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Text summarization (TS) is considered one of the most difficult tasks in natural language processing (NLP). It is one of the most
important challenges that stand against the modern computer system’s capabilities with all its new improvement. Many papers
and research studies address this task in literature but are being carried out in extractive summarization, and few of them are being
carried out in abstractive summarization, especially in the Arabic language due to its complexity. In this paper, an abstractive
Arabic text summarization system is proposed, based on a sequence-to-sequence model. +is model works through two
components, encoder and decoder. Our aim is to develop the sequence-to-sequence model using several deep artificial neural
networks to investigate which of them achieves the best performance. Different layers of Gated Recurrent Units (GRU), Long
Short-TermMemory (LSTM), and Bidirectional Long Short-TermMemory (BiLSTM) have been used to develop the encoder and
the decoder. In addition, the global attention mechanism has been used because it provides better results than the local attention
mechanism. Furthermore, AraBERT preprocess has been applied in the data preprocessing stage that helps the model to un-
derstand the Arabic words and achieves state-of-the-art results. Moreover, a comparison between the skip-gram and the
continuous bag of words (CBOW)word2Vec word embeddingmodels has beenmade.We have built these models using the Keras
library and run-on Google Colab Jupiter notebook to run seamlessly. Finally, the proposed system is evaluated through ROUGE-1,
ROUGE-2, ROUGE-L, and BLEU evaluation metrics. +e experimental results show that three layers of BiLSTM hidden states at
the encoder achieve the best performance. In addition, our proposed system outperforms the other latest research studies. Also,
the results show that abstractive summarization models that use the skip-gram word2Vec model outperform the models that use
the CBOW word2Vec model.

1. Introduction

+rough the past two decades, there is a rapid and wide
increase in the amount of data available on the Internet such
as news, articles, journals, book reviews, etc. So, automatic
text summarizing systems are extremely needed to extract
important information from the enormous amount of
available text instead of reading the whole text [1]. In
general, text summarization can be defined as the process of
generating a short text from a longer text document by using
software, where this short text is a summary of the major
parts of the original document [2]. Text summarization can
be classified, based on the three angles of observation. +e
first angle is based on the input type, where the summari-
zation process can be categorized into a single-document

summarization or multidocument summarization. In the
single-document summarization, the input is only one
document, and the summary is generated from this docu-
ment while in multidocument summarization, the input is
multiple documents, and the summary should contain in-
formation from all of these documents. +e second angle is
based on the context, where the summarization process can
be categorized into generic, query-driven, or domain-spe-
cific summaries. Generic summaries use only the original
document(s) while query-driven summaries focus on
returning the important information related to a query from
the user or that answers a user’s query. Domain-specific
summaries use some domain knowledge to make a summary
[3]. +e last and the most important angle of text sum-
marization is based on the output type, where there are two
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types, extractive and abstractive summarization. In extrac-
tive summarization, the summary is created from sentences
or phrases in the source document(s) based on statistics and
linguistic features, while abstractive summarization ex-
presses the ideas in the source documents using different
words based on the real semantics of the text [1]; [3].
Furthermore, abstractive summarization is more compli-
cated than extractive summarization because abstractive
summarization requires semantic analysis of the text that
can be achieved by using machine learning techniques and
advanced natural language processing (NLP) [4]. However,
abstractive summarization is better, since it is like a sum-
mary that is written by humans, so it is more meaningful [5].

Recently, deep learning methods provided significant
improvements in important tasks like text translation [6];
sentiment analysis [7]; and text summarization and others
fields [8]. Also, the important feature of using deep neural
networks is it takes advantage of big datasets to improve
their results [9]. +e new text summarization methods are
based on a sequence-to-sequence framework of the encoder-
decoder model. +is model consists of two parts, encoder
and decoder. +e encoder reads a new token from the input
sequence at each time step and updates the hidden states
depending on this token. After reaching the last token of the
input sequence, the encoder produces the context vector
with a fixed length as the representation of the input, re-
gardless of the input length. +e context vector is the final
hidden state that is used to initialize the decoder. +e de-
coder, the second component of sequence-to-sequence
model, is initialized with hidden states (context vector) from
the encoder as a first hidden state, as well as 〈SOS〉 token as
the start point of the output sequence. However, the decoder
is trained to produce a new sequence with a fixed length. At
each time unit produces a new word from the vocabulary by
giving the previously generated word [10]; [9] as shown in
Figure 1, where the last hidden state of the encoder is fed as
input to the decoder with the start token 〈SOS〉 [11]. +is
model has been used in several NLP applications, such as
text summarization and machine translation. In text sum-
marization, the document that needs to be summarized is
the input sequence, and the summary is the output while, in
machine translation, the sentence in a specific language is
the input sequence, and the corresponding sentence in
another language is the output [12]; [11].

+e main drawback of this model is it encodes the entire
input sequence into just one small vector (context vector), so
it is difficult to summarize a long sequence. To solve this
problem, an attention mechanism was created by Dzmitry
Bahdanau et al. [12]. +e main idea of attention is it only
pays attention to some words of input that are most relevant
information instead of the entire sequence as shown in
Figure 2, where the hidden states of the encoder are fed as
input to attention and context from attention is fed to the
decoder at each output time step [12].

+ere are two different types of attention mechanisms
such as global and local attention. +e difference between
them depends on the derivation way of the context vector. In
global attention, the derivation of the attended context
vector depends on all the hidden states of the encoder while

it depends on only a few hidden states of the encoder in local
attention [13].

Most of the existing work in this area focuses on the
English language but it still lacks with the Arabic language
due to its complexity, including the Arabic diglossia, the
large variety in dialects, and the complex morphology of the
Arabic language [1, 2], [1]. Moreover, a lot of existing so-
lutions in this area are being carried out in extractive
summarization and few of them are being carried out in
abstractive summarization especially in the Arabic language
[1, 2]; [1]. On the other hand, Arabic is the national language
for 22 countries and more than 300 million people speak
Arabic (Al-Saleh and Menai [2]. +erefore, Arabic sum-
marization systems are highly needed these days.

+erefore, the first contribution in this research is to
propose an abstractive Arabic text summarization system
that is based on deep learning. In particular, the proposed
system is based on a sequence-to-sequence model with a
global attention mechanism to generate an abstractive
summary for Arabic news. In addition, AraBERTpreprocess
[14] has been applied in the data preprocessing stage that
helps the model to understand the Arabic words and ach-
ieves state-of-the-art results. Also, early stopping has been
applied to stop training the model at the right time. In the
second contribution, several deep artificial neural networks
have been used for developing the proposed system to in-
vestigate which of them achieved the best performance,
namely, GRU, LSTM, and BiLSTM. In the third contribu-
tion, we prove that the generated summary’s quality is af-
fected highly by the word embedding’s quality by applying
the skip-gram and the continuous bag of words (CBOW)
word2Vec word embedding models and comparing between
them. +e rest of the paper is organized as follows: Section 2
presents the related work, while in Section 3, the proposed
system is explained in detail. In Section 4, the experimental
results and evaluation are discussed. Finally, in Section 5 the
conclusion and future work are covered.

2. Related Work

Several studies were accomplished in the literature for Ar-
abic text summarization, but most of them were extractive
summarization covering single- and multidocuments. +ese
studies have been based on specifying the important parts of
the text according to three approaches, which are symbolic,
numerical, and hybrid approach [1]; [2]. On the other hand,
there is not much work done until now in abstractive
summarization in other languages particularly Arabic lan-
guage [11]. +erefore, we will start with the recent works for
Arabic abstractive summarization and then move to English
abstractive summarization.

In general, there are two approaches for abstractive
summarization which are semantic-based and structured
approaches. +e first approach focuses on identifying noun
and verb phrases by processing linguistic data to summarize
the text. Methods that use a semantic-based approach in-
volve the information item method, multimodal semantic
method, and semantic graph-based methods. However, in
the second approach, the important information of
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documents is encoded by using lead and body phrases,
ontology, including tree, and template and rule-based
schemas [14].

In Arabic text summarization, there is only one study in
the literature that uses a rich semantic graph (RSG) for a
single Arabic text document abstractive summarization [15].
+e RSG [16] is an ontology-based representation that
represents nouns and verbs of the input document as graph
nodes, while edges represent topological and semantic re-
lations between the nodes. +e system consists of three
phases: first, an RSG graph is created for the source doc-
ument, and then the generated RSG graph is reduced to a
more abstracted graph. At last, the abstractive summary is
generated from the abstracted graph. A major drawback of
this system is it is based on amanually built ontology that is a
time-consuming task [15]. Another research for abstractive
summarization in the Arabic language appeared in 2018 [4]
that had four phases to summarize. First, the input docu-
ment is broken into segments that are topically coherent
multiparagraph subparts. +en, headline keywords are
generated for each segment. After that, a primary extractive

summary is generated by extractive summarizing for each
segment. Finally, the sentence reduction technique is applied
to generate the abstractive summary. +e drawback of this
system is it depended on extractive summarization, so it is
not a purely abstractive method.

Lately, deep learning has provided excellent results and it
has been extensively employed in recent years in important
tasks such as text translation and sentiment analysis. Deep
learning was utilized in Arabic abstractive text summari-
zation for the first time in 2017 by Khoja et al. [17], where
two models were introduced.+e first model uses a standard
sequence-to-sequence architecture, and the second model
uses a sequence-to-sequence model with attention. How-
ever, the used dataset is relatively small.

In 2019, a study on abstractive text summarization for
multiple languages including the Arabic language appeared
[18]. In this study, multiple models were applied in multiple
datasets for English and Arabic and then compared between
them. +ese models are simple sequence-to-sequence with
attention, Pointer-Generator, Scheduled-Sampling, and
Policy-Gradient. In addition, a novel advanced cleaning
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technique was introduced that increased the relevancy of the
vocabulary and also the efficiency of the text summarization.
+is technique was applied to the Arabic dataset.

In 2020, two studies appeared in Arabic abstractive text
summarization, the first one was by Dima Suleiman and
Arafat Awajan [13], in which they introduced a model that
consists of two layers at the encoder which are the input text
layer and the name entities layer, while one layer at the
decoder. Both the encoder and the decoder use LSTM, but
bidirectional LSTM is used in the encoder while unidirec-
tional LSTM is used in the decoder. +ey used one of the
AraVec pretrained word embedding models for the em-
bedding layer. +e experiments were conducted in a dataset
that was collected and preprocessed to be suitable for ab-
stractive summarization. For evaluation, ROUGE1 and
ROUGE1-NOORDER were used as evaluation measures
where their values were 38.4 and 46.4, respectively. However,
the collected dataset is small and not available to the public
for allowing other studies to compare with them.+e second
one was done by Molham Al-Maleh and Said Desouki Al-
Maleh and Desouki [9], in which a new dataset for the
Arabic language was built, and then the abstractive se-
quence-to-sequence with the attention mechanism (base-
line) was applied on TensorFlow. After that, the copy
mechanism was added to match the pointer-generator
model and take advantage of both abstractive and extractive
approaches that improved their results. At last, coverage and
length penalties were applied on both models. ROUGE F1
was used as an evaluation measure with a value of 44.23.

Moving on to abstractive summarization in the English
language, deep learning was utilized in English abstractive
text summarization for the first time in 2015 by Rush et al.
[19], in which three types of encoder were proposed in-
cluding a bag of words, convolution, and attention-based
encoders. In addition, the local attention mechanism was
used by the decoder which conditions every word of the
summary to the input sentence. Furthermore, beam search
was used to select the best k target words. Gigaword dataset
was used for training while DUC-2003 and DUC-2004
datasets were used for testing. +ere were several pre-
processing stages performed on the datasets such as using
lower case letters, UNK token to represent the least fre-
quently words, tokenization, and using the symbol to replace
all digits. To evaluate the quality of the generated summary,
ROUGE1, ROUGE2, and ROUGE-L were used where the
value of ROUGE1 was 28.18 while the values of ROUGE2
and ROUGE-L were 8.49 and 23.81, respectively.

Chopra et al. [20] introduced RAS (Recurrent Attentive
Summarizer) that is an extension of abstractive sentence
summarization [19] by using a Recurrent Neural Network
(RNN) architecture instead of using a feed-forward neural
network. Gigaword dataset was used for training while the
DUC-2004 dataset was used for evaluation. ROUGE1,
ROUGE2, and ROUGE-L were used to evaluate the gen-
erated summary quality, and the results were 28.97, 8.26, and
24.06, respectively.

Nallapati et al. [21] proposed an abstractive text sum-
marization model that uses an attention mechanism with
RNN encoder-decoder architecture. +e encoder consists of

two layers bidirectional GRU-RNN while the decoder layer
consists of one layer unidirectional GRU-RNN. +e first
layer in the encoder represents the word level while the
second layer is used for the sentence level. Moreover, the
softmax layer in the decoder is used to generate the summary
words. +e word embedding of the words and several fea-
tures of input text including the name entities, part of speech
tagging, and TF-IDF were fed to the encoder. Word2vec was
used to convert the words into vectors. For training the
model, DUC, Gigaword, and CNN/Daily datasets were used
while ROUGE-1, ROUGE-2, and ROUGE-L were used for
evaluating the quality of generated summaries where their
values were 35.46, 13.3, and 32.65, respectively.

Zhou et al. [22] proposed a Selective Encoding for Ab-
stractive Sentence Summarization (SEASS) model that uses a
selective encoding model to extend the sequence-to-sequence
framework for abstractive sentence summarization. It consists
of an encoder, decoder, and selective gate. SEASS model
consists of a bidirectional GRU encoder and a unidirectional
GRU decoder. +e selective gate generated the representation
of the sentences’ words. DUC 2004, Gigaword, and MSR-
ATC datasets were used for training and testing. Furthermore,
the beam search is used to select the best target word. Finally,
ROUGE1, ROUGE2, and ROUGE-L were used to evaluate
the quality of generated summaries and their values were
36.15, 17.54, and 33.63, respectively.

+e dual-attention sequence-to-sequence framework
was proposed by Cao et al. [23]. +eir model consists of two
encoders with bidirectional GRU and one decoder that has a
gate network of dual attention. Furthermore, two context
vectors are generated and merged by the decoder instead of
one context vector. Gigaword dataset was used for experi-
mentation showing that their model greatly reduces fake
summaries by 80%. To evaluate the quality of the generated
summary, ROUGE1, ROUGE2, and ROUGE-L were used,
and their values were 37.27, 17.65, and 34.24, respectively.

A hybrid pointer-generator architecture with coverage
was proposed by See et al. [24] that uses a hybrid pointer-
generator network to copy words from the source text via
pointing and uses coverage to keep track of what is sum-
marized to prevent repetition. +eir model was applied to
the CNN/Daily Mail, and ROUGE1, ROUGE2, and
ROUGE-L were used to evaluate the quality of the generated
summary with values 39.53, 17.28, and 36.38, respectively.

As we can see there are only four research studies in
abstractive Arabic text summarization, this motivated us to
focus on applying abstractive text summarization to the
Arabic language and attempting to enhance the Arabic text
summarization quality. In the next section, the proposed
system is explained in detail.

3. Proposed System

+e different components and steps that have been used by
our system are described in this section.+e proposed system
consists of five stages which are as follows: preprocessing data,
representing data, splitting data, building and training model,
and evaluation as shown in Figure 3. +e five stages of the
proposed system are described in detail as follows.
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3.1. Preprocessing Data. +is step aims to clean data and
convert it into a coherent form to easily handle it. First, rows
with NULL values in either new content or summary have
been removed, and duplicate rows also have been removed.
+en, we have applied the following steps:

(1) Removing stop words only from the news content
such as ’ ’ ’ ’ ’, and etc. to less the data and
train the model faster because they are not very
relevant in training the model. However, stop words
have remained in the summaries because they are
important for the model to make predicted sum-
maries more like natural phrases.

(2) Removing any unwanted characters such as punc-
tuation, URLs, slash, etc.

(3) Applying AraBERT preprocess [25] to remove Ar-
abic additions from words such as ’ ’
converts to ’ ’ ’ ’ , and ’ ’. We remove
these additions to reduce number of words.

(4) Applying letter normalization to unify the letters that
appear in different forms such as replacing in { }
with { }, { } with { }, and { } with { }.

3.2. Representing Data. Due to deep learning and neural
networks just accept numbers as input but a text is a string
(not a number), word embedding is used to solve this
problem. In our implementation, word embeddings have
been created using the word2vec [26]; and the skip-gram
architecture has been used with Windows 10. A dataset of
unique Arabic news has been used to train and build the
word embeddings by concatenating each new content with
its summary. +e dimension size of the building word
embedding vectors that represent each word has been 150.
After that, two dictionaries have been built to convert words
to integers that represent their indexes for input and output
sequences. To reduce the size of vocabulary, we have used
only words that have been in word embeddings or that have

1. Preprocessing Data
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3. Spiliting Data

4. Building and Training Model 5. Evalution

Removing rows with null

Removing duplicate rows

Removing stop words from news

Removing any unwanted
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Figure 3: +e architecture of the proposed Arabic text summarization system.
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appeared more than or equal to 10 times to build a dic-
tionary. +is reduces computation time and complexity. In
addition, special tokens have been added to the dictionary
such as 〈UNK〉, 〈PAD〉, 〈EOS〉, and 〈SOS〉 where 〈UNK〉

token has been used to replace the less frequent words or
unknown words, 〈PAD〉 token has been used to make
padding for the short sentences, 〈SOS〉 token has been used
as start token of a sentence that fed into the decoder, and
〈EOS〉 token has been used as end token of a sentence.

To help train the model faster, the length of texts and
summaries has been inspected to fix the maximum length of
the news contents and summaries by taking the majority of
news contents’ length and summaries’ length. +is reduces
much extra padding and computation. Moreover, some
news does not have been included, if there would have been
more than 1 UNK in the news content or any UNKs in the
summary. +is has been done to ensure that the model has
been built with meaningful data. Finally, each sentence in
news contents and summaries has been converted to a set of
integers by using two dictionaries and padded to match the
longest sentence in the training set.

3.3. SplittingData. In this step, the dataset has been splatted
into three sets, the training set, validating set, and testing set.
+e training set has been used for training our model, the
validation set has been used for validating the model, and the
testing set (unseen set) for testing and evaluating our model.

3.4. Building andTrainingModel. +e sequence-to-sequence
framework of the encoder-decoder with attention mecha-
nism is used to generate an abstractive summary, based on
the news content or article content as the original text. Our
aim was of developing the sequence-to-sequence model
using several deep artificial neural networks to investigate
which of them achieves the best performance. Deep artificial
neural networks, including, Gated Recurrent Units (GRU),
Long Short-TermMemory (LSTM), and Bidirectional Short-
Term Memory (BiLSTM) are used to building the proposed
model. +e building model stage consists of building three
components which are the encoder, the decoder, and global
attention. A global attention mechanism is used instead of
local since it provided better results. Unfortunately, Keras
does not formally support the attention layer, so a third-
party implementation is used. Also, we are used a different
number of hidden states layers at the encoder while one
hidden states layer at the decoder to investigate the effect of
the number of layers on the generated summary’s quality.
+e architecture of the proposed model with the shape of
input and output for each layer is shown in Figure 4 for
LSTM and GRU while Figure 5 for BiLSTM.

In Figures 4 and 5, the input for the input layer is the input
sequence with a max length at the encoder side while it is the
target sequence with amax length at the decoder side.+en, the
output of the input layer is fed into the embedding layer that
produces the word embeddings for the input sequence at the
encoder side while it produces the word embeddings for the
target sequence at the decoder side. +e output of the em-
bedding layer is fed into the encoder that has someGRU, LSTM,

or BiLSTM hidden states layers. +e encoder produces two
things in the case of GRUwhich are the output and hidden state
while it produces three things in the case of LSTMwhich are the
output, hidden state, and cell state. On the other hand, the
encoder in the case of BiLSTM produces five things including
the output, two hidden states for the forward and backward
sequence, and two cell states for the forward and backward
sequence. After that, the hidden state is fed into the decoder in
the case of GRUwhile the hidden state and cell state are fed into
the decoder in the case of LSTM. Otherwise, in the case of
BiLSTM, the two last hidden states are concatenated together
using the concatenate layer and the two last cell states also; then
they are fed into the decoder, so the input of the decoder is three
vectors, one from the embedding layer and two from the en-
coder as shown in Figure 5. +en, the output from the encoder
and the decoder is fed into the attention layer that is used to
focus on the input parts that has a highly significant effect on the
output and produced the context vector. +e proposed model
has used a global attention mechanism since it provided better
results than a local attention mechanism [13]. Finally, the
context vector from the attention layer and the output from the
decoder are concatenated together and fed into the Time-
Distributed layer that is a softmax-activated dense layer to
receive the vocabulary distribution, attaching probabilities to
each word in the vocabulary. +e word with the highest
probability is then chosen as the next output. All variations of
the proposed model have been trained by using a training set
(which is 90% of the dataset) and validated using a validation set
(which is 9% of the dataset) through 50 epochs and a batch size
of 40. Sparse categorical cross-entropy has been used as a loss
function because it overcomes any memory issues. Further-
more, early stopping has been used for stopping training the
neural network at the right time by monitoring val_loss, so our
models have been stopped training once the validation loss has
increased after two iterations.

3.5. Evaluation. For testing and evaluating all variations of the
proposedmodel, the testing set is fed into the inferencemodel as
shown in Figure 3, in which the decoder is a little different than
in the training. +is difference is only in the input for the
decoder hidden states where the inputs at time t are the output
of the previous hidden state and the word embedding of the
next word in reference summary (target summary) during the
training. While during testing, there is no reference summary,
so the inputs for the hidden state are the output of the previous
hidden state and the word embedding of the previously gen-
erated word of the predicted summary. Furthermore, the input
for the first hidden state in both training and testing is the word
embedding of 〈SOS〉 token and the output hidden states from
the encoder.

3.6. Evaluation Metrics. For evaluating the quality of all
variations of the proposedmodel, two standardmetrics are used
including ROUGE and BLUE which are nondifferentiable
metrics qualified for comparing the generated summary to the
reference summary. ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) is a set of metrics and a software package
used for evaluating machine translation and automatic text
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summarization and it is a recall-based evaluation metric [27].
ROUGE measures the number of words from the reference
summary that appeared in the generated summary using
n-gram overlap between them. We compute precision, recall,
and f1-measure scores for ROUGE-1, ROUGE-2, and ROUGE-
L, where ROUGE-1 measures the word-overlap, ROUGE-2
measures bigram-overlap, and ROUGE-L measures the longest
common sequence between the reference summary and the
generated summary.

F1-measure provides the harmonic mean between pre-
cision and recall and it is computed as

F1 − measure � 2 ·
precision × recall
precision + recall

, (1)

where precision measures the percentage of n-grams from
the generated summary that is relevant to the reference
summary and it is computed as
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(None, max_length_output, 150)

Inputs:
(max_length_output,)

Outputs:
(None, max_length_output)

Inputs:
(None, max_length_output, 400)
(None, max_length_output, 400)

Inputs:
(None, max_length_output, 150)
hidden states of encoder:
(None, max_length_intput, 400)
(None, max_length_intput, 400)

Inputs:
(None, max_length_intput, 400)
(None, max_length_output, 400)

Inputs:
(None, max_length_intput,
150)

Outputs:
(None, max_length_intput,
400)

Inputs:
(None, max_length_intput)

Outputs:
(None, max_length_intput, 150)

Inputs:
(max_length_intput,)

Outputs:
(None, max_length_intput)

Outputs:
(None, max_length_output, 800)

Outputs:
(None, max_length_output, 400)

Outputs:
(None, max_length_output, 400)

Inputs: hidden states
(None, max_length_intput, 200)
(None, max_length_intput, 200)

Outputs:
(None, max_length_intput, 400)

Decoder
Hidden
states

Encoder

Outputs

Figure 5: +e sequence-to-sequence model with BiLSTM layer at the encoder and LSTM at the decoder.
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precision �
ngramRef ∩ ngramGen

ngramGen
, (2)

while recall shows how far the generated summary fulfills the
reference summary and it is computed as

recall �
ngramRef ∩ ngramGen

ngramRef
, (3)

where n-gram Ref is the number of n-grams in reference
summary and n-gram Gen is the number of n-grams in
generated summary. On the other hand, F-measure for
ROUGE-L is computed as follows [27]:

F − measureLCS �
1 + β2 recallLCSprecisionLCS
recallLCS + β2precisionLCS

,

precisionLCS �
LCS(X, Y)

m
,

recallLCS �
LCS(X, Y)

n
,

(4)

where LCS (X, Y) is the length of a longest common sub-
sequence ofX and Y,m and n are the length ofX and Y, while
ß is precisionLcs/recallLCs.

BLEU (Bilingual Evaluation Understudy) compares
generated summary to one or more reference summary by
computing the number of words from generated summary
that appeared in the reference summary [28]. BLEU is a
precision-based evaluation metric, and its score is computed
as follows [29].

First, compute a brevity penalty which looks for the
reference with the most similar length by

BP �
1, if c> r,

e
1− r/c

, if c≤ r,
 (5)

where c and r are a candidate summary and a reference
summary, respectively. Finally, the BLEU score is computed
by

BLEU � BP∗ exp 
N

n�1
wnlogpn

⎛⎝ ⎞⎠, (6)

where pn is the n-gram precisions score and wn is positive
weights [29].

4. Experiments

4.1. Experiment Setup. +e experiments have been imple-
mented using Python with Keras and run-on Google Colab
Jupiter notebook with a Tesla P100-PCIE-16GB GPU and
27.4GB RAM. We have used a “Keras” library due to it
focuses on being modular, user-friendly, and extensible. In
addition, a Keras is a high-level neural network library that
runs on top of TensorFlow [30].

4.2. Datasets. We have dealt with two datasets which are as
follows:

1. +e Arabic Headline Summary (AHS) dataset 1

2. +e Arabic Mogalad_Ndeef (AMN) dataset 2

+e AHS dataset was used in Al-Maleh and Desouki [9]
that contains approximately 300k Arabic articles and their
titles. We consider the news content as the original text and
its titles as a summary for it. While the AMN dataset was
used in Zaki et al. [18] that contains approximately 265k
Arabic news, we focus on two fields from the dataset, which
are the news content and its summary.

4.3. Results. In this section, the experimental results show
the effect of the deep artificial neural networks such as the
GRU, LSTM, and BiLSTM, and its number of layers, the
AraBERT preprocess, and the quality of word embedding
model on the generated summary’s quality. We have applied
our experiments to the AHS and AMN datasets. +e testing
set has been used for evaluation and all results are the av-
erage. Furthermore, a comparison with other research
studies is conducted to confirm the effectiveness of our
proposed system.

After applying the preprocessing data stage on the AHS
dataset and AMN dataset, they become 294 835 and 254107
unique Arabic articles and news with their summaries, re-
spectively.+en, representing data stage has been applied, so
the total number of unique words and used words and their
percentage are shown in Table 1.

Due to limitations in computing resources, we have re-
moved news that has news content length more than 412 and
42 in the summary length for the AHS dataset while 1786 and
112 for the AMN dataset. In addition, we have removed news
that has more than 1 UNK in the news content or any UNKs
in the summary, so the datasets become 247 663 and 196 874
in AHS dataset and AMN dataset, respectively. +en the
dataset is splatted into three sets as shown in Table 2.

Tables 3 and 4 show the results of applying GRU, LSTM,
and BiLSTM for the proposed model with one, two, and
three hidden layers at the encoder to the AHS and AMN
datasets. It can be observed that using two layers of GRU and
LSTM at the encoder achieves the highest average values of
F-measure for ROUGE-1, ROUGE-2, and ROUGE-L in
addition to BLEU.+erefore, applying GRU and LSTMwith
two hidden layers at the encoder is the best for the sequence-
to-sequence model among other GRU and LSTM using one
and three hidden layers to achieve the best performance. On
the other hand, it can be observed that using three layers of
the BiLSTM at the encoder achieves the highest average
values of F-measure for ROUGE-1, ROUGE-2, and
ROUGE-L in addition to BLEU. +erefore, applying
BiLSTM with three hidden layers is the best for the se-
quence-to-sequence model among other BiLSTM models
where it achieved the best performance.

Furthermore, for studying the effect of AraBERTpreprocess
on the generated summary’s quality, we implement the pro-
posed system with AraBERTpreprocess and without AraBERT
preprocess on AHS and AMN datasets and compare the results
as shown in Table 5. It can be observed that the AraBERT
preprocess provides better results than without using it. As a
result, the AraBERT preprocess plays an important role in the
preprocessing data stage.
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Moreover, a comparison between the skip-gram and the
continuous bag of words (CBOW) word2Vec word em-
beddingmodels has been conducted as shown in Table 6.+e

results show that abstractive summarization models that use
the skip-gram word2Vec model outperform the models that
use the CBOW word2Vec model. As a result, the generated

Table 2: +e three sets from the AHS and AMN datasets with number of tokens for input and output sequence.

dataset Training set Validation set Testing set
No. of tokens

Input Output
AHS 222,896 22,290 2,477 92 13
AMN 177,186 17,719 1,950 372 26

Table 3: +e result of applying GRU, LSTM, and BiLSTM with different layers at the encoder to the AHS dataset.

Model No. of layers
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
Precision Recall F1 Precision Recall F1 Precision Recall F1

GRU
1 49.44 44.12 45.17 8.0 7.13 7.35 34.05 31.31 29.81 0.32
2 50.35 45.65 46.44 9.1 8.16 8.4 34.52 32.2 30.61 0.34
3 49.87 44.0 45.37 8.08 7.24 7.47 34.53 31.4 30.14 0.32

LSTM
1 53.76 48.87 50.1 11.78 10.73 10.99 37.1 34.1 33.44 0.38
2 54.82 49.53 50.93 12.27 11.29 11.51 37.71 34.46 33.93 0.39
3 53.04 47.99 49.3 11.47 10.29 10.64 37.15 33.78 33.26 0.37

BiLSTM
1 54.16 49.84 50.8 12.65 11.63 11.89 37.51 34.87 34.05 0.39
2 55.12 50.2 51.46 13.13 11.92 12.25 38.0 35.04 34.44 0.40
3 54.95 50.48 51.49 13.1 12.01 12.27 37.84 35.19 34.37 0.41

+e highest result is given in bold.

Table 4: +e result of applying GRU, LSTM, and BiLSTM with different layers at the encoder to the AMN dataset.

Model No. of layers
ROUGE-1 ROUGE-2 ROUGE-L BLEU

Precision Recall F1 Precision Recall F1 Precision Recall F1

GRU
1 19.89 17.81 18.17 1.28 1.14 1.16 13.62 12.88 12.11 0.22
2 39.04 30.77 33.13 8.66 7.15 7.62 25.05 21.61 20.96 0.35
3 35.31 26.81 29.23 6.33 5.2 5.54 22.14 18.57 18.1 0.32

LSTM
1 39.41 32.66 34.78 11.47 9.91 10.38 26.76 23.52 23.28 0.34
2 43.47 36.23 38.2 14.5 12.71 13.28 31.13 27.01 27.14 0.36
3 36.26 32.35 33.34 10.36 9.61 9.76 25.68 23.66 23.05 0.349

BiLSTM
1 48.41 41.38 43.67 18.99 17.14 17.72 34.8 31.59 31.37 0.39
2 43.6 32.12 35.75 10.39 8.37 9.01 27.46 22.71 22.73 0.34
3 48.15 42.65 44.28 19.46 17.93 18.35 35.48 32.86 32.46 0.41

+e highest result is given in bold.

Table 1: Total number of unique words, used words, and their percentage for input and output sequences.

Dataset Dictionary Unique words Used words Percentage

AHS Input 87507 47464 54.24
Output 41859 28012 66.92

AMN Input 186191 10 626 56.73
Output 106935 72882 68.16

Table 5: Performance comparisons of the proposed system by using AraBERT preprocess and without using it.

Dataset Preprocess
ROUGE-1 ROUGE-2 ROUGE-L BLEU

Precision Recall F1 Precision Recall F1 Precision Recall F1

AHS With AraBERT 54.95 50.48 51.49 13.1 12.01 12.27 37.84 35.19 34.37 0.41
Without AraBERT 52.44 49.5 49.79 12.23 11.5 11.6 36.12 34.66 33.22 0.39

AMN With AraBERT 48.15 42.65 44.28 19.46 17.93 18.35 35.48 32.86 32.46 0.41
Without AraBERT 45.9 38.3 40.7 17.63 15.53 16.18 33.19 29.21 29.15 0.36

+e highest result is given in bold.
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summary’s quality is affected highly by the word embed-
ding’s quality.

For comparison with other Arabic research studies that
uses deep learning for text summarization, we compare our
proposed system by applying three layers of BiLSTM at the
encoder with two latest Arabic research studies based on
deep learning (Dima Suleiman and Arafat Awajan [11];
ENCODER [13]; and Al-Maleh et al. Al-Maleh and Desouki
[9], as shown in Table 7.

According to the comparison results in Table 7, it is
found that our proposed system has the best F1-measure
value comparing with other research studies [9] which
means that the summary’s quality of our proposed system is
the highest.

4.4.Discussion. By considering the experimental results seen in
Tables 3 and 4, the best performance of the GRU and LSTM is
the using two hidden layers at the encoder. For BiLSTM, three

hidden layers have achieved the best performances. It is ob-
servable from Figures 6–9 that the proposed system with ap-
plying the BiLSTM outperforms the GRU and LSTM.+us, we
can conclude that three layers of the BiLSTM hidden states at
the encoder achieve the best performance.

Also, from our experimental tests, we have found that
the applying of AraBERT preprocess in preprocessing data
stage has played an essential role in achieving the best
performance as shown in Table 5.

Furthermore, from our experimental tests, we have
found that the building of word embeddings using the skip-
gram word2vec is better than the continuous bag of words
(CBOW) word2vec as shown in Table 6. As a result, the
generated summary’s quality is affected highly by the word
embedding’s quality.

Finally, there are three examples of a generated summary
using the proposed system by applying BiLSTM with three
hidden layers at the encoder to prove the generated summary’s

Table 6: Performance comparisons of the proposed system using several word embedding models.

Dataset word2vec
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
Precision Recall F1 Precision Recall F1 Precision Recall F1

AHS Skip-gram 54.95 50.48 51.49 13.1 12.01 12.27 37.84 35.19 34.37 0.41
CBOW 52.25 48.22 49.08 11.11 10.26 10.46 36.13 33.73 32.85 0.37

AMN Skip-gram 48.15 42.65 44.28 19.46 17.93 18.35 35.48 32.86 32.46 0.41
CBOW 43.78 38.83 40.11 17.05 15.21 15.92 32.28 29.7 29.03 0.38

Table 7: Comparison of research studies [13] and [9] with our proposed system.

Models Year ROUGE-1 Dataset
Dima Suleiman et al. [13] 2020 38.4 Author’s dataset
Al-Maleh and Desouki [9] 2020 44.23 AHS
Our proposed system 2021 51.49 AHS
+e highest result is given in bold.
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Figure 6: +e best testing performance by ROUGE-1.
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Figure 9: +e best testing performance by BLEU.

Table 8: Two examples of generated summaries by the proposed system.

Example

1

Article content

Ingredients: equal amounts of rose water and lemon juice. How to use: mix the ingredients with each other well,
then put the mixture on the face and leave for 10 minutes, then wash the face and dry it well.

Reference summary Rose water and lemon juice mask.

Generated summary
Rose water and lemon juice mask.

2

Article content
Orphan Sponsoring has a great virtue; Feeding him is one of the reason to enter Paradise, Also caring of, and
kindness to, an orphan cause the heart softness and reverence, in the honourable hadith of the Prophet: “IF you
want to soften your heart and meet your needs, then have mercy on the orphan, wipe his head and feed him from

your food, your heart will soften, and realize your need.

Reference summary
Some of the virtues of sponsoring orphans.

Generated summary
+e virtue of sponsoring an orphan.
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quality. +e first and second examples are randomly drawn
from the testing set of the AHS dataset while the third example
is from the testing set of the AMN dataset. +e articles or news
content, the reference summary, and the generated summary by
using the proposed system are shown in Table 8.

5. Conclusion

In this paper, an abstractive Arabic text summarization
system based on sequence-to-sequence has been proposed.
+e core merit of this paper is investigating in three di-
rections that impact the generated summary’s quality. +e
first direction is the type of deep artificial neural network
and its number of layers that are used to implement the
encoder and the decoder. We found that that three layers of
BiLSTM hidden states at the encoder achieve the best
performance. +e second direction is the way of pre-
processing data and we found that the AraBERTpreprocess
has played an essential role in achieving the best perfor-
mance. +e third direction is the word embedding model
that is used and the results showed that the skip-gram
word2vec generated better summary quality than the
CBOW word2vec model.

We are looking forward to applying reinforcement
learning algorithms and combining reinforcement learning
techniques with deep learning models to improve the quality
of the generated summary.
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