I(t) indicates the
number of individuals infected within the period t, at
which time the disease is more contagious; R(t) indicates
the number of individuals who have recovered during the
period t.

Definition 2. Initial condition (S(0), E(0), I(0), R(0))

� (S0, E0, I0, R0) ∈ R4
+, and the parameters u, b, ω1, ω2,

α, β, c contained in the model, and they are all nonnegative
numbers, where 0≤ u, b, α, β, c≤ 1, ω1 ≥ 1,ω2 ≥ 1.

Definition 3. Regardless of the constant input rate of the
population (including the individual’s birth rate and im-
migration rate), or the birth rate and mortality of the
population, the total number of individuals N(t) � N is
constant; ω1 indicates the exposing period of the disease.
After the time ω1, it may be transformed into an infected
one; ω2 means that the recovered loses immunity after the
cycle ω2, and then transforms into a susceptible one;β in-
dicates the effective contact rate of the individual with the
disease; α indicates the proportion that the individual

Table 1: Summary of related studies.

References Method used Research significance
Literature [7] Genetic algorithm

Classification of plant diseasesLiterature [8] RF, SVM, DT, KNN, and Naive Bayes
Literature [9] PCA-whale optimization algorithm, DNN
Literature [10] Create background database, mathematical algorithms, and decision models Identification of weeds and crops
Literature [11] Mathematical derivation Plant growth mechanism planningLiterature [15] Bio-inspired computing algorithm
Literature [12] Crow search algorithm, DNN

Improved plant genetic qualityLiterature [13] Plant gene regulation algorithm
Literature [14] Machine learning algorithms, multilayer perceptron, SVM, RF
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Figure 1: (e network communication system in the plant.
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changes from the exposed state to the infective state; c

indicates the proportion of the infective one into a recovered
one; b indicates the direct immunization rate of the indi-
vidual; u indicates the proportion of the individual from the
exposed state to the recovered state.

Definition 4. β(E(t) + I(t))(t) represents the proportion of
individuals who change from a susceptible one to an exposed
one after infection; however, the infected one may be
converted into an infective one after the ω1 period.
(erefore, the saturation infection rate αE(t − ω1) with time
lag is introduced to represent the proportion of exposed
individuals those converted into infected individuals after
ω1.

Definition 5. According to the immunity of the recovery
over a while, the rate of introduction of immune loss cI(t −

ω2) indicates the proportion of the recovered who converted
to a susceptible state after the immune cycle ω2.

Definitions 1 to 5 are obtained by simplifying hypotheses
1 to 5 of the IAIA infectious disease model. Hypotheses 1 to 5
of the IAIA infectious disease model are based on the well-
known KM hypothesis and consider the characteristics of
the IAIA infectious disease with latency. (is has been
described in detail and will not be repeated here. According
to simplified hypotheses 1 to 5, the compartment structure of
the IAIA infectious disease model, as shown in Figure 2, is
established.

dS

dt
� −bS(t) − β(E(t) + I(t))S(t) + cI t − ω2( 􏼁;

dE

dt
� β(E(t) + I(t))S(t) − uE(t) − αE t − ω1( 􏼁;

dI

dt
� αE t − ω1( 􏼁 − cI(t);

dR

dt
� cI(t) + uE(t) + bS(t) − cI t − ω2( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Suppose the total number of individuals in the ecosystem
is 1 unit; Our S(t), E(t), I(t), and R(t) represent the
proportion of individuals in Class S, Class E, Class I, and
Class R in period t, respectively. For any individual in the
ecosystem, S(t), E(t), I(t), and R(t) represent the proba-
bility that an individual belongs to the Class S, Class E, Class
I, and Class R categories, respectively, or the probability that
an individual is in the S state, the E state, the I state, and the R
state, respectively.(e S state refers to the uninfected state of
an individual, referred to as a susceptible state; the E state
refers to a state in which an individual has been infected with
an infectious disease but has not yet become ill, referred to as
an exposed state; the I state refers to an individual who is in
the onset state after suffering from an infectious disease,
referred to as the onset state; the R state refers to the state in
which the individual has been infected with the disease and

Table 2: Some symbols and their explanations.

Symbol Meaning
N(t) Total number of individuals during period t
S(t) Number of susceptible individuals during period t
E(t) Number of exposed individuals during period t
I(t) Number of infected individuals during period t
R(t) Number of recovered individuals during period t
ω1 Latent cycle
ω2 Immune cycle
L Number of randomly selected individuals
p State transition probability
Vi(t) (e characteristics set of the period t

IPI (e individual’s physical strength
U (e subscript set of the global optimal solution
MI, ME (e number of active individuals involved in information exchange
IaIaSi(t) (e state of the individual i at the period t, which is one of the four states S, E, I, and R.
Fstate (e set of states of all individuals
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has been cured and has obtained immunity, referred to as the
immune state.

Usually, the values of the parameters u, b, α , β, c are
time dependent, but the values of ω1 and ω2 are regarded as

constants. Since we consider the population in the ecosystem
as an individual, we can apply equation (1) to any individual
i in the ecosystem and rewrite formula (1) into the following
discrete recursive form:

Si(t) � 1 − b
t

􏼐 􏼑Si(t − 1) − βt
Ei(t − 1) + Ii(t − 1)Si(t − 1)( 􏼁 + c

t
Ii t − 1 − ω2( 􏼁;

Ei(t) � 1 − u
t

􏼐 􏼑Ei(t − 1) + βt
Ei(t − 1) + Ii(t − 1)Si(t − 1)( 􏼁 − αt

Ei t − 1 − ω1( 􏼁;

Ii(t) � 1 − c
t

􏼐 􏼑Ii(t − 1) + αt
Ei t − 1 − ω1( 􏼁;

Ri(t) � 1 − Si(t) − Ei(t) − Ii(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

N(t) � S(t) + E(t) + I(t) + R(t) is used in formula (2). In
the period t, the value of each parameter in the formula (2) is
as shown in Table 3:

(e meaning of Table 3 is: for each period, the value of
each parameter is randomly generated within the given value
interval [0, 1]. For example, in period t, the effective contact
rate βt of the disease is calculated as β t � Rand(0, 1);
Rand(a, b) indicates that a uniformly distributed random
number is generated in the [a, b] interval. (e value of other
parameters is similar.(e above stochastic method is used to
determine the parameters in the IAIA infectious disease
kinetic model. Since these parameters are different in dif-
ferent periods, the number of parameter inputs is greatly
reduced, and the model can express the actual situation
better.

Supposing there are N individuals in an ecosystem, and
these individuals are numbered 1, 2, . . . , N. Each individual
is characterized by n features, that is, for individual i, its
characterization is (xi1, xi2, . . . , xin). (ere is an infectious
disease in the ecosystem that will spread between individ-
uals. (e epidemic attacks some of the characteristics of the
individual, but it is by no means all. (e spread of infectious
diseases is as follows:

(1) An individual in a susceptible state may contract the
infectious disease if it is effectively in contact with
other individuals who have contracted the infectious
disease;

(2) (e virus in the infected person first enters the
exposed state, and the exposed state will continue for
a period, which is called the incubation period. A
virus that is in an exposed state does not cause an
individual to become ill, but if these individuals
make effective contact with other individuals, the
virus will be transmitted to other individuals;

(3) When the body’s in vivo virus incubation period is
over, the individual begins to become ill, that is,
enters the onset state. If the individual in the onset
state makes effective contact with other individuals,
the virus will be transmitted to other individuals;

(4) Individuals in the onset state can be cured with a
certain probability; the cured individuals can obtain
immunity within a certain period, even if they have
effective contact with other individuals who have

contracted the infectious disease, they will not
transmit the disease. After the individuals’ immu-
nization period ends, these individuals will transmit
the disease;

(5) Individuals in a susceptible or exposed state can gain
immunity by receiving a vaccination, but the im-
munity will disappear after a period.

(e physical strength of an individual is determined by
the susceptibility of certain characteristics of the individual,
the viral latency of certain characteristics, the onset of
certain features, and the healing or immunization of certain
features. Individuals with strong constitutions can continue
to grow, while individuals with weak constitutions stop
growing. Mapping the above scenario to the search process
for the global optimal solution of the optimization problem
formula (1) has the following meanings:

(e solution (search) space of the optimization problem
formula (1) corresponds to the ecosystem. One individual in
the ecosystem corresponds to a tentative solution of the
optimization problem formula (1), and the tentative solution
set corresponding to N individuals is X1,X2, . . . ,Xn􏼈 􏼉.

A feature of the individual i(i � 1, 2, . . . , N) corresponds
to a variable of the optimization problem tentative solution
Xi, that is, the feature j of the individual i corresponds to the
variable xij of the tentative solution Xi, so the feature
number of the individual i is the same as the number of
variables of the tentative solution Xi. (erefore, individual i

and test solutionXi are equivalent concepts.(e individual’s
physical strength is represented by the body mass index IPI
(individual physique index, IPI). (e IPI index corresponds
to the objective function value of the optimization problem
formula (1). A good test solution corresponds to an indi-
vidual with a higher IPI value, that is, an individual with a
strong constitution, and a poor test solution corresponds to
an individual with a lower IPI value, that is, an individual
with a weak constitution. For the optimization problem
formula (1), the calculation method of the individual i’s IPI
index is

IPI Xi( 􏼁 � Fmax − F Xi( 􏼁, i � 1, 2, . . . , N. (3)

In the period t, randomly generate the population of the
ecosystem βt, αt, ct, bt, ut; the IAIA infectious disease model
is used to calculate the individual susceptibility probability
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Si(t), exposed probability E i(t), disease probability Ii(t),
and cure probability Ri(t), which of the four states of the S
state, the E state, the I state, and the R state during the period
t is, respectively, from the biggest one of Si(t), Ei(t), Ii(t),
and Ri(t).

Since the βt, αt, ct, bt, ut of the ecosystem is time-varying
at any time, the susceptibility probability Si(t), the exposed
probability Ei(t), the disease probability Ii(t), and the cure
probability Ri(t) of the individual i are all time-varying, so
the growth state of the individual i will be randomly con-
verse between the four states S, E, I, and R.

In the random search process, if the IPI index of the
individual i in the period t is higher than the IPI index of the
period t − 1, the individual i will continue to grow, which
means that the individual i is getting closer to the global
optimal solution; conversely, if the IPI index of individual i

in period t is lower than or equal to the IPI index of period
t − 1, then individual i will stop growing, but not shrink,
which means that individual i stays at the position where
period t − 1 is not moving. (is step-by-step random search
strategy makes the algorithm globally convergent.

In period t, the state values of N individuals of the
ecosystem are X1(t),X2(t), . . . , Xn(t), S-S, S-E, S-R, E-E,
E-I (ω), E-R, I-I, I-R, R-R, and R-S (ω) (the design methods
of operators are given below. L individuals are randomly
selected from susceptible, exposed, infective, and recovered
individuals, L ≥ 1, and these individuals form a susceptible
group Ct

s � Xi1
(t),Xi2

(t), . . . ,Xii
(t)􏽮 􏽯, an exposed set

Ct
E � Xi1

(t),Xi2
(t), . . . ,XiL

(t)􏽮 􏽯, an infected set Ct
I � Xi1

􏽮

(t),Xi2
(t), . . . ,XiL

(t)}, and a recover set Ct
R � Xi1

(t),􏽮

Xi2
(t), . . . ,XiL

(t)}.
L individuals are randomly selected from susceptible,

exposed, infective, and recovered individuals, L ≥ 1. (e IPI
index of these individuals is higher than the IPI index of the
current individual i, respectively, forming a cluster of ex-
cellent susceptible Ct

PS � Xi1
(t),Xi2

(t), . . . ,XiL
(t)􏽮 􏽯, excel-

lent exposed set Ct
PE � Xi1

(t),Xi2
(t), . . . ,XiL

(t)􏽮 􏽯, excellent
patient set Ct

Pl � Xi1
(t),Xi2

(t), . . . ,XiL
(t)􏽮 􏽯, and excellent

recovery set Ct
PR � Xi1

(t),Xi2
(t), . . . ,XiL

(t)􏽮 􏽯:

(1) S-S Operator. Let the difference between the weighted
sum of the feature j of the MI susceptible individuals
in the setCt−1

s and its state value and theweighted sum
of the features j of the ME susceptible individuals and
their state values as the state value of the corre-
sponding feature j of the individual i, which is

vij(t) � 􏽘

MI

k�1
αkxikj(t − 1) − 􏽘

ME

k�1
βkxikj(t − 1), C

t−1
S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0,

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1), C
t−1
S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Vi(t) � (vi1(t), vi2(t), . . . , vin(t)),Xik
(t − 1) � (xik1

(t − 1), xik2 (t − 1), . . . . . . , xikn(t − 1)), vij(t), and
xikj(t − 1) are the characteristics of the period t and
the period t − 1, respectively, the state value of the
feature j of the individual i; ∀ik, is ∈ i1, i2, . . . , iL􏼈 􏼉,

ik ≠ is ≠ i; αk, βk are constants, 0< αk, βk < 1, and
αk � Rand(0, 1), βk � Rand(0, 1) during the com-
puting; MI and ME are the number of active in-
dividuals involved in information exchange,
MI >ME, MI ≥ 2, ME ≥ 1, L � MI + ME; IaIaSi(t)

represents the state of the individual i at the period
t, which is one of the four states S, E, I, and R.
Since the state value of the feature of the individual i

is calculated without utilizing the characteristics of
the individual who is already in other states, the
state of the individual i does not change; the dif-
ference between the weighted sums of the state
values of other susceptible individual features is
used to calculate the individual i’s. (e state value of
the feature can increase the difference between the
individual i and other individuals, thereby in-
creasing the degree of difference between the old
and new states, resulting in an increase in the ac-
tivity of the individual i.

(2) S-E Operator. (e characteristic j of the L indi-
viduals in the collection Ct−1

E ⋃
​
Ct−1
1 who are already

in an exposed state or have been ill, and their av-
erage state values are transmitted to the corre-
sponding features j of the susceptible individual i to
cause infection with the infectious disease, that is,

vij(t) �
1

C
t−1
E ∪C

t−1
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
E ∪Ct−1

1

xkj(t − 1),

C
t−1
E ∪C

t−1
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
E ∪C

t−1
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

(3) S-R Operator. Let the characteristics j of the
L-cured and immunized individuals in the set Ct−1

R

and their average state values be, respectively,
transmitted to the corresponding features j of the
susceptible individual i to obtain immunity, that is,

vij(t) �
1

C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
R

xkj(t − 1), C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

(4) E-I (ω) Operator. Let the characteristic j of the L

affected individuals in the set Ct−1
I and its average

state value be transmitted to the corresponding
feature j of the individual i who is already in an
exposed state, so that the disease occurs, that is,

Computational Intelligence and Neuroscience 7



vij(t) �
1

C
t−1
I

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
I

xkj(t − 1), C
t−1
I

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), SEIRSi(t) � SEIRSi(t − 1),

C
t−1
I

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Because of complex ecological structure, we must
consider many cases in ecosystems. Although the
state transition of E⟶I needs to be delayed by ω
periods, the state value of the feature of the period t

individual i being attacked by the virus is only
related to the state value of the period, t − 1. Because
when the individual i is attacked by the virus, al-
though it occurs only after a certain period of time,
its condition is constantly changing during the ω
period before the onset of the disease.

(5) E-E Operator. Let the feature j of the L individuals
in the set Ct−1

PE and its average state value pass to the
corresponding feature j of the individual i who is
already in the exposed state, so that the physical
constitution is enhanced, that is,

vij(t) �
1

C
t−1
PE

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
PE

xkj(t − 1), C
t−1
PE

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
PE

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

(6) E-R Operator. Let the feature j of the L individuals
in the set Ct−1

PR and its average state value, or the
weighted sum of the features j and the state values
of the MI individuals in Ct−1

PR and the characteristics
of the other ME individuals in Ct−1

PR and their states.
(e difference between the weighted sums of the
values is taken as the state value of the feature i

corresponding to the individual i, which not only
cures and gains immunity but also increases its
activity, that is,

vij(t) �
1

C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
PR

xkj(t − 1),

Rand(0, 1)< 0.5, C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � 􏽘

M1

k�1
αkxikj(t − 1) − 􏽘

ME

k�1
βkxikj(t − 1)

Rand(0, 1) . . . 0.5, C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Equation (9) not only integrates the characteristics
of the S-S operator and the E-E operator but also
avoids the similarity with the S-R operator.

(7) I-I Operator. Let the feature j of the L individuals in
the set Ct−1

PI and its average state value pass to the
corresponding feature j of the diseased individual i

to enhance its constitution, that is,

vij(t) �
1

C
t−1
PI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
PI

xkj(t − 1), C
t−1
PI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
PI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

(8) I-R O perator. Let the feature j of the L individuals
in the set Ct−1

R and its average state value, or the
weighted sum of the features j and the state values
of the MI individuals in Ct−1

R and the characteristics
of the other ME individuals in Ct−1

R and their states.
(e difference between the weighted sums of the
values is taken as the state value of the feature i

corresponding to the individual i, which not only
cures and gains immunity but also increases its
activity, that is,
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vij(t) �
1

C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
R

xkj(t − 1),

Rand(0, 1)< 0.5, C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � 􏽘

M1

k�1
αkxikj(t − 1) − 􏽘

ME

k�1
βkxikj(t − 1)

Rand(0, 1) . . . 0.5, C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
R

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Equation (11) not only integrates the characteristics
of the S-S operator and the S-R operator but also
avoids the similarity with the S-R operator.

(9) R-R operator. Let the characteristics j of the L

individuals in the set Ct−1
PR and their average state

values pass to the corresponding features j of the
cured and obtained immune individuals i to en-
hance their constitution, that is,

vij(t) �
1

C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
PR

xkj(t − 1), C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
PR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

(10) R-S (ω) Operator. Let the feature j of the L indi-
viduals in the set Ct−1

s and their average state values
be transmitted to the corresponding features j of
the cured and immunized individual i, respectively,
so that the immunity disappears, that is,

vij(t) �
1

C
t−1
S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

k∈Ct−1
S

xkj(t − 1), C
t−1
S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 0;

vij(t) � xij(t − 1), IaIaSi(t) � IaIaSi(t − 1),

C
t−1
S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Although the state transition of R⟶S needs to be
delayed byω periods, the state value of the feature of

the period t individual i being attacked by the virus
is only related to the state value of the period t − 1,
for the same reason as the E– I(ω) operator.

(11) Growth Operator. A new generation of individuals
is compared with the corresponding previous
generation individuals, and the better ones are
updated into the next generation of individuals, and
the poorer ones remain unchanged until they are
changed. For the minimization optimization
problem formula (13), the growth operator can be
described as

Xi(t)
Vi(t), IPI Vi(t)( 􏼁> IPI Xi(t)( 􏼁;

Xi(t − 1), PI Vi(t)( 􏼁⩽ IPI Xi(t)( 􏼁;
􏼨 i � 1, 2, . . . , N.

(14)

In equation (14), the functions IPI(Vi(t)) and IPI(Xi(t))

are calculated according to equation (12).
(e operators are constructed according to the char-

acteristics of the IAIA infectious disease model, which are
unique operators describing the running process of the
model. (erefore, these operators are only related to the
IAIA infectious disease model, which was first proposed
internationally. If the infectious disease model is different,
the construction method of the relevant operator will be
different. (e IAIA algorithm utilizes S-S, S-E, S-R, E-E,
E– I(ω), E-R, I-I, I-R, R-R, and R-S(ω) operators to exchange
information between individuals. Individuals with a high IPI
index pass strong E-E, I-I, R-R, and other operators to
transmit strong feature information to individuals with low
IPI index, so that individuals with low IPI index can develop
in a good direction. S-E, S-R, E-I(ω), and R-S (ω) operators
enable individuals in different states to obtain average
feature information of other individuals, thereby reducing
the probability that individuals fall into local optimum; (e
S-S operator can increase the activity of the individual, thus
expanding the search range; the E-R and I-R operators have
both the characteristics of the S-S operator and the char-
acteristics of the S-E, S-R, E-I (ω), and R-S(ω) operators.

It can be known from the IAIA algorithm that the
ecosystem is a discrete space, but the period t of each in-
dividual Xi(t)(i � 1, 2, . . . , N) is the value of the continuous
real space. (e total number of individuals is N, and each
individual is a trial solution of the optimization problem
formula (1). (e objective function value is F(Xi(t)) (cal-
culated according to equation (2)), then the set of states of all
individuals is

Fstate � F1, F2, . . . , FN􏼈 􏼉, F1 <F2 < . . . <FN;

Fstate � F Xi(t)( 􏼁|Xi(t) ∈ H􏼈 􏼉.
􏼨 (15)

Without loss of generality, let F1 be the global optimal
solution we seek. (e subscripts of equation (15) are taken
out to form a set, is U � 1, 2, . . . , N{ }.

(e elements in the set U are the states in which each
individual may be in a random search. Suppose that the best
target function value we searched for at a certain time is Fi

and its corresponding state is i. Obviously, it is known from
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equation (15) that if searching for a better state k during the
next period of search, then k< i should be satisfied; con-
versely, if it is shifted to a worse state k, then k > i should be
satisfied.

∀X ∈ H, F1⩽F(X)⩽FN. If a state with the same ob-
jective function value is merged into a set, then H can
be divided into nonempty subsets as:

X
i
S � X|X ∈ H, F(X) � Fi􏼈 􏼉, i � 1, 2, ..., N;

􏽘

N

i�1
X

i
S

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � N; ∀i ∈ 1, 2, . . . , N{ }, X
i
S ≠ϕ;

∀i≠ j, X
i
S ∩X

j

S � ϕ, ∪
N

i�1
X

i
S � H.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Obviously, state switching in Xi
s does not change the

value of the objective function.
Let Xi,j(i � 1, 2, . . . , N, j � 1, 2, . . . , |Xi

S|) denote the j

state in Xi
S. During the evolution of an individual, the

transition from one state (i, j) to another state (k, l) can be
expressed as Xi,j⟶ Xk,l, which assumes: From Xi,j to Xk,l

the transition probability of an individual is pij,kl and the
transition probability from any state of Xi,j to Xk,s is pij,k,
from any state of Xi

s to Xk,s, the transition probability of the
state is pi,k, that is:

pi,k ≥pi,j,k⟶ 􏽘
N

k�1
pi,k ≥ 􏽘

N

k�1
pij,k � 1;

0≤ 􏽘
N

k�1
pi,k ≤ 1,

􏽘

N

k�1
pi,k � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

From those steps, we can establish an algorithm
(Algorithm 1).

4. Experimental Analysis

(e experiments were conducted using real data and sim-
ulated scenes. (e experimental design is as follows:

(1) (e population of Pterospermum heterophyllum is
215,668 and is distributed in the southwestern part of
Hunan Province with an area of 287,640m2.

(2) Simulation using OMNET++ platform was used

(3) Comparison algorithm: the status estimation and
cache management algorithm (SECM) [26], the in-
formation cache management and data transmission
algorithm (ICMT) [27]

(4) Parameter settings: all the parameter settings in this
study are shown in Table 4

5. Results and Discussion

Figure 3 shows the classification of various types of plants in
the initial state. Among these plants, the susceptible, ex-
posed, infective, and recover classes accounted for 42%, 17%,
22%, and 19% of the total population, respectively. It should
be noted that in the initial state of the plants, the susceptible
class accounts for almost half. If this class is transformed into
the infective class in large numbers, it will be unfavorable for
the spread of this plant.

Figure 4 shows the classification of the second generation
plants after using the IAIA algorithm. (e proportions of
susceptible class, exposed class, and infective class declined,
and each of these three classes has fallen by 3%. Among
them, although the proportion of the susceptible class is still
the largest, reaching 39%, the recovery class, which is most
conducive to growth and development, has increased from
19% to 28%. (is finding indicates that disease was further
improved by superior seed selection, seed isolation methods,
and plant labeling.

Figures 5 and 6 show the classification of the third and
fourth generation plants after using the IAIA algorithm,
respectively. Compared with the other groups, more plants
were labeled under the recover class by the choice of superior
partners, that is, they have increased from the initial 19% to
51% in the third-generation plant classification, and by the
fourth-generation plant classification, they have reached
74%. (e susceptible class that initially accounted for the
largest proportion continued to decline as the dominant
plants were selected. In the third generation of plant clas-
sification, its proportion dropped by half. In the fourth
generation of plant classification, the susceptible class was
only 12%, accounting for about a quarter of the original. And
exposed and infective classes, which are relatively unfa-
vorable for plant growth and development, dropped from
17% and 22% to 8% and 6%, respectively. (ese indicate that
more high-quality genes have been retained through the use
of the proposed algorithm.

Figure 7 shows the overall change trend of the pro-
portions of the four classifications of plants. (e four bars of
each class represent the proportion of the initial, second,
third, and fourth generations from left to right. According to
the figure, we can know that by using the IAIA algorithm,
the proportion of recover class that carries high-quality
genes continues to increase rapidly, from 19% in the initial
state to 74% in the fourth generation of plant classification,
an increase of approximately 3 times. In the fourth gener-
ation of plant classification, the total proportions of sus-
ceptible, exposed, and infectious species accounted for only
26%. It shows that after the IAIA algorithm is used to select
dominant plants, the number of plants with disease genes is
greatly reduced.

As determined through the IAIA algorithm, the coop-
eration and classification of plants after absorbing immune
seeds can significantly eliminate the effects of plant-borne
diseases and show desirable effects on the cultivation of rare
plants. (rough simulation of the algorithm, this advanta-
geous selection method can be applied to actual cultivation.

10 Computational Intelligence and Neuroscience



To verify the success rate of the algorithm for the re-
covery class, we used SECM and ICMTfor comparison with
the IAIA algorithm.

Figure 8 shows the delivery ratio of plant generation in
the recovery class. (e figure shows the similar transmission
delivery ratio of the three algorithms for the recover class

seed. By the 270th day, the IAIA algorithm delivery ratio
reached 37.5%, which is between the other two algorithms.
However, by the 720th day, the IAIA algorithm delivery ratio
reached 49%, and that of the other two algorithms totaled
45% and 44%. By natural selection, no singular method
exceeded a 50% transmission delivery ratio. It shows that

susceptible S (t) exposed E (t) infective I (t) recover R (t)

β (S (t)+I (t))S (t) αE (t – ω1)

γI (t – ω2)

γI (t)

μE (t)

bS (t)

Figure 2: Compartment structure of the IAIA infectious disease model.

Table 3: Taking value method of parameters in the IAIA model.

Name of parameter Meaning of parameter Method of taking value
βt Effective contact rate of the disease βt � Rand(0, 1)

αt (e proportion of individuals transferring from the latent state into the disease state αt � Rand(0, 1)

ct (e proportion of infected individuals transferred into cured individuals ct � Rand(0, 1)

bt Direct immunization rate of individuals bt � Rand(0, 1)

ut (e proportion of individuals transferring from the latent state into the immune state ut � Rand(0, 1)

Input: (e number of plant N, period t
Output: S, E, R, I, vij(t)

START:
For t� 1 to G
For i� 1 to N
Calculate Se(t)� get S(t), E(t), I(t), R(t){ }

p�Rand(0,1)/∗p is probability in infection ∗/
For j� 1 to n

If p≤E0 /∗ E0 is MAX probability in infection ∗/
If Se(t+ 1)� S and Se(t)� S
Matching S-S
Print vij(t)

Else if Se(t)�E
Matching S-E
Print vij(t)

Else if Se(t)� I
Matching S-I
Print vij(t)

Else Se(t)�R
Matching S-R
Print vij(t)

End for
End

ALGORITHM 1: Infection and immunity algorithm in opportunistic social networks (IAIA).
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with the increase of time, the delivery rate of the IAIA al-
gorithm proposed in this paper is the most stable in plant
generation, which is more conducive to the selection of
dominant plants.

Figure 9 shows the transmission delivery ratio of second-
generation plants in the recover class. (rough the classi-
fication mark of the first recovery class, the transmission

delivery ratio of IAIA algorithm recovery class exceeded
85%. (is result was due to the large number of plants that
have achieved an increased acceptance rate for seeds labeled
with immune signals, resulting in the easy use of the re-
covery class in the selection process. On the other hand, the
transmission delivery ratio of SECM and ICMT recovery
class is less than 85%. Because they are not as efficient as

Table 4: Experimental parameters and their values.

Parameter Value
Simulation time 720 days
Simulation area 287,640m2

Number of plants in the simulation node 215,668
Seed release cycle 146–182 days
Seed release method Random
Maximum survival time of seeds 4 days
Seed movement speed 3.5 km/h
Plant receiving the maximum number of seeds 50/time
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Figure 3: Classification of various types of plants in the initial state.
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Figure 4: Classification of second-generation plants after using the IAIA algorithm.
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IAIA in seed recognition, it leads to a decrease in the ac-
ceptance rate of immune seeds and is not conducive to the
immune effect of plants against epidemics.

Figure 10 shows the delivery ratio of the third-generation
plants in the recover class. With the third mark, the IAIA
algorithm recovery class showed a transmission delivery
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Figure 5: Classification of three generations of plants after using the IAIA algorithm.

74%

8%

6%

12%

Recover
Exposed

Infective
Susceptible

CategoryRatio (The Fouth Generation Plants)

Figure 6: Classification of four generations of plants after using the IAIA algorithm.
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ratio of over 90%. On the contrary, the recovery class
transmission rate of the other two algorithms is less than
90%. By guiding the plants to receive the seeds of the labeled
recovery class, the plants can selectively resist the epidemic
transmission of the virus, ultimately achieving immunity in
a large area. Due to the slow transmission efficiency of SECM
and ICMT, plants could not receive recovery seeds in time,
resulting in a slow increase in the number of immune plants,
and death of some plants due to infectious diseases.

(ree sets of experiments are used to simulate the se-
lection of plant seeds in opportunistic social networks.
Among them, the effective marking and adding of the re-
cover class seeds are similar to the key data of prioritization.
It can be selected by a large number of plants, thereby re-
ducing the epidemiology of rare plants. In actual plant re-
production, the use of DNA markers to preferentially mark
the recover class seeds can effectively improve plant im-
munity and realize the selection of dominant plants.
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Figure 8: Generation delivery ratio of the recovery class.
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Figure 9: Transmission delivery ratio of second-generation plants in the recovery class.
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6. Conclusion

In this research, we selected the rare and endangered
Pterospermum heterophyllum Dutch plant as the research
object and applied it to an opportunistic social network. All
plants were considered as nodes and all seeds as transmitted
data. (rough the use of historical records, the receipt of
seeds was recorded to establish infection and immunity
algorithms in opportunistic social networks. Experimental
results show that our proposed method can effectively
identify healthy plants and reduce diseased plants. It realizes
the selectivity of dominant plants in the social opportunity
network.

In future works, we will use genetic markers to mark
each type of seed and record the path and coverage of high-
quality seed propagation over prolonged periods to provide
a better way of studying disease immunity.
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