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In this paper, a novel multistep ahead predictor based upon a fusion of kernel recursive least square (KRLS) and Gaussian process
regression (GPR) is proposed for the accurate prediction of the state of health (SoH) and remaining useful life (RUL) of lithium-
ion batteries. �e empirical mode decomposition is utilized to divide the battery capacity into local regeneration (intrinsic mode
functions) and global degradation (residual).�e KRLS and GPR submodels are employed to track the residual and intrinsic mode
functions. For RUL, the KRLS predicted residual signal is utilized. �e online available experimental battery aging data are used
for the evaluation of the proposed model. �e comparison analysis with other methodologies (i.e., GPR, KRLS, empirical mode
decomposition with GPR, and empirical mode decomposition with KRLS) reveals the distinctiveness and superiority of the
proposed approach. For 1-step ahead prediction, the proposed method tracks the trajectory with the root mean square error
(RMSE) of 0.2299, and the increase of only 0.2243 RMSE is noted for 30-step ahead prediction.�e RUL prediction using residual
signal shows an increase of 3 to 5% in accuracy. �is proposed methodology is a prospective approach for an e�cient battery
health prognostic.

1. Introduction

�e depletion of fossil fuel resources and issues related to
climate change provides a strong impetus to developers to
focus on green energy resources, green transportation, and
smart grids [1, 2]. Energy storage devices are the core
component in the above-mentioned �elds. Due to their
lightweight, high energy and power density, low self-

discharge rate, and long lifecycle, lithium-ion (Li-ion)
batteries have superiority among other sources of energy
storage devices [3, 4]. However, as the Li-ion battery is one of
the system’s costly components, it must be handled carefully
using an e�cient battery management system (BMS) [5].
�e role of an intelligent BMS is to manage the battery
e�ciently and monitor the state of the battery with high
accuracy. Li-ion battery malfunctions often lead to
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functional impairment, degraded performance, or total
failure. In recent years, the estimation and prediction of
battery state of health (SoH), state of charge (SoC), state of
life (SoL), remaining useful life (RUL), and state of function
(SoF) gained significant attention for battery health prog-
nostic (BHP) [6–8]. In smart grids, renewable energy sys-
tems, and electric vehicles, battery life is one of the most
important features to accomplish economic viability. In
battery life, battery degradation due to dynamic operational
conditions is one of the most critical issues. So early esti-
mation and prediction of battery SoH and RUL are crucial
tasks of smart BMS for reliable operation.

Researchers have been working on the Li-ion battery
capacity estimation in recent years, as it is the determinative
SOH indicator [9, 10]. When the Li-ion battery capacity
reaches 80% of its initial capacity, it must be replaced to
ensure smooth and reliable operation [11]. However, the
battery capacity cannot be measured using any physical
sensor, so it is challenging to measure the accurate SoH and
RUL. To date, various methodologies have been reported to
estimate and predict the SoH and RUL. Based on the lit-
erature, these procedures can be categorized as specific
model-based methods, data-driven methods, and hybrid
approaches [1, 12].

(e model-based methods define the battery degrada-
tion behavior by using differential, algebraic, or empirical
equations. Different researchers presented empirical models
[13–15], mechanistic models (also known as chemical
models) [16–18], equivalent circuit models [19, 20], and
fused models [21] to capture the battery degradation be-
havior. Hu et al. [22] presented a model-based method for
coestimation of SoC and SoH of Li-ion batteries.(e utilized
fractional-order battery model is identified using a hybrid
optimization algorithm, and the model shows a steady-state
error of less than 1%. In their subsequent work [23], the
authors utilized incremental capacity analysis to determine
the SoH of the electric taxi. (eir proposed methodology has
the root mean square error of 0.0204. Although the model-
based methods have good accuracy, they still have some
drawbacks. (e empirical and equivalent circuit techniques
are easy to build a model. Still, it only accurately measures
the short-term states due to changing parameters during the
cycling process. However, filtering algorithms are utilized to
update the model parameters at the cost of the high com-
plexity of the system. Similarly, mechanistic models also
have increased complexity and require expert knowledge to
build themodel [1]. It is also difficult to build these models in
noisy/uncertain environments.

(e data-driven methods require only Li-ion battery
sensor data (voltage, current, and temperature) to predict
the SoH and RUL [24]. Different machine learning algo-
rithms were used to build the connection between operation
data and battery degradation. Compared to model-based
approaches, it does not require any complex physical model;
it only builds a weight vector based upon its training data.
Tian et al. [25] proposed a deep learning sequence to se-
quence model to predict the capacity degradation of the Li-
ion battery. (e authors used the data of one cycle of the Li-
ion battery for multistep (100, 200, and 300 cycles) ahead

prediction. In another study [26], for the prediction of the
entire charging curve, a deep neural network was trained
with discrete sections of the charging curves as input. (irty
data points were collected as input in less than 10 minutes to
train the deep learning model. Wang et al. [27] proposed a
data-driven approach to diagnosing the abnormality in the
battery charging capacity. (ese techniques need historical
data to train the model. In the past, relevance vector ma-
chine, logic regression, and support vector machine have
been reported to predict the RUL [28]. In a study [29], the
authors presented the Bayesian model to predict the RUL of
Li-ion batteries under dynamic operating conditions. (ey
showed that their proposed model had better prediction
accuracy as compared to the support vector machine. Tang
et al. [30] proposed a balancing current ratio-based SOH
predictor for series-connected cells in a battery pack. Liu
et al. [31] proposed a two-stage trajectory model to deter-
mine the future aging trajectory with uncertainty quantifi-
cation. Wang et al. [32] proposed another variant of the
Bayesian model to predict the RUL. Neural network [33, 34],
autoregressive fused model [35], and Box-Cox transfor-
mation [36] were also utilized to estimate the battery ca-
pacity. In all aforementioned literature, they directly neglect
the effect of fluctuation and local regeneration phenomena
in the capacity, affecting prediction accuracy. A Gaussian
process functional regression model was proposed to tackle
the issue of local capacity regeneration [37]. A variant of
recurrent neural network (long short-term memory) was
proposed to predict the Li-ion battery capacity [38]. (eir
experimental results show an average error of 0.0765 Ah
(2.46%). In a recent study [39], a hybrid method based upon
long short-term memory and Gaussian process regression
(GPR) has been proposed to predict the capacity and RUL of
Li-ion batteries.(e GPR and long short-termmemory were
utilized to capture local regeneration and global capacity
degradation trend. (ey also predict the battery RUL for
multistep ahead. (e maximum noted error was less than
1.8%. However, it has been observed that the battery local
fluctuation and regeneration have a significant impact on the
multistep ahead prediction of SoH and RUL. (erefore,
further research is needed to predict q-step ahead SoH and
RUL with high accuracy.

Driving by the desire to increase the BMS reliability and
improve battery safety. In this study, a novel hybrid method
consisting of multiscale kernel recursive least square (KRLS)
and GPR is proposed for the q-step ahead SoH prediction of
Li-ion battery. To be more explicit, the following are the
proposed approach’s key contributions:

(i) (e empirical mode decomposition (EMD) method
is employed to split the local generation, global
battery degradation, and other fluctuations.

(ii) (e KRLS with an autoregressive moving average
with exogenous signals (ARMAX) model is recur-
sively used to predict global battery degradation.
GPR is applied to track the local fluctuation and
regeneration of the Li-ion battery.

(iii) Finally, the prediction of KRLS and GPR ensemble
to obtain the final predicted SoH.
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(iv) (e RUL is predicted using SOH, intrinsic mode
functions (IMFs), and a residual value of the battery
data.

(v) (e suggested approach is validated using various
online datasets (NASA and CALCE).

(vi) Experimental results and comparative analysis re-
veal the effectiveness and supremacy of the pro-
posed methodology, respectively.

2. State of Health of Lithium-Ion Battery

Li-ion battery is a highly nonlinear and complex electro-
chemical system, which significantly impacts its health
under dynamic operating conditions. SoC, SoH, SoL, and
RUL are the different parameters primarily used to predict
the health of Li-ion batteries [40, 41]. SoH is one of the
essential components of the BHP system [42]. (e most
widely accepted definition of SoH of the Li-ion battery can
be stated as the ratio of battery capacities at the kth cycle and
initial cycle. In other words, it can be explained using the
following mathematical equation:

SoHk �
Qk

Qo

× 100%, (1)

where SoHk is the SoH at kth cycle, and Qk and Qo are the
battery capacities at kth cycle and initial cycle, respectively.
However, battery degradation can occur in the cathode and
anode. (erefore, a scalar SOH is not sufficient. For further
details, see [43, 44].

3. Methodology

In this section, the framework of the proposed methodology
has been explained in detail.

3.1. Empirical Mode Decomposition (EMD). (e EMD is a
very efficient tool for analyzing highly dynamic signals; it
decomposes the nonstationary and nonlinear signals into
different oscillatory components known as series of IMFs
and residuals. Owing to its extraordinary abilities, it has
been implemented in other fields (e.g., image processing,
vibration, rotating machinery). Huang et al. [45] discussed
the EMD approach in more detail. In the EMD approach,
the IMFs should satisfy the following condition after
decomposition.

(1) (e mean value of upper and lower envelopes must
be equal to 0 at any instant.

(2) In the whole time series input dataset, the no. of zero
crossings and the no. of extrema must be equal to 1
or 0.

In this work, it is considered that the local fluctuation
and regeneration phenomena in original SoH signals are the
high-frequency components, and global SoH degradation is
the low-frequency SoH signal. (is signal decomposition is
also known as the sifting phenomenon. After finding all the
extreme values (minima and maxima) in the input signal
(xk), then connect all the local minimum and maximum

values using a spline line to develop a lower (ek,lower) and
upper (ek,upper) envelope, respectively. After this, compute
the local mean of both envelopes by using the following
equation:

mk �
ek,upper + ek,lower

2
. (2)

Determine the difference (D) between the xk and the
mean value (mk).

D � xk − mk. (3)

After calculating the difference, check whether D fulfills
the IMFs condition, as discussed above. If it meets all the
conditions to be an IMF signal, remove it from the xk to
obtain the residual signal (res).

resk,1 � xk − D. (4)

Repeat all the steps until the residue meets the stopping
criteria. All the information on local fluctuation and re-
generation has been saved in IMFs, and monotonous residue
contains the information on the global degradation of SoH
[46]. By adding all the IMFs and monotonous residue, the
original input signal can be described as follows:

xk � 􏽘
n

j�1
IMFk,n + resk,n. (5)

In this work, the wavelet and signal processing toolbox of
MATLAB® was utilized to perform the EMD. (e flowchart
of the working of EMD is shown in Figure 1.

3.2.KernelRecursiveLeast Square. In this work, the ARMAX
model is used to predict the SoH of the battery.(e ARMAX
model can be represented using the following equation [47]:

yk � 􏽘
M

m�1
αmy(k− m) + 􏽘

N

n�1
βnu(k− n) + c.1 + εk, (6)

where y and u are the measured signal and desired response,
respectively. α, β, and c are the model coefficients, which
have to be estimated recursively. ε represents the zero-mean
Gaussian noise. M and N are the order of the system and the
input. (e above mathematical model can be written in a
simplified form as follows:

yk � φT
k θk + ek, (7)

φT
k � yk− 1 · · · yk− Muk− 1 · · · uk− N1􏼂 􏼃, (8)

θk � α1 · · · αMβ1 · · · βNc􏼂 􏼃, (9)

where φT is the transpose of the regression vector. (e KRLS
method can be utilized to determine the unknown coeffi-
cients of the above equation. (e cost function can be
expressed by the following equations:
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min
θk
JKRLS � ∑

n

k�1
λn− k yk − κ φk, .( )Tθk− 1

∣∣∣∣∣
∣∣∣∣∣
2
+ RλN θk− 1

����
����2H,

(10)

ϕk � κ φ1, .( )κ φ2, .( ) · · · κ φk, .( )[ ]T, (11)

whereMercer kernel is represented by κ.ϕ, R,H, and λ are the
kernelmatrix, regularization factor (always taken as a positive
number), reproducing kernel Hilbert space (RKHS), and the
forgetting factor, respectively. �e most commonly used
kernel for prediction are the Gaussian kernel κ(φ,φ″) �
exp(− ‖φ − φ″‖/2σ2), polynomial kernel κ(φ,φ″) � (φTφ″
+c)p, and sigmoid kernel κ(φ,φ″) � tanh(s(φTφ″) + t) [48],
where σ,φ″, c, and p are the scaling factor, latest upcoming
data, positive valued constant, and polynomial order, re-
spectively. s and t both are positive constants. In this work,
all the kernel function was implemented. �e presented
results are of the polynomial kernel, which shows the best
accuracy.

�e KRLS method works by mapping input data into
high dimension RKHS. In this process, the linear inner
product changes into RKHS by simply replacing the inner
product with kernels [49, 50]. �e linear algorithms can
then be used to solve the transformed feature space (RKHS).
�e unique global solution is the salient feature of kernel-
based methods [51]. Additionally, if the input data is highly
nonlinear, the linear regression techniques fail to model it
accurately. Kernel-based algorithms can easily tackle this issue
by mapping the nonlinear data into high dimension linear
feature space. Because of the high dimensionality of data in
RKHS, it experiences over�tting problems. �is issue can be

resolved by penalizing it to the L2 norm, as shown in (10) [52],
which can be solved and updated as follows [53]:

θk � ϕk Rλ + ϕTkϕk[ ]
− 1
yk, θk � ϕkak, ak � Qkyk,

Q1 � Rλ + κ φ1,φ1( )[ ]− 1, a1 � Q1y1,

Kk � K
T
k− 1κ φ1, .( )

zk � Qk− 1Kk,

δk � Rλ + κ φk,φk( ) − zTkKk,

Qk � δ− 1k
Qk− 1δk + zkz

T
k − zk

− zk 1
 ,

ek � yk − K
T
kak− 1,

ak �
ak− 1 − zkδ

− 1
k ek

δ− 1k ek
 .

(12)

�e approximate linear dependency criteria are used to
reduce the computation complexity of KRLS due to an
increase in observations [54]. In this work, the KRLS cou-
pled with approximate linear dependency has been
employed using MATLAB®. To estimate the model capacity
(ŷk), (7) can be written as follows:

ŷk � φTk θ̂k + ek. (13)

(13) can be modi�ed for q-step ahead prediction (ŷk+q)
as follows:

ŷk+q � φTk+qθ̂k + ek. (14)

3.3. Gaussian Process Regression. A GPR is an e¥ective
approach to solving nonlinear regression and classi�cation
problems [55, 56]. GPR is a probabilistic nonparametric
model, which combines di¥erent variables; these combi-
nations are de�ned by the probability distribution (f(x)).
�e GPRmodel can be described by its mean and covariance
(kernel) function as follows:

f(x) ∼ GPR m(x), k x, x′( )( ), (15)

where m(x) and k(x, x′) are the mean and covariance
functions, respectively. �e m(x) function is mainly as-
sumed as zero.�e relation between input and output can be
expressed as follows:

y � f(x) + ε, (16)

where ε is the additive noise, which has zero mean and
variance of σ2n.

ε ∼ N 0, σ2n( ). (17)

By using (16), the likelihood can be written as follows:

p(y|f) � N y|f, σ2nI( )y, (18)

where y � [y1, y2, y3 . . .yn]T, f � [f(x1), f(x2), f(x3) . . .
f(xn)], and I is theM ×M unit matrix. According to [57],
the marginal distribution of p(f) can be written as follows:

Read input signal
(xt)

Calculate mean

mk =
ek,upper + ek,lower

D =xk – mk
Use D as new

signal xk 

Use res as new
signal xk 

resk, 1 = xk – D

IMFk,n + resk,n∑

No

No

Whether D
fulfills the IMFs

condition?

Whether res
can decompose in

IMF?

Yes

Yes

2

j=1

n
xk =

Figure 1: Flowchart of EMD.
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p(f) � N(f | 0, K), (19)

where K � k(xi, xj), using (18) and (19).

p(y) � 􏽚 p(y|f)p(f)df � N f|0, Ky􏼐 􏼑, (20)

where Ky � K + σ2nI, for the prediction of the target value
(y∗) for the updated input value, the joint distribution over
y1, y2, y3, . . . ym, y∗ can be written as follows:

y

y∗
􏼢 􏼣 �

f

f∗
􏼢 􏼣 +

ε

ε∗
􏼢 􏼣􏼠 􏼡: N 0,

Ky

k
T
∗

k∗

k∗ ∗ + σ2n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (21)

where f∗ � f(x∗) is the latent function corresponding to its
input x∗ and noise ε∗. k∗ � [k(x∗, x1), k(x∗, x2), k(x∗, x3),

. . . , k(x∗, xM)]T and k∗∗ � k(x∗, x∗). (e predictive dis-
tribution p(y∗|y) is the Gaussian distribution, which has the
following characteristics:

m x∗( 􏼁 � k
T
∗K

− 1
y y,

σ x∗( 􏼁 � k∗∗ − k
T
∗K

− 1
y k∗ + σ2n.

(22)

(e K− 1
y can be calculated using Cholesky decomposition

[58]. (e covariance (kernel) function is a very critical
component in the prediction process. (e rational quadratic
kernel functions are used for the prediction [39].

3.4. Proposed Methodology. In this work, EMD, KRLS, and
GPR-based fused battery SoH prediction models have been
proposed. (e framework of the proposed approach is
shown in Figure 2.

(e raw battery sensor data is passed through the Savitzky-
Golay filter to reduce the measurement noise error [59]. (e
filter is implemented using the MATLAB® tool sgolayfilt. Afterthat, the battery SoH was calculated using (1). (e EMD
technique is utilized to decompose the battery SoH in IMFs and
its residual signals, as discussed in Section 3.1. (e KRLS and
GPRmethodology was adopted to track the global degradation
and local regeneration phenomenon in the Li-ion battery,
respectively. Finally, the predicted IMFs and residuals were
ensembled to get the predicted SoH. When the predicted SoH
exceeds the battery end of life (EOL), the RULwill be predicted.
Percentage fitting (FIT) and root mean square error (RMSE)
were utilized to evaluate the performances of SoH prediction.

FIT � 100 1 −

��������������������

􏽐
N
k�1 yk − 􏽢yk( 􏼁

2

􏽐
N
k�1 yk − mean yk( 􏼁( 􏼁

2

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

RMSE �

��������������

1
N

􏽘

N

k�1
yk − 􏽢yk( 􏼁

2

􏽶
􏽴

.

(23)

where yk and 􏽢yk are the original and estimated output, and
N is the total number of samples.

In this study, to examine the accuracy of RUL prediction,
the following testing standard has been followed:

Accuracy(%) � 1 −
RULactual − RULpredicted

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

RULactual

⎛⎝ ⎞⎠ × 100.

(24)

4. Experimental Data and Results

In this section, the proposed methodology’s distinctiveness
is evaluated using NASA’s online available data source [60].
(e details of different battery datasets are presented in
Table 1. All the processing is done on MATLAB 2021 ® withthe personal computer having the specification of Intel(R)
Core (TM) i7-10700 CPU @ 2.90GHz processor with 32GB
RAM, 1 TB SSD, and a 64-bit Windows 10 Pro operating
system (OS).

(e cyclic aging experiments were carried out on all
NASA batteries using a programmed electric load, adjustable
temperature chamber, and electric supply [61]. (e dis-
charge current and temperature of all the Li-ion batteries are
shown in Table 1. Further details of the experimental setup
can be found in [61]. (e SoH trends of all Li-ion batteries
can be seen in Figure 3.

After collecting battery data through transducers, it
passes through the Savitzky-Golay filter. (e filter reduced
the measurement noise error. (e EMD technique de-
composes the Li-ion battery SoH into residual and IMFs
signals, as shown in Figure 4.

(e prediction results of Li-ion batteries B0005. B0006,
B0018, B0055, and B0056 using the proposed technique
(EMD, KRLS, and GPR) are shown in Figure 5, respectively.

For the comparison between the proposed and other
methodologies such as solo GPR, solo RLS, EMD+GPR, and
EMD+KRLS, the results are presented in Figure 6.

To further validate the model, another available online
dataset of the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland is used for pre-
diction [62]. (e Arbin BT2000 system with a temperature-
controlled chamber was used to perform all cycling tests on
the CALCE battery dataset (CX2-16). (e CX2-16 battery
was drained at 1.1 A steady current, for further information
on the experimental setting, see [39, 61]. 60% of the data is
used for the training and the rest for the Li-ion battery
capacity prediction (CX2-16). (e prediction results are
shown in Figure 7.

SoH and
RUL

Prediction

Predictor
Model

KRLS and
GPR

Ensemble

GPR

Savitzky
filter

Current
sensor

Voltage
sensor

Capacity

PRE PROCESSING

SoH

KRLS

DECOMPOSITION, TRAINING, AND PREDICTION

IMFs

EMD

Residual

Figure 2: A framework of the proposed methodology.
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�e FIT of 1-step ahead prediction of the proposed
methodology for all datasets is shown in Figure 8.

�e q-step ahead prediction of the proposed method-
ology is shown in Figure 9 (for B0018), and the RMSE results
of all datasets are presented in Table 2, respectively.

�e q-step ahead prediction comparison of proposed
and other methodologies is illustrated in Figure 10.

�e results of RUL prediction accuracy against di¥erent
parameters have been presented in Tables 3–7 for the Li-ion
batteries. For all Li-ion battery datasets, the RUL is predicted
at various cycle numbers to check the accuracy. �e com-
parison of the proposed approach with another state-of-the-
art study is shown in Table 8.

5. Discussion

In this work, a BHP model is proposed to avoid unexpected
battery failures. As discussed earlier, the accurate and early
SoH prediction of Li-ion batteries is one of the main
components of intelligent BMS.

�e basic framework of the proposed approach is shown
in Figure 2. After the �ltration step, the EMD technique
divides the SoH of the Li-ion battery into its global deg-
radation (residual) and local regeneration (IMFs) (see
Figure 4). �e EMD technique consumes 0.54ms and
2.31ms to decompose the data of Li-ion batteries B0055 (102
data points) and CX2-16 (1998 data points), respectively.
�e residual shows the actual SoH degradation of the Li-ion
battery (Figure 4). Meanwhile, all local regeneration points
of the original SoH were captured by all IMFs. �e one-step-
ahead prediction results of Li-ion batteries B0005. B0006,
B0018, B0055, and B0056 are shown in Figure 5. 110 battery
cycles out of 168 were used to train the model for B0005 and
B0006, as shown in Figures 5(a) and 5(b). �e KRLS ef-
fectively tracks the residual values without any signi�cant
error, as shown in Figure 5. �e GPR was utilized to predict
the IMFs signal of the batteries, and it shows good tracking
ability, also reported in [39]. �e proposed methodology
shows similar accuracy in the case of B0018. 80 out of 127
samples were used to train the models (see Figure 5(c)). In
[61], the author used B0005, B0006, and B0018 to validate his
proposed multiscale logic regression (LR) and GPR model.
�e results showed the maximum RMSE of 0.8 for 1-step
ahead prediction; in comparison, our proposed methodol-
ogy shows the maximum RMSE of 0.284 for the mentioned
dataset. �e data of Li-ion batteries B0055 and B0056 was
noisy because these batteries were operated at 4°C. �e
proposed methodology still shows high accuracy in the
presence of perturbation, as seen in Figures 5(d) and 5(e).

Table 1: Details of the dataset used for prediction.

Battery
type

Battery
no.

Lower cuto¥
voltage (V)

Upper cuto¥
voltage (V)

Charging
current (A)

Discharging
current (A)

Operating
temperature (°C)

New battery
capacity (ah)

Total no.
of cycle

End of
life

Li-ion
18650

B0005 2.7

4.2 1.5 2

24 1.86 168 127
B0006 2.5 24 2.04 168 127
B0018 2.5 24 1.85 127 97
B0055 2.5 4 1.32 102 70
B0056 2.7 4 1.34 102 70

0
50

60

70

80

90

100

So
H

 (%
)

50 100

Cycle No.

150 200

B0005

B0006

B0018

B0055

B0056

Figure 3: SoH degradation of di¥erent batteries.
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Figure 6 reported the comparison results; the solo GPR has
poor tracking capability and shows a signi�cant prediction
error. In contrast, EMD with KRLS has shown the second-
best prediction accuracy after the proposed approach. For
the CALCE dataset, 1200 data points from 1998 were used to
train the model. �e prediction RMSE was just 0.64 for the
whole prediction of 798 data points (see Figure 7). �e
proposed method predicts 1-step ahead values with high

accuracy (Figure 8). �e SoH �tting accuracy of B0055 and
B0056 is on a bit lower side due to high perturbation in the
measured signal. However, it still shows better accuracy as
compared to [61].

For all the datasets, for q-step ahead prediction, 5, 10, 15,
20, 25, and 30 steps ahead prediction was carried out. �e
graphical presentation of the q-step ahead of the Li-ion
battery (B0018) is shown in Figure 9. It can be observed that
the proposed methodology shows high accuracy even in the
case of a 30-step ahead prediction (see Table 2).�e RMSE of
the 1-step prediction of B0006 was 0.2299, while it shows
only a small increase of 0.2243 in RMSE for the 30-step
ahead prediction. In some cases, the prediction RMSE re-
duces with the increase of the value of the ahead prediction
step. In the case of B0005, the 0.2823 RMSE was noted at 5-
step ahead prediction, while the RMSE at 10-step ahead
prediction is just 0.2296, which is 0.0527 lesser than the 5-
step ahead prediction error. At 5-step ahead prediction of Li-
ion battery (B0005), there was a regeneration point to
predict, which is why the RMSE was more at 5-step than 10-
step. �e maximum RMSE of 1.1021 was noted for Li-ion
battery (B0055) at 30-step ahead prediction under a per-
turbated environment. �e q-step ahead prediction com-
parison analysis reveals the e¥ectiveness and distinctiveness
of the proposed methodology under q-step ahead prediction
(see Figure 10).

For a smart BMS, the early accurate prediction of Li-ion
battery RUL is one of the key components for safe and
reliable operation. Di¥erent features were used to predict the
RUL at di¥erent cycle numbers using the proposed robust
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Figure 5: Prediction results of Li-ion battery using proposed approach: (a) B0005; (b) B0006; (c) B0018; (d) B0055; (e) B0056.
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model in this work. Predicted SoH, IMFs, and residual were
used to estimate the future RUL of the Li-ion battery. All the
RUL prediction results of Li-ion batteries are tabulated in
Tables 3–7. For B0005 and B0006, the RUL prediction was
started at cycles 50 to 120 with a di¥erence of 5 cycles; it can
be observed in Table 3 that the RUL accuracy was just 75.59%
at the 50th cycle using SoH as the predictor, while residual
has the accuracy of 99.21% at the same point. In [61], the
RUL prediction accuracy of just 79.84% was observed at the
50th cycle. �e RUL prediction accuracy increased with the
prediction point (i.e., at 110 cycles, the RUL prediction
accuracy was 94.57%). Similarly, a prediction error of 3.3%
was noted in [39]. �e residual has the minimum RUL
prediction accuracy of 96.06% at the 90th cycle. In com-
parison, SoH has an accuracy of 96.85% at the same point.
�e accuracy of IMFs was far below the accuracy of SoH and
residual, which is also re®ected in the results. �e average
RUL prediction accuracy using residual and SoH as a feature
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was 97.53% and 94.12%, respectively. It can be concluded
that the prediction of RUL using residual value has better
accuracy as compared to other parameters. Similar results
can be observed for all other batteries (see Tables 4–7). For
Li-ion battery CX2-16, the average RUL prediction accuracy
was 99.51%. An average absolute error of only 3, 12, and 3
cycles is noted for the Li-ion battery B0005, B0006, and
B0018, which is 13, 10, and 2 cycles lesser than the other
study [61] (see Table 8). Hence, after extensive experi-
mentation and comprehensive analysis, it can be concluded

that the proposed trained model predicts the SoH and RUL
with high accuracy.

6. Limitations and Future Perspectives

�e presented technique for predicting battery health might
be employed to develop a BMS.�e predictionmodel, on the
other hand, is validated in a controlled environment, such as
constant charging/discharging current and temperature. In
contrast, the operation circumstances ®uctuate substantially
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Figure 9: Q-step ahead prediction of Li-ion battery (B0018).

Table 2: RMSE of proposed technique at q-step ahead prediction.

1_step 5_step 10_step 15_step 20_step 25_step 30_step
B0005 0.2723 0.2823 0.2296 0.2877 0.3016 0.334 0.4125
B0006 0.2299 0.2341 0.3283 0.3651 0.4023 0.4183 0.4542
B0018 0.284 0.3135 0.3455 0.3582 0.3452 0.4243 0.4997
CX2_16 0.6444 0.6654 0.6723 0.6776 0.7293 0.7322 0.7837
B0056 0.8129 0.8239 0.8546 0.8927 0.9321 0.9567 0.9912
B0055 0.9025 0.9491 0.9412 0.9715 1.0012 1.0123 1.1021
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Table 3: RUL prediction accuracy (%) for B0005.

RUL
Parameters

Cycle numbers
50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

SOH 75.59 84.25 88.19 92.13 94.49 96.85 98.43 100 96.85 96.85 99.21 96.06 99.21 96.85 96.85
IMF 1 85.83 37.8 59.84 72.44 72.44 64.57 72.44 73.23 86.61 75.59 95.28 82.68 69.29 96.06 97.64
IMF 2 62.2 85.83 62.2 66.93 74.02 75.59 88.19 59.06 93.7 86.61 65.35 87.4 92.91 87.4 70.08
IMF 3 69.29 71.65 74.8 77.95 80.31 81.89 91.34 88.98 87.4 85.83 88.98 95.28 100 98.43 100
Residual 99.21 99.21 98.43 97.64 97.64 96.85 96.85 96.85 96.06 96.06 96.85 96.85 97.64 97.64 99.21

Table 4: RUL prediction accuracy (%) for B0006.

RUL
Parameters

Cycle numbers
50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

SOH 97.64 98.43 89.76 84.25 81.1 81.89 85.83 84.25 84.25 94.49 92.13 97.64 93.7 95.28 96.06
IMF 1 100 48.82 70.87 75.59 81.89 81.1 86.61 93.7 73.23 66.14 74.02 79.53 90.55 80.31 94.49
IMF 2 93.7 99.21 40.16 46.46 48.82 68.5 94.49 11.81 98.43 33.07 98.43 14.17 22.05 18.9 32.28
IMF 3 10.24 20.47 8.66 18.9 40.16 37.8 14.96 30.71 72.44 77.17 59.84 52.76 65.35 85.04 99.21
Residual 96.06 93.7 91.34 89.76 88.98 88.19 87.4 88.19 88.98 89.76 91.34 92.91 94.49 96.85 98.43
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Figure 10: q-step ahead prediction comparison (B0018).

Table 5: RUL prediction accuracy (%) for B0018.

RUL
Parameters

Cycle numbers
40 45 50 55 60 65 70 75 80 85 90 95

SOH 97.94 94.85 80.41 92.78 92.78 97.94 93.81 98.97 96.91 95.88 98.97 96.91
IMF 1 78.35 13.4 78.35 30.93 80.41 78.35 70.10 97.94 96.91 91.75 84.54 85.57
IMF 2 04.12 78.35 41.24 53.61 84.54 80.41 78.35 95.88 91.75 90.72 49.48 75.26
Residual 96.91 100 98.97 98.97 100 97.94 95.88 94.85 93.81 93.81 95.88 98.97

Table 6: RUL prediction accuracy (%) for B0055.

RUL
Parameters

Cycle numbers
30 35 40 45 50 55 60 65

SOH 62.86 58.57 62.86 82.86 97.14 84.29 88.57 91.43
IMF 1 44.29 02.86 21.43 68.57 45.71 38.57 60.00 68.57
IMF 2 30.00 14.29 18.57 30.00 75.71 22.86 57.14 64.29
IMF 3 74.29 02.86 44.29 25.71 82.86 75.71 27.14 21.43
IMF 4 05.71 34.29 72.86 98.57 82.86 80.00 85.71 92.86
Residual 84.29 84.29 84.29 84.29 85.71 88.57 91.43 95.71
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throughout cycles, causing the battery to deuterate in nu-
merous phases. (erefore, the performance of the proposed
approach must be checked under dynamic conditions.
Furthermore, the RUL prediction of a single battery cell is
solely considered in this study. However, in a battery pack,
numerous cells are connected in series/parallel. Because of
the unequal aging of the battery cells caused by the tem-
perature differential, the battery pack RUL prediction must
be investigated with uncertainty quantification in the future.

7. Conclusion

In this work, the battery health predictor has been proposed
to reduce the chances of unexpected battery failures. To
address the issue of accurate prediction for local regener-
ation in the SoH signal, the EMD technique was employed to
decompose data into low and high-frequency signals. (e
recursive KRLS method was utilized to track the global
battery degradation and GPR to predict the local fluctuation
and regenerations points with high accuracy. (e proposed
methodology shows above 91% fitting accuracy at 1-step
ahead prediction under a normal environment. It has the
maximum RMSE of 1.1021 at 30-step ahead prediction
under a perturbated environment. (e comparison analysis
also illustrated that the proposed methods are more effective
and accurate. Furthermore, the results show that the RUL
prediction using the residual has 3 to 5% higher accuracy
than the RUL prediction using SoH. It means that the
proposed technique can be utilized to design the battery
health prognostics.
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