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Te knowledge tracing model takes students’ learning behaviours data as input to determine their current knowledge status and
predict their future answers. Te learning behaviours data describes three main types of learning behaviours: learning process,
learning end, and learning interval. Te classical knowledge tracing models only use the data of the learning end, which contains
limited information and the models cannot accurately describe constraint in the same learning behaviour in the time series.
Subsequent models add other types of learning behaviours data but do not integrate diferent types of learning behaviours, and the
models cannot accurately describe collaboration in diferent learning behaviours. To address these issues, knowledge tracing via
attention-enhanced encoder-decoder is proposed to synthesize and analyse the three types of learning behaviours mentioned
above and frstly adopts the multiheaded attention mechanism to describe constraint in the same learning behaviours; secondly
adopts the channel attention mechanism modelling collaboration in the three types of learning behaviours. In the experiments,
various comparisons are made with related models on several real data sets, and the results show that our model achieves certain
advantages in terms of performance and knowledge state representation. In terms of practical application, an intelligent learning
platform based on the model has been implemented, which predicts the future answer of students in the teaching process of two
ofine courses: computer and English and has achieved better performance than other knowledge tracing models.

1. Introduction

Infuenced by the COVID-19 epidemic, the public gradually
accepts smart education platforms such as Intelligent
Tutoring System (ITS) and Massive Open Online Course
(MOOC). However, the initial endowment attributes of
smart education do not include functions such as deter-
mining the state of students’ knowledge and predicting their
future learning performance.

For these reasons, Knowledge Tracing (KT) has become
an important research element in the feld of smart edu-
cation, which analyses the learning behaviours data collected
by the platform to determine the students’ knowledge status
and predicts their future performance in answering exercises
based on the knowledge status. Knowledge tracing is now
widely used in various online education platforms, such as
Academy Online, Khan Academy, edX, Coursera, and so on.
Te main meaning and function of current knowledge
tracing is to provide fne-grained educational strategies for

smart education platforms by grasping students’ knowledge
status and predicting future performance of answering
questions and to provide personalized educational services
for each student.

Learning sequences consist of students’ learning records,
mainly those of students’ learning behaviours. Learning
behaviours data can be generally divided into three cate-
gories [1], namely learning process data, learning end data,
and learning interval data, which are used to describe the
corresponding learning behaviours in the learning records.
Te learning process data describe the learning process
behaviour, mainly including the number of attempts to
answer and the number of requests for hints. Te learning
end data describe the learning end behaviour, mainly in-
cluding the exercises students answer and the results of their
answers. Te learning interval data describe the learning
interval behaviour, mainly including the time interval be-
tween two adjacent learning sessions and the number of
times students learn a concept. Figure 1 shows the learning
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process behaviour, learning end behaviour, and learning
interval behaviour and their sequential relationships.

Te classical knowledge tracing models [2–4] only use the
learning end data. Tese models are generally able to de-
termine the basic knowledge state of students by analysing
their learning end behaviour, but since the learning end data
only contain information about students’ correct or incorrect
answers to a certain exercise, they cannot trace students’
knowledge state more accurately. For example, when learning
the third-person singular concept in English, students A and
B have the same learning end data but diferent learning
process data, the diferent knowledge states of students A and
B on the third-person singular concept cannot be represented
in such classical knowledge tracing models.

Students’ learning records also include learning process
behaviour and learning interval behaviour, which also map
changes in students’ knowledge states. Some researchers
have used learning process data and learning end data to
trace students’ knowledge states [5] and learning interval
data to model students’ forgetting behaviours [6, 7], but
none of them have considered collaboration in diferent
behaviours, i.e., the interaction of multiple types of learning
behaviours in a learning sequence.

In order to more accurately trace the state of students’
knowledge, the main tasks of this paper are as follows:

(1) Describing constraint in the same behaviours. First,
the set of three types of learning behaviour data is
selected as the input; second, the attention weights of
the input data are obtained using the multiheaded
attention mechanism to represent the constraint
relationship of a single type of learning behaviour on
the time series, which is used to describe constraint
in same behaviours.

(2) Describe the collaboration in diferent behaviours.
First, the set of three types of learning behaviours
data is stitched as input; second, the global infor-
mation of the three types of learning behaviours is
obtained using the channel attention mechanism;
fnally, the global information is mapped into at-
tention weights among learning behaviours, which
represent the interaction of multiple types of
learning behaviours and is used to describe collab-
oration in diferent behaviours.

(3) Knowledge tracing via attention-enhanced encoder-
decoder is proposed. First, the encoder is used to fuse
the constraint in the same behaviours and the col-
laboration in diferent behaviours; second, the de-
coder is used to obtain students’ learning vectors and
forgetting vectors by inputting diferent query vec-
tors; fnally, the purpose of tracing students’
knowledge states more accurately is achieved.

2. Related Work

2.1. Knowledge Tracing

2.1.1. Knowledge Tracing Models Based on Learning End
Behaviour. Bayesian Knowledge Tracing (BKT) [2] frst in-
troduced the concept of knowledge tracing and used a
probabilistic calculation method to solve the task of knowl-
edge tracing. BKT takes the learning end data as input and
defnes the probability of initially learning a concept P(L0),
the probability of transferring an unlearned state to a learned
state P(T), the probability of not mastering a concept but
guessing correctly P(G), the probability of the probability of
mastering a concept but answering incorrectly P(S), etc., and
the Hidden Markov Model (HMM) [8] is used to model the
relationship between the above four probabilities to predict
students’ future learning performance.

Deep Knowledge Tracing (DKT) [3] frst used deep
sequential models to solve the task of knowledge tracing.
Similar to BKT, DKT still uses learning end data as input to
represent students’ knowledge states with the hidden states
of Recurrent Neural Network (RNN) [9] or Long Short-
Term Memory (LSTM) [10], and fnally a fully connected
layer to predict students’ future learning performance.

Dynamic Key-Value Memory Networks (DKVMN) [4],
inspired by standard memory enhancement networks [11],
proposes a memory matrix approach to solve the task of
knowledge tracing. DKVMN still uses learning end data as
input, a key matrix to store concepts, and a value matrix to
store the student’s mastery state of the concept; the model
uses these two matrices to determine the student’s mastery
state of each concept at each learning session and fnally
outputs the probability of the student’s future learning
performance in a fully connected layer.

In subsequent studies, researchers still modelled students’
knowledge states using only learning end data as the input to
the model: Kaser et al. [12] proposed a dynamic Bayesian
knowledge tracing model based on BKT to model the de-
pendencies between diferent concepts; Su et al. [13] added
exercise information to the input of the model based on DKT;
Abdelrahman et al. [14] used a Hop-LSTM network structure
on top of DKVMN, enabling the model to capture long-term
boundedness in student learning records. Other variants of
such models include TLS-BKT [15], Multigrained-BKT [16],
PDKT-C [17], HMN [18], and other models.

BKT, DKT, and DKVMN are classical knowledge tracing
models, and these models have laid a solid foundation for the
subsequent studies. Teir shortcomings are that only
learning end data are used to trace students’ knowledge
states, modelling constraint in the same behaviours.
Learning process data and learning interval data are not
used, not modelling collaboration in diferent behaviours, so
they cannot provide more adequate support for representing
students’ knowledge states.

2.1.2. Knowledge Tracing Models Based on Learning Interval
Behaviour. Some of the studies used learning interval data:
Nagatani et al. [6] were inspired by the Ebbinghaus
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Figure 1: Learning behaviours and their sequential relationship.
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forgetting curve [19] and added learning interval data as
input to the DKTmodel. Tey considered learning interval
data as a factor afecting forgetting behaviours and were able
to model forgetting behaviours by adding learning interval
data as input to the model. Inspired by the memory traces of
decline said [20], the study by Li et al. [7] proposed the LFKT
model, which considered not only the above learning in-
terval data but also the efect of students’ conceptual mastery
status on forgetting.

Although these two models add learning interval data to
the use of learning end data and achieve better results, they
still model only constraint in same behaviours and neglect to
model collaboration in diferent behaviours.

2.1.3. Knowledge Tracing Models Based on Learning Process
Behaviour. Some of the studies used learning process data:
Cheung and Yang [5] input the learning process data to a
Classifcation And Regression Tree (CART) to predict
whether students could answer the exercises correctly, then
combined the predicted results with the real results, and
fnally input the combined data and the learning end data to
DKT Te combined results are then combined with the real
results, and fnally the combined data and the learning end
data are fed into the DKT model to predict their future
answers. Tis method uses the learning process data as a
complement to the learning end data to improve the method
of modelling constraint in the same behaviours but does not
yet model collaboration in diferent behaviours.

In general, most studies use only learning end data as
input or introduce multiple types of learning behaviours data
as input when tracing students’ knowledge states, but none of
them model collaboration in diferent behaviours. To address
the above problems, this paper proposes a model: knowledge
tracing via attention enhanced encoder-decoder, which
models collaboration in diferent behaviours while modelling
constraint in the same behaviours to provide a more adequate
support for representing students’ knowledge states.

2.2. Attentional Mechanisms. A biological perspective on
attention mechanisms is based on the principle that humans
selectively direct the focus of their attention based on
nonvolitional cue and volitional cue [21]. Nonvolitional cue
refers to the fact that a person is not cognitively and con-
sciously driven to access information, and volitional cue
refers to the fact that a person is cognitively and consciously
driven to access information. In attention mechanisms,
queries refer to volitional cues, keys, and values refer to
nonvolitional cues.Te beneft of adding volitional cues is to
bias the output of the attention mechanism towards certain
input data, rather than taking in the input data wholesale.

For example, in determining the state of students’
knowledge, student S answered correctly the exercise about
the concept of third-person singular in learning English. If
there is no cognitive and consciousness drive and only the
learning end data is used as the criterion, the teacher’s at-
tention is guided by the non-volitional cue and judges the
mastery status of student S on the concept of third-person
singular; however, if there is a cognitive and consciousness

drive, on top of the learning end data, the teacher will also
notice the learning process data and learning interval data of
the student. Te teacher’s attention is guided by the voli-
tional cue to judge the state of student S’s mastery of the
third-person singular concept.

Ghosh et al. [22] proposed the AKTmodel to solve the
knowledge tracing task by constructing context-aware
representations of exercises and outcomes and summarizing
students’ past performance using attention mechanisms.Te
inputs of the attention mechanisms are query, key, and
value, and the output is a weighted sum of values, and the
attention weights are obtained by calculating the similarity
of query and key. Te self-attention mechanism is a variant
of the attention mechanism, which has inputs from the same
data and is better at capturing the similarity within the data
and reduces the dependence on external data because there
is no input from external data. Pandey et al. [23] proposed
the SAKTmodel, which frst applied the Transformer model
[24] to the domain of knowledge tracing by describing the
inputs in terms of temporal constraint relations to solve
knowledge tracing tasks. Te main structure of the Trans-
former model is a multiheaded attention mechanism,
consisting of multiple attention mechanisms or self-atten-
tion mechanisms in parallel, where a fully connected layer
maps the input data to diferent subspaces and is able to
learn diferent weights based on the same mechanism, which
is used to describe constraint in same behaviours.

Te disadvantage of the multiheaded attention mecha-
nism using learning process data, learning end data, and
learning interval data as volitional cues is that diferent
learning behaviours are treated as having the same weight
when tracing knowledge states. Te channel attention
mechanism solves this problem [25–28] by using three types
of learning behaviours data as input to the channel attention
mechanism, the “squeeze” operation collects global infor-
mation about the three types of learning behaviours data,
and the “stimulate” operation converts the global infor-
mation into attention weights, which represent the inter-
action of multiple types of learning behaviours, are used to
describe collaboration in diferent behaviours.

3. Materials and Methods

3.1.Te Idea Proposed by theModel. As a whole, the learning
sequence includes several diferent types of learning be-
haviours, such as the learning process behaviour, the
learning end behaviour, and the learning interval behaviour.
In this paper, we use learning process data bI, learning end
data bII, and learning interval data bIII to describe the above
three types of learning behaviours, in which bI mainly in-
cludes data such as the number of attempts of students to
answer and the number of requests for hints; bII mainly
includes data such as the exercises students answer and the
results of their answers; bIII mainly includes data such as the
time interval between two adjacent learning sessions and the
number of times students learn a concept. Tis paper fnds
that the learning behaviours possess the constraint in the
same behaviours and collaboration in diferent behaviours.
Te specifc descriptions are as follows:
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According to the literature [29], changes in students’
knowledge states are bounded by their pre-existing
knowledge states and are manifested in the constraint in the
same behaviours, i.e., changes in knowledge state are re-
fected in a learning behaviour is gradual. Specifcally, the
constraint in the learning process data bI may be manifested
by the fact that the change in the number of attempted
responses for a given exercise is smooth at adjacent time
steps; the constraint in the learning end data bII may be
manifested by the fact that the change in the result of a
student’s response to a given exercise is also smooth; the
constraint in the learning interval data bIII may be man-
ifested by the fact that the change in a number of adjacent
learning intervals is also fat. From a modelling perspective,
the characterization of the three types of learning behaviours
data should take into account their respective similarity
constraints to refect the objective changes in students’
knowledge states, which are neglected in the current study.

According to the literature [30], the interaction of
multiple types of learning behaviours in a learning sequence
is manifested by the collaboration in diferent behaviours.
Specifcally, the collaboration in learning process data bI and
learning end data bII may be manifested in that the prob-
ability of correct answers for a given exercise is lower when
students have more attempts and higher when they have
fewer attempts; the collaboration in learning interval data
bIII and learning end data bII may be manifested in that the
probability of correct answers for a given exercise is lower
when students have a longer learning interval and higher
when they have a shorter learning interval. From the
modelling point of view, the collaboration in diferent
learning behaviours data should be considered in order to
refect the objective changes of students’ knowledge state,
which is neglected in the current study.

BKT uses learning end data bII to trace the student’s
knowledge state. However, because bII only contains in-
formation about students answering a certain exercise
correctly or incorrectly, and the model does not express
constraint in learning end behaviour on the time series.
Although subsequent studies [12–15] still used only the
learning end data bII, they mostly used deep models, so
there was some progress in modelling the boundedness of
the learning end behavior. Subsequently, some researchers
added learning process data bI [5] and learning interval
data bIII [6, 7] to the input of the model to improve the
performance of the model. Although these studies validated
the validity of other learning behaviours, they did not
model collaboration in diferent behaviours in a learning
sequence.

In summary, it is advantageous to integrate multiple
types of learning behaviours data when tracing students’
knowledge states, which enables knowledge tracing models
to more accurately predict students’ future performance.
However, when modelling learning behaviours, the con-
straint in the same behaviours and collaboration in diferent
behaviours should be considered in an integrated manner.

In this paper, we use the multiheaded attention mech-
anism to adaptively assign the weights of each type of
learning behaviours data itself, so as to model constraint in

the same behaviours; and the channel attention mechanism
to adaptively assign the weights between diferent types of
learning behaviours data, so as to model collaboration in
diferent behaviours.

3.2.Defnitionof LearningBehavioursData. In this paper, we
defne three types of learning behaviours data as follows:
learning process data bI

t � (AN,RN, FA) describes the
learning process behaviour of the student’s t, t≥ 1 th
learning record, where AN ∈ N indicates the number of
times the student attempted to answer; RN ∈ N indicates the
number of times the student requested a hint; FA � 0, 1{ }

indicates the frst action of the student when answering the
exercise, where 1 indicates that the student frst attempted to
answer and 0 indicates that the student frst requested a hint.
BI � (bI

1, bI
2, · · · bI

n) is the set of learning process data bI, i.e.,
it is composed of learning process data bI

n, n≥ 1 .
Te learning end data bII

t � (qt,rt) describes the learning
end behaviour of the student’s t, t≥ 1 th learning record,
where qt ∈ N indicates the exercise that the student an-
swered; rt � 0, 1{ } indicates the result of the student’s an-
swer, where 1 indicates that the student answered the
exercise correctly and 0 indicates that the student answered
the exercise incorrectly. BII � (bII

1 , bII
2 , · · · bII

n ) is the set of
the learning end data bII, which is composed of the learning
end data bII

n , n≥ 1.
Te learning interval data bIII

t � (RT, ST, LT) describes
the learning interval behaviour of the student’s t, t≥ 1 th
learning record, where ST ∈ N indicates the time interval
between the student’s t − 1 th learning and t th learning;
RT ∈ N indicates the time interval between the student’s
learning of the current concept; LT ∈ N indicates the
number of repetitions of the current concept.
BIII � (bIII

1 , bIII
2 , . . . , bIII

n ) is the set of the learning end data
bIII, i.e., it consists of the learning interval data bIII

n , n≥ 1.
Figure 2 shows the learning behaviours described by the
learning behaviours data in the learning sequence.

3.3. Knowledge Tracing via Attention Enhanced Encoder-
Decoder. In this paper, we propose Knowledge Tracing via
Attention Enhanced Encoder-Decoder (AED-KT), whose
overall architecture is shown in Figure 3.

Temodel consists of fve components: an input module,
an encoder, a decoder, a conceptual attention module, and a
prediction module.Te input module embedding represents
a number of continuous learning behaviours data. Te
encoder models constraint in the same behaviours and
collaboration in diferent behaviours. Te decoder generates
students’ learning and forgetting vectors and updates the
state matrix Mv

t−1. Te conceptual attention module is used
to capture the similarity between concepts. Te prediction
module predicts students’ answers at moment t based on the
state matrix Mv

t−1, the concept matrix Mk
t−1, and the exercise

qt, t≥ 1. Concept matrix Mk represents the concept and state
matrix Mv represents the student’s concept mastery state,
and these two matrices are dynamically updated with the
learning sequence.
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3.3.1. Input Module. Te learning process data
bI

i � (AN,RN, FA), i≥ 1 is represented as a row vector:
bI

i ϵR
1×3, and multiplied with the embedding matrix CIϵR1×3

to obtain vector eI
i ϵR

1×dv . Te learning end data
bII

i � (qi,ri), i≥ 1 is transformed into one-hot encoding:
bII

i ϵR
1×2N, and multiplied with the embedding matrix

CIIϵR2N×dv to obtain vector eII
i ϵR

1×dv in order to solve the
problem of bII

i sparsity. Te learning interval data bIII
i �

(RT, ST, LT), i≥ 1 is represented as a row vector: bIII
i ϵR

1×3 ,
and multiplied with the embedding matrix CIIIϵR1×3 to
obtain vector eIII

i ϵR
1×dv .

Te learning behaviours data with n consecutive em-
bedding representations are taken, and then three matrices
BI, BII , and BIII of size n × dv are combined according to the
learning behaviour types as the input of the multi-headed
attention mechanism; these three matrices are stitched into a

three-dimensional array Xt of size 3 × n × dv as the input of
the channel attention mechanism, where 3 indicates that the
array Xt contains three types of learning behaviours, and n

indicates that the array Xt contains n consecutive learning
behaviours, and dv is the dimension of the vector repre-
sentation of the learning behavior data.

3.3.2. Encoder. Te array Xt consists of matrices BI, BII , and
BIII stitched together, and each of these three matrices in-
cludes n consecutive learning behaviours data, which rep-
resent three diferent types of learning behaviours: learning
process, learning end, and learning interval behaviour.

(1) Modelling Constraint in Same Behaviours. It is important
to note that each type of learning behaviour has a constraint
on subsequent similar behaviours on the learning sequence,
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Figure 3: Knowledge tracing via attention enhanced encoder-decoder.
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i.e., the constraint between the same type of learning be-
haviour in the learning sequence on the time sequence.
Because the multiheaded attention mechanism can locate
similar information on the learning sequence and translate it
into the relative weights of the learning records in the se-
quence, the multiheaded attention mechanism is used to
model constraint in the same behaviours, and the specifc
process is shown in Figure 4.

Firstly, using the parameter v ϵR1×n as the position code,
which represents the relative position of the data of n
consecutive learning behaviours in time sequence, it is added
to the input matrices BI, BII , and BIII to form a learning
behavior matrix containing relative position information in
time sequence:

B
j∗

(i) � B
j
(i) + v(i), j ∈ I, II, II{ }, i ∈ 1, . . . , n{ }. (1)

Secondly, the learning behaviour matrices BI∗, BII∗ and
BIII∗ are input into the multi-headed attention mechanism,
and the attention weights are obtained by calculate the
similarity between each learning behaviour, which is used to
model constraint in the same behaviours, and the magnitude
of the attention weights indicates the strength of the learning
behaviour constraint relationship. Te output matrices XI

B,
XII

B and XIII
B , which represent the constraint of learning

process behaviour, learning end behaviour, and learning
interval behaviour, respectively:

X
j
B � MultiHead B

j∗
, B

j∗
, B

j∗
 , j ∈ I, II, II{ }. (2)

Finally, these three output matrices are stitched together
into a three-dimensional array XB ∈ R3×n×dv , which repre-
sents the constraint in the same behaviours.

XB � Concat X
I
B, X

II
B , X

III
B . (3)

(2) Modelling Collaboration in Diferent Behaviours. It is also
important to note that there is a mutual collaboration be-
tween multiple types of learning behaviours, i.e., the in-
teraction of multiple types of learning behaviours in a
learning sequence. Because the channel attention mecha-
nism is able to capture the global information of multiple
types of learning behaviours and translate it into the relative
weights of each learning behaviour, the collaboration in
diferent behaviours is modelled using the channel attention
mechanism, as shown in Figure 5.

Using the array Xt as the input of the channel at-
tention mechanism, the attention weights are obtained by
collecting the global information of three types of learning
behaviours to model collaboration in diferent behaviours,
and the magnitude of the attention weights indicates the
degree of collaboration of learning behaviours. Te
squeeze operation collects the global information of
learning behaviours, and the excitation operation trans-
lates the above global information into attention weights s

among diferent learning behaviours through a fully
connected layer:

s � Sigmoid W∙RC Cov Xt( ( ( , (4)

where Sigmoid � 1∕ (1 + e− xi ), the weight matrix of the fully
connected layer is W, RC denotes the rowwise convolution,
and Cov(∙) denotes the calculation of the covariance matrix,
which is used to characterize the degree of correlation be-
tween the three types of learning behaviours.

Te output attention weight s represents the collabo-
ration in diferent behaviours, which is multiplied with the
array Xt by the channel, changing the expression of the
array Xt eigenvalues to obtain the array XC, representing
the collaboration in diferent behaviours assigned to the
array Xt:

XC � s∙Xt. (5)

Te array X′ ∈ R6×n×dv is obtained by summing the array
XB, which represents the constraint in the same behaviours,
and the array XC, which represents the collaboration in
diferent behaviours. By using the convolution kernel of 6 ×

1 × dv, the dimension of array X′ is reduced by row-wise
convolution to obtain the output matrix XE ∈ Rn×dv :

XE � RC XB, XC ( . (6)

Te temporal convolutional networks (TCNs) model
uses a 1D Fully Convolutional Networks (1D FCNs)
structure to ensure that the input sequence and output of
each hidden layer have the same length so that no matter
which layer of the network, the input at each time has a
corresponding output. In addition, TCN uses causal con-
volution to satisfy the feature that sequence data does not use
future information, that is, when the model outputs the
results at time t, it can only input data before time t.

Furthermore, the TCN model uses the derived calcium
transformations to obtain longer historical information,
avoiding the construction of deeper neural networks. For
one-dimensional input sequence X � x1, x2, x3, . . . , xt ,
convolution kernel f � 0, 1, 2, . . . , k − 1{ }, the expansion
convolution operation can be expressed as follows:

Xt

s

XC

squeeze

excitation 1×1×31×1×3

Figure 5: Modelling collaboration in diferent behaviours.
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TCN xt(  � 
k−1

i�0
f(i)xt−ic, (7)

where c is the expansion coefcient; k is the size of con-
volution kernel; xt−ic represents the past data.

3.3.3. Decoder. Te decoder consists of two multi-headed
attention mechanisms, which generate the learning vector
and forgetting vector, respectively, through matrix XE. Te
structure is shown in Figure 6. Firstly, the t th learning end
data eII

t is used as query input to represent the learning
vector lt in diferent dimensions; secondly, the t th learning
interval data eIII

t is used as query input to represent the
forgetting vector ft in diferent dimensions; fnally, the state
matrix Mv is updated according to the vectors lt and ft.

Te decoding vector ut ∈ R1×dv is obtained by feeding
the matrix XE into the TCN to obtain. ut represents the
integration of constraints in the same behaviour and col-
laboration in diferent behaviours:

ut � TCN XE( . (8)

Te decoding vector ut contains the constraint in the
same behaviours and collaboration in diferent behaviours,
which is used as the input to the key and value in the multi-
headed attention mechanism L and F in Figure 6.

In the multiheaded attention mechanism L, the learning
vector lt is obtained using the vector eII

t as the query input:

lt � Tanh W
T
l Softmax e

II
t u

T
t ut + bl , (9)

where Softmax(xi) � xi/
N
n�1([ee]xn ), vector eII

t is the
transformed learning end data, the vector describes the
information of students’ answer situation, and using it as the
query input of decoding process can get the change of
students’ knowledge state due to the t th learning.

In the multiheaded attention mechanism F, the forget-
ting vector ft is obtained with the vector eIII

t as the query
input:

ft � Sigmoid W
T
fSoftmax e

III
t u

T
t ut + bf , (10)

where vector eIII
t is the processed learning interval data,

which describes the learning behaviour such as the time
interval between two adjacent learning sessions and the
number of times a student learns a concept and using it as
the query input of the decoding process can obtain the
changes of the students’ concept mastery status due to
forgetting.

Te learning vector lt and the forgetting vector ft and
the associated weights wt are used to update the concept
state matrix at the current moment, the association weights
wt will be described in the prediction module:

M
v
t (i) � M

v
t−1(i) 1 − ft(  + ltwt(i). (11)

3.3.4. Conceptual Attention Module. Te conceptual at-
tention module uses the self-attention mechanism to
strengthen the relationship between concepts according to

the similarity between concept vector representations. Te
more similar the concept vector representations are, the
stronger the relationship is.

First, the exercise qt is converted into one-hot
encoding and multiplied with the embedding matrix
A ∈ Rdv×N to obtain the exercise embedding vector kt with
dimension dk, which describes the information related to
the exercise qt.

Second, the self-attention mechanism is used to
strengthen the connection between concepts with high
similarity, and the output matrix C is obtained:

Ct−1 � Attention M
k
t−1T × M

k
t−1 M

k
t−1. (12)

Finally, vector kt is multiplied with the concept matrix
C ∈ Rdv×N that stores the concepts and transformed into the
associated weights wt by the Softmax function, which is used
to describe the concepts contained in the exercise qt:

wt � Softmax kt × Ct−1( . (13)

3.3.5. Prediction Module. Te prediction module is used to
predict students’ future answers. First, the association
weights wt are multiplied with the state matrix Mv

t−1 to
obtain the vector nt, which represents the student’s mastery
status of the concepts contained in exercise qt:

nt � wtM
v
t−1. (14)

Second, considering that there are certain diferences
between the exercises, such as diferent difculty coefcients,
the vector nt is spliced with the vector kt and fed into the
fully connected layer with Tanh activation function to obtain
the vector it. Te vector it contains both the student’s
mastery state of the concept and the information of the
exercise:

it � Tanh W
T
2 nt, kt  + b2 . (15)

Finally, an output layer with a Sigmoid activation
function, using vector it as input, is used to predict student
performance on the exercise qt:
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Figure 6: Decoder.
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Pt � Sigmoid W
T
3 it + b3 . (16)

3.4. Loss Function. In this paper, the cross-entropy loss
function is chosen to minimize the variability between the
predicted value Pt and the true value rt:

Loss � − 
t

rtlogPt + 1 − rt( log 1 − Pt( ( . (17)

4. Experiments and Analysis

4.1. Data Set and Experimental Environment. Te experi-
ments related to this paper are conducted on three real
datasets: ASSISTments2012 (Assist12), ASSISTments2017
(Assist17), and Junyi Academy (Junyi). In each dataset, 70%
of the data were used as a training set and 30% of the data
were used as a test set. Te basic information of the above
datasets is shown in Table 1, including the number of
students, the number of learning records, and the number of
concepts.

Te experiments in this paper are implemented under
the Windows system with GeForce graphics acceleration
units, based on python and PyTorch platforms, with the
hardware and software confgurations shown in Table 2.

4.2. Implementation Details. In each dataset, 80% of the
data is divided into a training set and 20% of the data was
divided into a test set. Twenty percent of the data in the
training set was divided into the validation set, which was
used to select the hyperparameters of the best model.
Considering that the data sets difer in the number of
learners, the number of exercise interactions, and the
number of concepts, the learning rate was initialized to
0.001 and reduced by 10 every 10 epochs. Adam was chosen
as the optimizer with the batch-size set to 32. Te ini-
tialization of the parameters was chosen to be randomly
initialized with a Gaussian distribution with zero mean and
standard deviation.

Te AED-KTmodel also focuses on the input set size n,
the dimension dv of the state matrix, the dimension dk of the
state matrix, and the expansion coefcient of TCN c. To
facilitate the calculation, set d � dv � dk. In the dataset
ASSISTments2012, the input set size n was set to 32, the
dimension d was set to 64, and the expansion coefcient c �

1, 2, 4, 8, 16{ }. In the dataset ASSISTments2017, the input set
size n was set to 32, the dimension d was set to 64, and the
expansion coefcient c � 1, 2, 4, 8, 16{ }. In the dataset Junyi,
the input set size n was set to 32, the dimension d was set to
64, and the expansion coefcient c � 1, 2, 4, 8, 16{ }.

4.3. Evaluating Indicator and Baseline

4.3.1. Evaluating Indicator. Te performance of the AED-
KTmodel proposed in this paper is analysed and evaluated
using the metric Area Under Curve (AUC), which is the area
of the graph enclosed by the ROC curve and the horizontal
axis, and the value of this area is between 0.5 and 1. If the

value of AUC is 0.5, it means that the model is a stochastic
prediction model; the larger the value of AUC, the better the
prediction performance of the model.

4.3.2. Baseline. Te core of the AED-KT model is to use
three types of learning behaviours as input and model the
constraint in the same behaviours and collaboration in
diferent behaviours using the multihead and channel at-
tention mechanisms, respectively. Based on the above-
mentioned theory, we mainly consider the following three
conditions when selecting the comparison model: frst, the
comparison model belongs to the widely accepted model
with the best-in-class performance, second, the type of input
learning behaviours data of the comparison model, and
third, the comparison methods model constraint in same
behaviours and collaboration in diferent behaviours. Based
on the above-mentioned three conditions, we choose the
following model as the comparison model:

DKT [3]: DKT is the frst time to use the deep learning
method in the feld of knowledge tracing, using high-
dimensional vectors in RNN or LSTM to represent the
students’ knowledge state. But there are problems of
long sequence dependency and gradient explosion, and
students’ specifc mastery of each concept cannot be
obtained according to the vector.
DKVMN [4]: DKVMN uses a static matrix to store
concepts and a dynamic matrix to store knowledge
states. Tanks to this design, DKVMN is able to know
the student’s knowledge state for each concept, solving
the problem that DKT uses a hidden state to represent
the student’s overall knowledge state. But without the
long-term dependence of modelling sequence data.
SAKT [24]: SAKTis based on the Transformer model to
accomplish the knowledge tracing task. Tanks to the
Transformer architecture, the SAKT model can be
trained in parallel, solving the problem that recurrent
neural networks cannot be trained in parallel.
DKT-F [6]: DKT-F models forgetting behaviour based
on the DKT model by introducing learning interval

Table 1: Datasets information.

Data set Learners Records Concepts
Assist12 46674 5818868 266
Assist17 1709 942816 102
Junyi 238120 26666117 684

Table 2: Experiment environment.

Experimental
confguration Parameter value

Operating system Windows 11

CPU Inter(R) core(TM) i9-9900K CPU@
3.60GHz

GPU NVIDIA GeForce RTX 3080 Ti
Python 3.10
PyTorch 1.10.2
RAM 64GB

8 Computational Intelligence and Neuroscience



data as input, but the forgetting mechanism is not
interpretable.
DKT-DT [5]: DKT-DT introduces learning process
data as input on the basis of DKT, while using the
decision tree method to analyse learning process data
and feature selection on learning process data, the
model can analyse richer feature energy and judge
students’ knowledge status more efectively.
TCN-KT [31]: TCN-KT used LSTM to model the
students’ prior basis, combined with temporal con-
volution neural network to complete the knowledge
tracing task, and solved the problem that DKT could
not obtain long-term dependence.

Te main reason is that all of these models take as input
some or all of the learning behaviours data and model
constraint in the same behaviours or collaboration in dif-
ferent behaviours. Specifcally, DKT, DKVMN, and TCN-
KT use learning end data as input and model constraint in
the same behaviours using a sequencemodel; SAKTalso uses
learning end data as input and also models constraint in the
same behaviours using a multiheaded attention mechanism;
DKT-F and DKT-DT add learning interval and learning
process data, respectively, as input, in addition to using
learning end data. Te constraint in the same behaviours is
modelled using the sequence model, and collaboration in
diferent behaviours is not modelled.

4.4. Model Performance Comparison. Te results of the
performance comparison experiments are shown in Table 3.

Te above-mentioned models can be divided into two
categories: single learning behaviour models, which refer to
models that use only learning end data as input and multiple
learning behaviours models, which refer to models that use
learning end data as input and introduce other learning
behaviours data.

Te single learning behaviour models are mainly DKT,
DKVMN, and SAKT. Among them, the AUC values of
SAKT reached 0.734 and 0.853 on the Assist17 and Junyi
datasets, which are the highest of their kind and have good
overall performance. Although all three models use learning
end data as input, the diferences in modelling constraint in
the same behaviours lead to diferences in model
performance.

Te main multilearning behaviours models are DKT-F,
DKT-DT, and AED-KT. Te frst two models introduce
other learning behaviours data as inputs, which do not
improve the method of modelling collaboration in diferent
behaviours but improve the inputs of the models, and all
perform better compared with single learning behaviour
models. Te AUC values of AED-KT outperform the other
models on all three datasets. Tis illustrates the efectiveness
of modelling collaboration in diferent behaviours based on
modelling constraint in the same behaviours.

4.5. Training Process Comparison. We use the early stop
strategy to compare the number of training rounds required
for the model to reach the same performance. Using the

early stop strategy can avoid overftting the model during
training. To verify the impact of using the early stopping
strategy, we trained 200 epochs for AED-KT. Te experi-
mental results are shown in Table 4.

Table 4 shows that with the early stop strategy, the
deviation between the AUC of the Asisstment2012 training
set and the ASSISTments2012 test set is not large, and there is
no ftting phenomenon. However, after 200 epochs of
training themodel directly, there is a large deviation between
the AUC of the Asisstment2012 training set and the
Asisstment2012 test set, and there is a problem of overftting.
In addition, the AUC of the training model with an early
stop strategy is 0.768 on the Asisstment2012 training set, and
the AUC of the model with 200 training cycles is 0.757. Te
diference is in a reasonable range, and there is no obvious
underftting phenomenon.

Furthermore, we explored the time cost of AED-KTand
the comparison models when training the same epochs, and
the experimental results are shown in Figure 7.

As can be seen from Figure 7, the time cost of AED-KT
and TCN-KT training is lower than that of DKVMN, DKT-
F, and SAKT. Tis is because AED-KT and TCN-KT use
TCN to build models. TCN does not need to process data in
time sequence to the recurrent neural network, which re-
duces the time cost. Compared with TCN-KT, AED-KT
costs less time. Tis is because TCN-KT frst uses LSTM to
model students’ prior basis, and then models their knowl-
edge level.

4.6. Comparison of Learning Behaviours. Te model per-
formance comparison results show that the introduction of
other learning behaviours as inputs can lead to improved
model performance. To further compare and analyse the
importance of the three types of learning behaviours in the
model, we adjust the inputs of the default AED-KT model:
AED-e indicates that the model uses only learning end data
bII as input; AED-pe indicates that the model uses learning
process data bI and learning end data bII as input; AED-ei
indicates that the model uses learning end data bII and
learning interval data bIII as input. Te above-given models
and their AUC values on the three datasets are given in
Table 5.

Te experimental results show that the AUC values of
the AED-e model are lower than those of the other models
on the three real data sets, indicating that analysing only the
constraint in learning end behaviour can basically determine

Table 3: Model performance comparison.

Model
Date set

Assist12 Assist17 Junyi
DKT 0.717 [32] 0.726 [33] 0.814 [34]
DKVMN 0.732 [34] 0.707 [33] 0.822 [34]
SAKT 0.691 0.734 [24] 0.853
DKT-F 0.722 [34] 0.729 0.840 [34]
DKT-DT 0.749 0.721 0.741 [5]
TCN-KT 0.743 0.732 0.758
AED-KT 0.768± 0.003 0.815± 0.005 0.864± 0.004
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the students’ knowledge status, but since bII only contains
learning end data of students’ correct or incorrect answers, it
contains limited information and cannot model the con-
straint in the same behaviours more accurately. Te AED-pe
and AED-ei models have higher AUC values than AED-e,
indicating that introducing other learning behaviours data as
input and modelling both constraint in the same behaviours
and collaboration in diferent behaviours can improve the
performance of the model on the basis of using learning end
data as input; however, the AUC values of these two models
are lower than AED-KT, indicating that on the basis of
modelling both constraint in same behaviours and collab-
oration in diferent behaviours. However, the AUC values of
these two models are lower than those of AED-KT, indi-
cating that the more comprehensive the learning behaviours
analysed by the model, the higher the performance of the
model.

4.7. Encoder Ablation Experiment. To analyse modelling
constraint in the same behaviours and collaboration in
diferent behaviours impact on model performance, we
ablation the attention mechanisms in the encoders that
model the constraint in the same behaviours and

collaboration in diferent behaviours: the model in the AED-
B representation models only the constraint in same be-
haviours, and the model in the AED-C representation
models only collaboration in diferent behaviours. Te
above-given models and their AUC values on the three
datasets are given in Table 6.

Te experimental results show that the AUC values of
the AED-KTmodel are better than the other two models on
all three data sets, indicating that it is efective to analyse the
constraint in the same behaviours and collaboration in
diferent behaviours when considering the three types of
learning behaviours together.Te AUC values of the AED-C
model are lower than those of the AED-Bmodel on the three
datasets, indicating that modelling only the collaboration in
diferent behaviours while ignoring the similarity constraint
will result in the model losing the constraint relationship of
learning behaviours on the time series and will not improve
the performance of the model. Te AUC values of the AED-
B model on the three real data sets is lower than those of the
AED-KT model, indicating that modelling only the con-
straint in the same behaviours and ignoring the collabo-
ration in diferent behaviours leads to the loss of the
interactions of multiple types of learning behaviours, which
also fails to improve the performance of the model.

4.8. Comparison of Model Representation Quality. Te rep-
resentation quality of a model refers to the overall diference
between the predicted and actual results of the model in a
real application. For example, the knowledge tracing model
KT is trained from a real data set and has good predictive
performance. When the model KT is applied to a real
teaching environment if the model predicts that 40% of the
students will answer the questions about concept C incor-
rectly, but the actual results show that only 10% of the
students answer the questions about concept C incorrectly,
this indicates that the overall diference between the pre-
diction results and the actual results of the model KT in
practice is large and the representation quality of the model
needs to be improved.

Te model KT in the above example has good predictive
performance but performs poorly in practice and cannot be
applied in a real teaching environment, indicating that both
high predictive performance and the quality of the repre-
sentation of the model are critical. Te consistency between
predicted and observed probabilities is generally measured
using calibration curves [35], and the representation quality
of each model is measured using the baseline alignment line
x � y. A calibration curve that is closer to the baseline
alignment line indicates that the model prediction proba-
bility is closer to the observed probability, i.e., the model has
better representation quality. Table 7 shows the position of
the calibration curve of eachmodel in relation to the baseline
(Assist12 is used as an example).

According to Table 7, frst, the AED-KT model cali-
bration curve value to the baseline at both lower and higher
Prediction probability, indicating that the AED-KT model
has better representation quality in comparison with the
comparison model. Second, although the calibration curve

Table 5: Te impact of diferent data on model performance.

Model
Data set

Assist12 Assist17 Junyi
AED-e 0.724± 0.004 0.778± 0.007 0.829± 0.005
AED-pe 0.763± 0.005 0.805± 0.006 0.856± 0.004
AED-ei 0.761± 0.004 0.799± 0.006 0.844± 0.006
AED-KT 0.768± 0.003 0.815± 0.005 0.864± 0.004

Table 4: Experimental results of diferent training strategies.

Method Assist12 training set Assist12 testing set
Early stop 0.768 0.757
200 epochs 0.757 0.729
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value of the SAKT model is also close to the baseline, the
calibration curve value of this model shows more dramatic
fuctuations than that of the AED-KT model, i.e., the rep-
resentation quality of the SAKT model is unstable on the
whole. Te results in Table 7 show that AED-KT is efective
in considering multiple learning behaviours and modelling
the constraint in the same behaviours and collaboration in
diferent behaviours, which enables the model to not show
severe bias and to obtain better representation.

5. Conclusions

In this paper, we propose AED-KT, a knowledge tracing
model with multiple learning behaviours, to solve the
problem that the existing knowledge tracing models cannot
accurately describe the boundedness of a single type of
learning behaviour in time series; or cannot accurately
describe the interaction of multiple types of learning be-
haviours. AED-KT model uses a multiheaded attention
mechanism to represent the constraint in the same be-
haviours and uses a channel attention mechanism to
represent the collaboration in diferent behaviours. Fusing
the constraint in the same behaviours and the collaboration
in diferent behaviours to complete the synergistic repre-
sentation of diferent types of learning behaviours. Te
experimental results of the proposed knowledge tracing
model and fve comparison models on three real datasets
show that the proposed AED-KT model performs better
and validates the efectiveness of the constraint in the same
behaviours and collaboration in diferent behaviours. In the
future, we will continue to investigate the impact of the
constraint in the same behaviours and collaboration in
diferent behaviours on the knowledge tracing model in
depth.
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