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In this work, we provide a new generated class of models, namely, the extended generalized inverted Kumaraswamy generated
(EGIKw-G) family of distributions. Several structural properties (survival function (sf), hazard rate function (hrf), reverse hazard
rate function (rhrf), quantile function (qf) and median, s™ raw moment, generating function, mean deviation (md), etc.) are
provided. The estimates for parameters of new G class are derived via maximum likelihood estimation (MLE) method. The special
models of the proposed class are discussed, and particular attention is given to one special model, the extended generalized
inverted Kumaraswamy Burr XII (EGIKw-Burr XII) model. Estimators are evaluated via a Monte Carlo simulation (MCS). The

superiority of EGIKw-Burr XII model is proved using a lifetime data applications.

1. Introduction

Study of data is the most important and fundamental topic
in statistics. The probability distributions help in the
characterization of the variability and uncertainty prevailing
in data by identifying the patterns of variation. The objective
of statistical modeling is to develop appropriate probability
distributions that adequately explain a data set generated by
surveys, observational studies, experiment, etc.

In this context, there have been fundamental and sig-
nificant thriving in probability distribution theory via the
introduction of new generalized families of distributions,
and several techniques to develop new distributions have
been proposed. Some well-known systems of distributions
are the beta generalized family of distributions by Eugene
et al. [1], gamma generalized family by Zografos and
Balakrishnan [2], Kumaraswamy generalized class of dis-
tributions by Cordeiro and de Castro [3], McDonald

generalized family by Al-Sarabia [2012], gamma generalized
family of distributions (type 2) by Ristic and Balakishnan [4],
gamma generalized family (type 3) by Torabi and Hedesh
[5], transformed-transformer (T-X) family by Alzaatreh
et al. [6], logistic generalized family of distributions by
Torabi and Montazeri [7], Weibull generalized class by
Bourguignon et al. [8], Lomax generalized family of dis-
tributions by Cordeiro et al. [9], logistic X by Tahir et al. [10],
odd generalized exponential family (OGE-G) by Tahir et al.
[11], Garhy generalized class by Elgarhy et al. [12],
Kumaraswamy-Weibull generalized family of distributions
by Hassan and Elgarhy [13], exponentiated Weibull gen-
eralized family by Hassan and Elgarhy [14], additive Weibull
generalized family by Hassan and Hemeda [15], type II half
logistic generalized class by Hassan et al. [16], Zubair-G
family of distributions by Ahmad [17], generalized inverted
Kumaraswamy (GIKw) generated class by Jamal et al. [18],
exponentiated Kumaraswamy-G class by Silva et al. [19], and


mailto:el_hassanein@yahoo.com
https://orcid.org/0000-0002-7431-5756
https://orcid.org/0000-0001-5154-7477
https://orcid.org/0000-0001-5043-9394
https://orcid.org/0000-0003-0524-6782
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1612959

type II Kumaraswamy half logistic family by El-Sherpieny
and Elsehetry [20].

The inverted distributions are applied in various spheres
of life including life testing, biology, environmental science,
engineering sciences, and econometrics. Al-Fattah et al. [21]
proposed the inverted Kumaraswamy (IKw) model via
Y=1/X-1 transformation, when X has a Kumaraswamy
distribution. Igbal et al. [22] further generalized the model
via transformation T'= X to introduce the IKw distribution
and proposed the generalized inverted Kumaraswamy
(GIKum) distribution with respective cdf and pdf:

F(x)=[1-(1+x")"],

(1)
Fx) = afyx’ (1 +x) 1= (142"

where a >0, >0, y> 0 are the shape parameters, and x > 0.
Let s(t) denote the expression for pdf of some random
variable (rv), T € [a,b], where —co<a<b< oo, and con-
sider D[W (x)] is some function of cdf of another rv, say X;
the T-X family can be defined as
D[W (x)]

Fx) = J s(t)dt, 2)

a
where D[W (x)] satisfies the following:

(1) D[W (x)] € [a,b].

(2) D[W (x)] is differentiable and monotonically non-
decreasing function.

(3) DIW(x)] — aas x — —o00, D[W(x)] — b as
X — 00.

We give a new G class, the extended generalized inverted
Kumaraswamy generated (EGIKw-G) family, considering
s(t) to be GIKum and using the generator (WA (x,9)/1 -
W (x,9)) as D[W(x)] in (2) in order to obtain the

Srcikw-c (%) = aByrw (x, 9)
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distributions which show higher flexibility compared with
other commonly used standard distributions; see [23, 24].
For W (x) some baseline cdf, the expression for the cdf of
EGIKw-G class is

(WH(x9)/1-W* (x,9))
Frokw-g (%) = « J-
EGIKw-G By o (3)

A+ T -1+ ) e,

or equivalently

whx,9 \'1° f

Frgricw-c (%) = {1 - [1 +(#l(x)9)) ] ]» , (4
where a >0, >0, A and y >0 are extra positive parameters
which offer the skewness, hence promoting the tails weight
variation, and 9 denotes baseline parametric space. For the
conditions on baseline distributions, a detailed note can be
found in Alzaatreh et al. [6]. In the following section, the
pdf, reliability measures, and qf are explored. In Section 3,
four special submodels of EGIKw-G class are discussed. In
Section 4, several useful properties of the suggested class are
provided. In Section 5, MCS study and MLEs are considered
to verify the convergence properties. In Section 6, the
practical importance of considered G class is examined
through real-word data.

2. Density and Reliability Measures

In this part of paper, we offer a brief discussion on some of
the other basic functions related to the EGIKw-G class of
models including the pdf, the sf, the hrf, the rhrf, and the
cumulative hazard rate function (chrf) which have an
important role in reliability theory. If X follows EGIKw-G
class (4), then its pdf is

W (x,9) (
[1- W' (x9)]

W (x,9)

o) T

Whed) \7UL( whwe) VT
1— Wi(x,9) I Wix9)

1

(5)
W (x,9)

] o y a—1
= apyhw (x, OW"! (6 O[1- W (5, 9)] [l<m) ]

W (x,9)

L) T
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The expressions for the sf, the hrf, the rhrf, and the chrf
are given by

W (x,9)

ARG
SEGIKw—G(x)zl_{l_[lJr(m) ] } ,

M- (X) = aByhw (x, YW (x, 9)[1- W' (x,9)]

. Wrx,9 1!
"\ IS W % 9)
Ly W/\(X,S) y1-ay B-1
% 1= Wix,9)
b YT
1o Wix,9) :
Hyornc (%) = afphw (x, YW (x, 9)[1 - W (x,9)] "

W (x,9)

y —a—1
X[”(l—wk(x,m) ]
(W AR
17 "\ w9 :

Qpgirw-g (x) = —log[1 - F (x)]

-8 1- Wi (x,9) :
(6)

respectively. The EGIKw-G class can be easily simulated
through inverting (4) as follows: let u be a standard uniform
rv, rv; the inverse cdf or qf is given by solving
Frgixw-g (%,) = u as

Q(u) = x,

_ —(1/4)
= W‘l[l +[(1 _u(l/ﬂ))’(l/w) ~ 1] UM] _ (7)

Furthermore, median, three quartiles, and seven octiles
can be, respectively, obtained by Q(0.5), Q(0.5);
q; = Q(i/4), i € (1,2,3); and 0, = Q(j/8), je
(1,2,3,4,5,6,7). The qf is useful for evaluating some crucial
properties including skewness, kurtosis, and central prob-
abilistic results. The Bowley skewness is given by

Sip = 9 +49 — 2‘12_

8
93 — 4 ®)

For some baseline distribution W (x) when the resulting
EGIKw-G distribution is symmetric, right skewed, and left
skewed, we have S, =0, S, >0, and S, <0, respectively. A
measure of kurtosis, the Moors kurtosis (see, e.g., Moors
[25]), is given as

% _0;-0,+0;-04
um — 06_02 .

(9)

The tail of the EGIKw-G distribution becomes heavier as
K,,, increases, provided that W (x),«,f,y, andA remain
unchanged.

Note that the EGIKw-G class of models outlined above
reduces to generalized inverted Kumaraswamy generated
(EGIKw-G) class proposed by Jamal et al. [18], for y = 1, and
when p=1,1=1, the exponentiated-G class given by
Cordeiro et al. [26] is obtained. Hence, parameter y offers
more flexibility to the extremes for the density function
curves, and therefor new G class becomes more suitable for
data sets which exhibit heavy tail. For every generated

model, “‘W” and “ w” represent baseline cdf and pdf,
respectively.
3. Special Models

The EGIKw-G density function (4) offers high flexibility in
tails along with promoting variation in tail weights to ex-
tremes of specific model. In this section, we provide four of
many possible submodels under EGIKw-G class offering a
more better fit to the data. For brevity, in the remainder of
this paper, we shall comment in detail on only four of the
most impotent EGIKw-G distributions, namely, EGIKw-
Normal, EGIKw-Fréchet, EGIKw-Uniform, and EGIKw-
Burr XII distributions.

3.1. EGIKw-Normal Distribution. The EGIKw-Normal pdf
is obtained from (5) for W(x)=®((x—-pu)/o) and
W(x) = ¢ ((x —u)lo), so

B 1 (x—p x =\ !
760 = ey o) o))
x—m\ P!
Li-[o()] |
Yy -o-
x«[l+( [©((x - wio) A)}
1 - [®((x - wlo)]
PR A et
bl T
1= [®((x - wlo)]

and the cdf is

PN A T
S ST e
1= [@(((x - wlo))]

where x € R, y € R, and 0> 0; ¢(-) and ®(-), respectively,
denote the standard normal pdf and cdf. The rvX in the
above expression is EGIKw-N, e.g.,
X ~ EGIKw - N (a, B, p, A,y 0%). Foruy=0and 0 =1, it
reduces to standard EGIKw-N distribution. The pdf and hrf
plots of EGIKw-N model are depicted in Figure 1. As given
in Figure 1(b), the hrf gives increasing, inverted bathtub, or
decreasing (reversed-]) shapes.

1 (10)
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FIGURE 1: Selected f(x) and h(x) graphs of EGIKw-Normal model.

3.2. EGIKw-Fréchet Distribution. The Fréchet cdf and pdf
for x >rbin 0, &>0,and ¢>0 are W(x) =exp(-6
x~?) and w(x) = Spx™ ¢ Lexp(-0x~?), respectively. Cor-
respondingly, the EGIKw-Fréchet
EGIKw - F(a, 3,9,1,6, ¢) is

(x) = aByrdgx " exp (~0x~7) [exp (—0x~ )]

X [l - [exp(_(sx*(p)],x]*}’*l
X { 1+ ( [eXP(—&c‘(P)])L >V }-tx—l
- [exp(_é‘qu,)]x
X |:1 - { 1+ < [exp(_5x—¢)1/1 >V }“:Iﬁ—l.
1 - [exp (- 6x~9)]"

(12)

The cdf is

—onA vy —aqf
F(x)=|:l—Jll+< [exp (=6x~7)] A) } ] (13)
1 - [exp(—0x79)]

where x, &, 8,9,1, 8, 9> 0. For ¢ = 1, we obtain the extended
generalized inverted Kumaraswamy inverse exponential
distribution. Figure 2(a) indicates that the EGIKw-Fréchet
offers various interesting shapes. Figure 2(b) reveals that the
model can also offer various hrf shapes including decreasing,
increasing, J, revered-J, and bathtub shapes.

3.3. EGIKw-Uniform Distribution. The EGIKw-U pdf is
obtained from (5), taking W (x) = (x/6) and w(x) = (1/6),
where x € (0, 6), as follows:

o=

o

a—1

P k61 \'
X[l_[ﬁ] ] {“(1— [x/@]l) } (14)
PR S alia!
1 [x/6]

The cdf is
PR Aea
F(x) = 1—{1+(%)} : (15)
1 - [x/0]
A rv, say X, with above model is given as

X ~ EGIKw — U(a, 3, 9,1, 0). For 0 = 1, we have standard
EGIKw-Uniform model. Figure 3 illustrates shapes of pdf
and hrf for the EGIKw-Uniform model. The pdf plot in
Figure 3(a) offers a variety of shapes. Moreover, it is obvious
from Figure 3(b) that this model can accommodate constant,
decreasing, and unimodal hrf.

3.4. EGIKw-Burr XII Distribution. The Burr XII pdf and cdf
arew(x) = p&x* 11+ x5 " Tand W(x) = 1 - (1+ x%) 7Y,
respectively. Hence, the EGIKw-Burr XII pdf is
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FIGURE 2: Selected f(x) and h(x) graphs for EGIKw-Fréchet model.

My—-1

f(x) = ocﬁy)tl//fxffl(l + xg)_w_l[l —(1 + xf)_w]

x[l —[1 -1 +x5)‘”r]_y_1

() |
[1-(1+2) "]

X[l ++(1 (-G +xf>‘”]*>y}Tl

(16)

-1

The corresponding cdf takes the following form:

F”H([[(<)>]]>Hﬁ (m

A rv X with the above pdf 1is denoted as
X ~ EGIKw — BurrXII (e, 5,9, A, v, &). Figure 4 displays
some interesting shapes of EGIKw-Burr XII pdf and hrf. Itis
obvious from these plots that great flexibility is achieved with
the proposed models.

4, Structural Properties of EGIKw-G
Family of Distributions

In this part of article, we provide some useful expressions for
EGIKw-G class including explicit expansions of density and
cumulative distribution function, 7" moment, m d, moment
generating function (mgf), and pdf of order statistics.

4.1. Expansions for EGIKw-G cdf and pdf. We express
EGIKw-G cdf and pdf in terms of finite (or infinite)
weighted sums of exponentiated-G cdf and pdf, respectively.
Consider the EGIKw-G cdf given by (4)

W’l pq-a-1 B
Frgxw-c (%) = |:1 B [1 +<1—VV(:C()x)) ] ] .

For d >0 real noninteger and |y| <1, the power series
representations are

x/d o
u—wd=z<i)env2

i=0

(18)

(19)

Xfd+i-1 o
u+w“=2(4f )ew¢ (20)

i=0

For d >0 integer value,
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FIGURE 3: Selected f(x) and h(x) graphs for EGIKw-Uniform model.
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FIGURE 4: Selected f(x) and h(x) graphs for EGIKw-Burr XII model.
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(1—y)d=2(f)(—1)"y’i (21)

i=0

Using the series expansions given above, the EGIKw-G
distribution function (4) is rewritten as

- ‘ /3 W)‘ yq-ai
Frgikw-g (X) = Z (_1)1< . >[l +<W(Ax()x)> }
=0 i

0 /B ai+j-1 wWrx) \"
(-1 (i)
S )
© . [5 (Xi+j—1

(_1)1+]
£orCC)

i+k-1
( YJ >W(x))\(yj+k)

k
_ = W Ayj+k)
= z Lijk (x) >
i,j,k=0

(22)

B iwif B\foi+j—-1\[yj+k-1
where ;= (-1) ]<i ; K . For

any integer value of 3, index i is stopped at 3, 3; for an integer
a, theindex jstopsatai + j — 1, ai + j — 1;and for an integer
value of y, index k is stopped at yj + k — 1, yj + k — 1. Thus,
(22) reveals that EGIKw-G pdf can be written in baseline pdf
as a multiple of its cdf’s power series. Otherwise, in case of y
to be a real noninteger, the W (x)**R in (22) can have
following form

W T = 1 -1 - w )
S Alyj+k) (23)
=Z(—1>l( ”l+ )[1—W(x)1’.
1=0
Using the binomial expansion for [1-W(x)], we
obtain
l r l r
[1-W)] = ZO (-1 (T )W(x) : (24)

Using (24) into (23), we have

oo | .
W(x)/\()’jJrk) _ Z Z (_1)l+r< A(V]l+ k) >( i )W(x)r'

1=0 r=0
(25)
Further, (4) is rewritten as
00 1
Frgixw-6 (%) = Z Z ti ki W (%), (26)
i,jk]=0 r=0

where tiiklr = (—l)l“( A (Wl+ k) )( i )li’j’k. Replacing

2% Yreo by 252 255 in (22), we have

Frgixw-g (%) = Z z,W (x)", (27)

r=0

where z, = Y7 Y0 t; ik, is sum in constants. The ex-
pansion (27) holds for all real noninteger y values. It should
be noted that EGIKw-G cdf can also be provided in the form
of exponential-G cdf as

Froikw-6 (%) = Z z,V, (x), (28)
r=0

where V, (x) = W (x)" denotes exponential-G cdf, where r is
power parameter. The corresponding results for EGIKw-G
pdf are obtained by differentiating (22) for y > 0 integer and
by (27) and (28) for y > 0 real noninteger value, respectively,
as

framw-a () =w(x) Y W @O ()
i,j,k=0
Srcixw-6 (%) = w(x) Z zZ,W(x), (30)
r=0
Srcikw-c (%) = Z Z:Vrﬂ (x), (31)
r=0

n . = "
where ;5 =A(yj+ k) jp 2, = (r+ Dz, 2, = 2,4, for

r=0,1,2,..,7=0,1,2,.. 57, (x) = (r + Dw(x)W (x)" is
exponential-G density function having parameter (r+1).
Equation (31) expresses EGIKw-G density in terms of ex-
ponential-G densities. Equations (29)-(31) are among main
results from this section.

4.2. Moments. Moments play a crucial role in studying some
important characteristics (tendency, dispersion, skewness,
kurtosis, etc.) of a distribution. The p* EGIKw-G moment
can be given as weighted sum in probability weighted
moments (PWMs) of order (p, g) of the parent distribution.
Let X and Y, respectively, come from EGIKw-G and baseline
G distribution. We can write p raw moment for X in terms
of (p,q)" PWM (1, = E[Y?G(Y)?] = [ xPw(x)W (x)%dx,
(g=0,1,...)) of Y. For y >0 integer, we have

[e9)
I Py —
Hp = E(X") = Z Lk Tppjk)-1> (32)
i,j.k=0
where 7,001 18 the" (pA(yj+k) -1 PWM of
baseline distribution and [;;; is defined in (29). For y>0
noninteger, we can write

up=E(XP) = Zoz,rp,r, (33)

where z, is from (30) and 7, denotes (p, ™ PWM of
baseline distribution. Hence, moments for any EGIKw-G
model can be calculated using baseline PWMs.



Furthermore, g, can be obtained using baseline qf,
Q(u) = W' (u) = x. For >0 integer, from (22), and for
y >0 noninteger, from (30), we, respectively, obtain

(9]

H 1; - Z it’j,k pr w(x)W(x)MmkH dx.
i,j,k=0 (34)
[ee]

‘MI; = Z Er J wa(x)W(x)rdx‘
r=0

Using u = W (x,,) in the above expressions, we have

(o8]

1
Ayj+k)—1
pp= X e [ Qi du
i,j,k=0 (35)

0 1
Wy = Z z, Jo ' Q(u)fdu.
r=0

respectively. Moreover, we can also provide the EGIKw-G
moments in the form of exponential-G moments. Let X, ,,
be an exponential-G rv with cdf, V,,; (x) = W (x)", and pdf,
Vo () = (r+ Dw(x)W (x)", and (r+1) be the power pa-
rameter, so

B(X0) = [ 477,00 (x)dx (36)
Hence, we have
by = Y z: prv,+1 (x)dx, (37)
r=0

where z| is defined in (31). Thus, EGIKw-G moments can be
written as function of baseline exponential-G moments.

4.3. Moment Generating Function. Let X ~ EGIKw-G
(a, 3,7, A). We consider various expressions of mgf for X as

M (t) = E[exp (tX)]

(38)

where y; = E(XP?) is the p™ EGIKw-G noncentral moment.
Another representation of M (t), when y>0 integer, is
derived from (29) as

o0

M) = ) Lt A(yj +K) - 1), (39)
i,j,k=0

where the function et A(yj+k)-1)
= I exp (tx)w (x)W (x)* =14 is obtained using baseline
qf as

(A (yj+k)—1) = I;u“””‘)‘l exp (tQ(u))du.  (40)

For y >0 noninteger, using (30) we also have
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M) =) z,¢(t1), (41)
r=0

and the function ¢(t,r) = fexp(tx)w(x)W(x)rdx is
easily deduced from baseline qf as

1
p(t,r) = JO u” exp (tQ (u))du. (42)

Another representation for M (t) for y > 0 noninteger is
obtained from (31) as

M(t) =) 2/M,,, (1), (43)
r=0

where M, (t) is mgf of X ~ exponential-G(r+1) rv. Hence,
M (t) of any EGIKw-G model can be determined from the
corresponding exponential-G mgf.

4.4. Mean Deviations. The m d of a population measures its
amount of scattering. For a rv X having pdf f(x) and cdf F(x),
the md about mean and md about median are, respectively,
written as 8, (X) and ), (X) and are, respectively, given by

8,(X) = E(|X ~ i)

=24 F () = 2T (wy),
Oy (X) = E(IX - M)

=y — 2T (M),

(44)

where y, is the first ordinary moment, F (,) is from (4), M is
median  obtained from (7) for wu=(1/2), and
T(z) = KOO xf (x)dx represents 1% incomplete moment.
Using parent qf, two additional expressions for T'(x) are
derived. Firstly, when y > 0 integer,

[ee]

G(z) .
T@= Y 1, J AU (45)
0

i,j,k=0

For y >0 real noninteger, we have

(9]

G(z)
T(z) =)z, JO u'Q(u)du, (46)

r=0

where li)j),:', z, are defined in (29) and (30), respectively.
Another useful expression for T'(z) is obtained from ex-
ponential-G distribution as

(&)

@)=Y 2 [ xvwdx 47)

r=0

where z;’ is defined by (31).

4.5. Rényi Entropy. Entropies of any rv, say X, are measures
of diversity of uncertainty. These measures have been used in
various fields including engineering, physics, and eco-
nomics. Rényi entropy is the most popular measure of
entropy and is given as (Rényi [27])
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I (x) = %Clogui) f{(x)dx], (>0, (#1.

Using (19)-(21) the pdf ngIwaG (x) becomes

(48)

fl(EGIKw—G (x) = (a[:"y/l)(w[ (x) z ’lvi,j,kW (x))l()’j+k)+(()’/1— 1).

i,j.k=0
(49)
Hence,
1 S
() = 1—_Clogl<aﬁwt>‘ > Tigu
i,7,k=0 (50)
: ro W ("7 ().
Equivalently depending on the parent gf,
1 < =
I( (X) = 1= (logl(aﬁyk)( z li,j,k
i,j.k=0
(51)

. Jl AR 01 (Q(u))dx],
0

R= j £ (OF, (x)dx

where

- (—1)”1((([3; 1))(ai+((a+ 1)

(e

(51) are main results.

li,j,k

). In this section, (50) and

4.6. Stress-Strength Reliability. The reliability measure of
industrial components has crucial role especially in engi-
neering. The reliability of a product is the probability that it
will do its intended job up to a specific time, given that it is
operating under normal conditions. The component fails
when X, (random stress) placed on it exceeds X; (random
strength), and for X, > X, it will work satisfactorily. Thus,
R = P(X, < X,) measures the component’s reliability (Kotz
et al. [28]). Let X, and X, be independent rv, rv; let X, be an
EGIKw-G rv with f, (x), (5), and parameters &, 5,7, A5
and let X, be a rv with cdf F,(x), (4), and parameters
&5, By Y2>A, with common baseline parametric space 9.
Then, R is obtained as

= alﬁl)}lA] Jw(X, 19)Wy1/11_1 (x) 9) [1 _ W)Ll (X, 9)]_)’1_1

Wh (x,9)

yrq-a-1 Y171~ % Bi-1
X[“(l—wux,m)] [“[“(1—%(%9))] ]

Wh (x,9)

Y21~ % 15
X|:1—[1+(W) ] :| dx.

Alternatively, with the change of rv, X = Q, (u),

1
R-= J F,(Q, (w))du
0

1
=J- 11-|1+4 1+

Wh (x,9) (52)
/\2 N " Y2 %2 B>
1 -%-/\1
. (53)
-1 -1t - du,
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where Q, (1) is qf from (7) corresponding to f,(x). In-
terestingly, we see that R is independent of W(x), the
baseline distribution. Additionally, various different forms
will be yielded by using linear expression. One form is
derived for y,,y, >0 integers by using

A@=w@ Y 1, W0
t,u,v=0

(54)

F2 (x) = i [i,j,kW (x))‘z (sz+k)’

i,j,k=0
u ot+u-—1
b are(B)(o )
(y1u+vv—1)’ andtl]k—( 1)z+](/52><062i+jj—1)

<YZj+k_ ! ) Thus,
k
R= Xtk J_oow(x)W(x)Al (raesn) o (v )1 g

i,j,kt,1u,v=0

where [, =A, (yu+v)

(&9

Z L, j,kltf;,v
i jkot =0 A (yiu+v) + A, (o) + k)

(55)

Similar expressions can be obtained for the case y,,y, >0
nonintegers. As usual, when o, =a,, B, =, Y1 = V2>
Ay =A,, ie., corresponding to the identically distributed
case, we have R = (1/2).

4.7. Lorenz L(p) and Bonferroni B(p) Curves. The Lorenz
curve for y >0 integer, is given as follows:

L(p) = E&")

1

[¢9)

1
2 X j W (019w (1)t
k=0

Equivalently based on parent qf and in the form of
exponential-G distribution, we have

1 & " W
L) =, S 1 JO u

HTRTIQ (u)du,

i,j,k=0
(57)
] @ li”'k
L(p) = AJ ty ) (£)dt,
p lgo/\()/]‘l'k) /\y]-f-k

respectively. The corresponding expressions for Bonferroni
curve are, respectively, given by (58)-(60) as
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Eng

Bp) = F(X)E(X)

_L(X)
T F(X)

1 (58)

" F(X)E(X) .[o Lf (Bt

1 N * A(pj+k
- > e [ ow @ O w e,
jok= 0

B _ 1 & lr/ W0 A(yj+k)- d
(p) _yF(X) Z ik JO Q(H) u, (59)

"

1 = ik
TUE(X) J; A( J+k)J Payjuig (1)1 (60)

B(p)

Similar expressions can be obtained using (30) for the
case of y >0 noninteger.

4.8. Moments of Residual Life Function. In reliability theory
and life testing problems, residual life has an important role.
The n'™ moment is provided by

m =5 57
ﬁ J (x=1)"f (x)dx (61)
R(t) Z < >(_t)n_a J;X’ A
Similarly, 7 residual moment of a v having EGIKw-G

distribution for y>0 integer and for y>0 noninteger is
obtained by inserting pdf of (29) and (30) in the above
expression, respectively, as

1 00 n n
m, (t) = —— L (-t
. JOO W ()M -1 (x)dx,
t (62)
m, (t) = R(t) rz(;;) < >(—t)n_a

. ro x*W (%) w(x)dx.

Equivalently depending upon the parent qf, we have
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my, (t) RL Z le]k < >(_t)n—a
i,j,k=0

a=0
-jl 41010 ()" dus,
G(t)
n—a ! r a
mN)Rm§§ <>H)jwummm

(63)

An alternative representation can be derived from ex-
ponential-G distribution as

R(t) Z Z l:( >(_t)n_a L x"v,. (x)dx.  (64)

r=0 a=0

m, (t) =

4.9. Order Statistics. Order statistics are useful in detection
of outliers and robust statistical estimation, characterization
of probability distributions, reliability analysis, analysis of
censored samples, etc. Let X, X,,..., X, be nrv from the
EGIKw-G distribution. Let X ) ,X )+ - X(y denote the
order statistics. The density of i ordered value is

R AC))
Fin ) = g —iv

fod R W
B(zn—z+1)z( 1)< I >F(x) ’

where B(.,.) is expression for beta function. We offer the pdf
of EGIKw-G order statistics in the form of baseline pdf as
multiple of W (x). Replacing (27) in the above expression
yields

F(x)™ ' [1-F(x)]""

(65)

h+i—1
F( )h+1 1 [ZZtW(X)]

0 h+i-1
_ t
_ [z ztu] .
t=0

(66)

Let us consider

<Z styt> =Y .y (67)
t=0 t=0

where ¢y, = (s))% ¢;, = (tsy)” 12 m(z+1) = tls,c .
(Gradshteyn and Ryzhik [1]). Hence, we have

00
F (x)h+l—1 — Z Ct’h_H‘_lW (x)t
t=0
N (68)
t
= Z Cthri-1U >
t=0
h+i—1

with ¢g,i-1 = (20) s Comriot = (£20) 7 Xy Im (b +
)= t12,,¢;_pupsig- Using (68) in (65) with (29) for y>0

11

integer and with (30) for y > 0 noninteger, we, respectively,
obtain

~ w(x) o n-
Sion () —mugoz ik Ceriot (= 1)"
n—i
. ( )W(x)/\(yj+k)+t—l,
h
(69)
- w(x) 0o Nn— iv L
fi:n(x) B(l n—i+ 1) Z Zozrct,h+i—1 (_1)

n—i
. ( )W(x)rﬂ.
h

Clearly, the above equations can be given in the form of
exponential-G densities as

i n-—i
w/' e Cpict (-1
o i Lok Cth 1( )< " > (70)

- - Vi (yisk)t (X)-
,%:O;B(i,n—w1)(i(y1+k)+t) Ao (%)

fi:n (X) =

n—i Z rCt h+i- 1( 1)h<n];l
Fin() = ZZB(zn—i+1)(r+t+1)vf”“(")'

r,t=0 h=0

(71)

Equations (70) for y>0 integer and (71) for y>0
noninteger immediately yield the pdf of EGIKw-G order
statistics as a function of exponential-G pdf,s. Hence, the
corresponding moments can be provided in the form of
baseline PWMs for y >0 integer and for y >0 noninteger,
respectively, by

Ei:n(xs) z zwz]kcthﬂ 1( 1)
Bln—z+1 l]ktOhO
n—i
TsA(yj+k)+t-1>
h
(72)
0 n-i
E. (x z,C 1
zn( ) B(li’l—l+1) rtZZOhZ;,) th+11( )
n—i
Ts,r+t'
h

Depending upon the parent qf for y >0 integer and for
y >0 noninteger, we, respectively, obtain
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TaBLE 1: Mean estimates, AB, and RMSEs of EGIKw-Burr XII distribution for some parameter values.

I it
" Par MLE RMSE AB MLE RMSE AB
a 2.031369 0.782508 ~0.73137 2.050077 1.869672 ~1.85008
B 0.506018 0.426535 ~0.40602 0.523979 0111397 -0.02398
2 y 1.539714 0.101712 ~0.03971 1.536192 1.391208 ~1.38619
b 1.679459 1.620032 ~1.47946 1.721563 1.589122 ~1.47156
v 0.513995 0.749618 0.736005 0.495447 2.80828 2.804553
) 5.536725 2.076617 ~0.53672 5.608749 3.802548 ~3.10875
a 2.003241 0.732436 20.70324 2027523 1.835541 ~1.82752
B 0.4953 0.406724 ~0.3953 0.511869 0.073648 ~0.01187
s y 1.516571 0.060813 ~0.01657 1.519474 1.370756 ~1.36947
) 1.553486 1.408353 ~1.35349 1.598642 1.388082 ~1.34864
v 0.514657 0.745424 0.735343 0.49416 2.805931 2.80584
13 5140693 1.181488 ~0.14069 5.230354 2.985746 ~2.73035
a 1.999447 0.71545 20.69945 2.011497 1.815691 _1.8115
B 0.497415 0.403892 ~0.39741 0.505193 0.051041 ~0.00519
100 y 1.508029 0.040566 ~0.00803 1.508947 1.359594 ~1.35895
b} 1.519543 1.347079 ~1.31954 1.544223 1.312065 ~1.29422
v 0.51066 0.746059 0.73934 0.497226 2.80282 2.802774
13 5.059594 0.784378 ~0.05959 5.06391 2.690264 ~2.56391
a 2.001363 0.710236 ~0.70136 2.009553 1.811641 ~1.80955
B 0.497136 0.400706 ~0.39714 0.50296 0.03563 ~0.00296
200 y 1.504634 0.029312 ~0.00463 1.505497 1.35581 ~1.3555
b 1.513101 1.327808 ~1.3131 1.52703 1.285339 ~1.27703
v 0.50596 0.747874 0.74404 0.498405 2.801618 2.801595
13 5.000164 0.562188 ~0.00016 5.025616 2588476 ~2.52562

TABLE 2: Mean estimates, AB, and RMSEs of EGIKw-Burr XII distribution for some parameter values.

. Par 111 v
MLE RMSE AB MLE RMSE AB
P! 2052153 0.253051 -0.05215 2055445 0.391286 ~0.30544
B 0.519755 0132899 0.080246 0.516816 0.286654 ~0.26682
- y 1.538797 0.099868 -0.0388 1.539888 0101188 ~0.03989
A 1.712694 0.569639 0.037306 1.721858 1.76664 ~1.67186
v 0.488655 0.051269 ~0.03865 0.488123 0.214635 0.211877
13 5.542568 2.588892 ~1.54257 5.512202 3.89718 ~3.2622
P 2.014992 0176476 -0.01499 203334 0.332539 ~0.28334
B 0.506935 0117908 0.093065 0511119 0.27147 ~0.26112
5 Y 1.515558 0.061392 ~0.01556 1.520918 0.065155 -0.02092
D) 1.577739 0372816 0172261 1.612466 1.599495 ~1.56247
v 0.495612 0.051045 ~0.04561 0.493362 0.20797 0.206638
13 5.133847 1.675164 ~1.13385 5250112 3.252078 ~3.00011
a 2017654 0121994 -0.01765 2009871 0.287532 -0.25987
B 0.503799 0.108756 0.096201 0.5049 0.259768 ~0.2549
m Y 1.510631 0.042348 -0.01063 1.50819 0.042492 ~0.00819
)} 1.555648 0.289758 0194352 1.542143 1.507662 ~1.49214
v 0.496423 0.049195 ~0.04642 0.497424 0.203226 0.202576
3 5.073991 1.347996 ~1.07399 5.052891 2916263 ~2.80289
P 2.00675 0.085296 -0.00675 2006998 0.27192 -0.257
B 0.5025 0103631 0.097501 0.501314 0.25384 ~0.25131
500 y 1.504946 0.028846 -0.00495 1.504844 0.029993 -0.00484
)} 1.524199 0.267619 0.225801 1.52528 1.483044 ~1.47528
v 0.498184 0.049478 ~0.04818 0.498387 0.201937 0.201613
13 5.000275 1.141549 ~1.00028 4.992079 2797957 ~2.74208

TasLE 3: Descriptive statistics.

n Min. Max. Mean Var. Sd. CcvV Skew. Kurt.

127 0.080 79.050 9.076 100.496 10.025 1.105 12.319 21.451
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Ficure 5: TTT-transform plot for cancer patients’ data set.

TaBLE 4: MLE and SE.

Model Estimates
EGIKwBXII 143162 (1.4027)  0.68899 (0.50048)  1.54554 (3.69725) 11.05201 (31.96517) 1.16295 (2.92883) 0.14219 (0.55648)

GIKwBII 016048 (0.01133) 11.76763 (2.09854)  1.05116 (0.14219)  13.84875 (0.01808) 0.58321 (0.00246) -
EKwBXII  0.36633 (0.42895)  0.97155 (1.67659) 10.15582 (16.18606) 44.13510 (61.61306) 0.81470 (0.56507) -

KwBXII 0.31380 (0.35338)  0.96498 (1.84057)  9.81034 (17.57105) 68.76241 (98.86293) - -
IWBXII 0.97875 (0.24963)  3.02715 (0.54086) 91.44719 (53.15231) 0.40185 (0.08382) - -
EWD 0.68382 (0.13962)  2.62405 (1.15772)  0.27887 (0.14828) - . .
GIWD 1.22766 (90.56746) 2.07078 (115.34209) 0.75502 (0.04268) - - -
MExXD 0.33227 (0.04008)  0.08451 (0.03658)  0.09726 (0.06376) . - .
BurrXII 2.33681 (0.35412)  0.23558 (0.04028) - - - -
n—i 5. Estimation
" h
Wik Cohri-1 (-1 .
. n-i h We employ MLE for estimating unknown parameters of
Ein(x’) = Z Z Blin—i+1) EGIKw-G distribution. Let 9 be p-dimensional baseline
Ljkt=0h=0 ’ parametric vector. Consider rv’s X;, X, ..., X,,, with each
. X; coming from a EGIKw-G (&, 3, y,1,9)" model. The log-
. j iR 'Q(w)’du, likelihood I = I(®) is obtained from (5) as follows:
0

1(®) = n log(apyA) + ilogw (x;,9)
izl

s 1 o) n—iu P n—i
E, = (=1
iin (x ) B(i,n—i+1) z Z Zrct,h+z—1( ) ( u >

r,t=0 h=0 +(pr-1) ilogW (x,9) - (y+1) ilog
i=1 i=1
1 n
B r+t s ) _ b . B Y . _ -y
Jou Q(u)’ du. [1 w (x,,S)] (o + l)glog[l +(W (x;,9) l) ]
(73)

“1 Y log1 =1+ (W 9)=1) "] ).
Thus, the mgf and other properties for EGIKw-G order H ); og[ [ +( (79) ) ] ]

statistics can also be obtained likewise. (74)
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The components of U = (U,,Up,U,, U, U,)', the score

vector, are

U, =

U/1=

Z— ilog[l +(W7)‘(xi,9) - 1)_y]

i=1

o log1+(W ™ (x,9) - 1) ']
+</3—1>;1_[1+(W*(x,-,9)— )T

+

log[l - [1 +(W_)L(x,», 9) - l)_y]ia],

I I
ISR

Il
—

i Z logW (x;,9)
Y

i=1

" og(WﬁA(x,-,S) -1)
->lo x,9)| +(a+1) 7
; g[l W ( )] 1 121:1+( 7/\(xi,9)_ 1)

" log(W_A(xi’S) - 1)
+(B- l)a; [1 _(1 +(W7)t (x,9) - 1)—y)w] [1 +(W*A (x;,9) - I)Y],

n i 1 logW x;,9)
—+7y ) logW (x;,9) - (y+1) ) ——————
A Zl Z( x,9) - 1) (75)

" log W(xi,S)(WfA (x;,9) - 1)
awh (x> 9)[1 + (W_’\ (x;,9) - l)y]

+(a+ 1)y

.+ log W (x,,9) [W‘*(x,»,S) _ 1] [1 +(W‘A(xi,9) - 1)?]—1
+(/3—1)06}/l; W)‘(x,»,S)[l—[1+(W_A(xi"9)‘ l)—y]a]

i x9)

1:1

i=1

%.9) n (x;,9)
+(YA—1)ZW( 9) A(Y )Zw(xl’S)(W—’\(xl,S)—l)

_((x+ l)y/\i WI (xi:s)

AW (x,9)(1-w (xi,S))[l +(W (x,,9) - 1)y]

I W (e )1 -(W (8 1) 1) ]
" aw, 9(1-w (xi,s))[1+(w-*(xi,9)- 1)V]'
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TABLE 5: gof results.

Model -1 AIC CAIC BIC HQIC w* A* K-S
EGIKwBXII 402.45120 811.26850 811.46360 819.80100 814.73520 0.01731 0.11223 0.03420 (0.9984)
GIKwBII 418.10950 846.21900 846.71480 860.43990 851.99670 0.35595 2.28401 0.09996 (0.1580)
EKwBXII 403.76400 817.52800 818.02380 831.74890 823.30580 0.04218 0.29185 0.04705 (0.9413)
KwBXII 403.69710 815.39430 815.72210 826.77100 820.01650 0.04093 0.28388 0.04576 (0.9531)
IWBXII 415.47480 838.94960 839.27740 850.32630 843.57180 0.27453 1.78637 0.10128 (0.1477)
EWD 403.52050 813.04110 813.23620 821.57360 816.50780 0.03961 0.26609 0.04446 (0.9633)
GIWD 437.75000 881.49990 881.69500 890.03250 884.96660 0.77033 4.69969 0.14576 (0.0090)
MExXD 402.63420 816.90240 817.60240 833.96750 823.83570 0.02090 0.13983 0.03537 (0.9981)
BurrXII 446.98390 897.96780 898.06460 903.65620 900.27900 0.77030 4.67668 0.25203 (0.0001)
[e] [) O
0.08 4 - EGIKwBXII : 0.08 4 - GIKwBXII 0.08 - - -EKwBXII
& & &
5 0041 £ 0044 2 004
0.00 4, 0.00 4o 0.00 4,
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Data Data Data
[e] [e]
0.08 - KwBXIL - 0.08 4 TWBXIT 0.08
B e oy S =)
g 0.04 § 0.04 4 g 0.04 -
0.00 4o, 0.00 4o, 0.00 -
0 10 20 30 40 0 10 20 30 40
Data Data Data
[e)
0.08 - 0.08 - 0.08 -  BareXIL
oy = = R
g 0.04 - g 0.04 - g 0.04
0.00 - 0.00 4 0.00 -

Data

Data Data

FIGURE 6: The pdf of considered models.

By solving U, =0,Uz =0,U, =0,U, =0,andUy = 0,

we obtain the MLEs (&, 3,7, A, 9).y

6. Monte Carlo Simulation

In this part, we examined the usefulness of MLEs for
EGIKw-Burr XII (a special model from the family) pa-
rameters, through an extensive numerical investigation.
Average bias (AB) and root mean square error (RMSE) are
considered to evaluate the performance of estimators for
varying n, s. The qf given by (7) with Burr XII as baseline
model was considered for generating EGIKw-Burr XII rv.
The simulation was repeated 2,000 times for varying sam-
ples. Four different parametric values, I: (a =1.3,5=
0.1,y =151 =02,y =125¢=50),II: (a=0.2p=0.5
y=0.151=0.25 v =3.3,&=25), [II: (a=2.0,5=0.6,

y=151=1751y =045, = 4.0),IV: (a = 1.75, = 0.25,

y=15A1=0.05 y=0.7,§=2.25), were considered. The
MLEs, AB, and RMSE values for different #, s are presented
in Tables 1 and 2. From the results, it is clear that as n
increases, the RMSE for estimators on the average decreases.
It is also observed that for all four sets, the AB showed
decreasing pattern as » increases. Thus, MLE method per-
forms quite well in parameter estimation of proposed G
class.

7. Application

In this part of work, we use EGIKw-Burr XII distribution for
cancer patients’ data to illustrate the merit of GIKw-Burr XII
model compared to the generalized inverted Kumaraswamy
(GIKw-Burr XII) by Jamal et al. (2019), the exponentiated
Kumaraswamy Burr XII (EKwBXII) distributions by Para-
naiba et al. (2013), the inverse Weibull Burr XII (IW-Burr
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FIGURE 9: PP-plots of considered distributions.

XII) Model by Amal et al. (2018), the exponentiated
Kumaraswamy Burr XII (EK-Burr XII) distribution by Silva
et al. (2019), the exponentiated Weibull distribution (EWD)
by Nassar and Fissa (2003), the generalized inverse Weibull
distribution (GIWD) by De Gusmao et al. (2011), the
modified extension of exponential (MEXED) distribution by
El-Damcese and Ramadan (2015), and the well-known Burr
XII distribution.

For each considered model, we obtain the estimates
using MLE method and adopt the minimum value of
-log(likelihood) at MLE denoted by (-I), Akaike Informa-
tion Criterion (AIC), Bayesian Information Criterion (BIC),
Consistent Akaike Information Criterion (CAIC), Han-
nan-Quinn Information Criterion (HQIC), Anderson-
Darling (A*) statistics, Cramér-von Mises (W™) statistics,
and Kolmogorov-Smirnov (K-S) tests. Data is about re-
mission times of 128 bladder cancer patients in months from
Lee and Wang (2003) and is provided as follows:

6.94, 8.66, 0.08, 2.09, 3.48, 4.87, 13.11, 23.63, 0.20, 9.02,
13.29, 0.40, 2.23, 3.52, 4.98, 6.97, 2.26, 3.57, 5.06, 7.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90,
2.69, 26.31, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 0.81,
2.62,3.82,5.32,7.32,10.06, 79.05, 4.18, 5.34, 7.59, 43.01, 1.19,
2.75, 4.26, 5.41, 7.63, 17.12, 1.26, 2.83, 4.33, 5.49, 7.66, 4.34,
5.71, 7.93, 11.79, 11.25, 17.14, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54,
8.53,12.03, 20.28, 2.02, 1.40, 3.02, 18.10, 1.46, 4.40, 5.85, 8.26,

3.36, 6.93, 8.65, 11.98, 19.13, 3.36, 6.76, 12.07, 21.73, 2.07,
12.63, 22.69.

The key statistics of data are offered in Table 3. Fur-
thermore, the TTT- transform curve is depicted by Figure 5,
which suggests an upside down bathtub or unimodal failure
rate and, therefore, indicates that the EGIKw-Burr XII
distribution is suitable for fitting this data set.

Table 4 gives MLEs and standard error (SE) (within
parentheses) results. The computed goodness-of-fit (gof)
results are provided in Table 5. Histograms with estimated
pdf plot, cdf plot, QQ-plot, and PP-plot of the EGIKw-Burr
XII and other distributions are provided in Figures 6-9,
respectively. It is clear from these results that EGIKw-Burr
XII model with six parameters offers a better fit than other
distributions.

8. Conclusions

In this work, a four-parameter generated class of models,
EGIKw-G class, is proposed. Submodels of the proposed
class, namely, the EGIKw-Normal, EGIKw-Fréchet, EGIKw-
Uniform, and the EGIKw-Burr XII distributions, are dis-
cussed. Various properties including sf, hrf, rhrf, qf and
median, s raw moment, mgf, md, Rényi entropy, reliability
parameter, Lorenz and Bonferroni curves, residual lifetime,
and distribution of order statistics are presented. Particular
attention is given to EGIKw-Burr XII distribution. A MCS is
presented to investigate the performance of AB and RMSE of
MLEs. A real application is provided to check the usefulness
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of EGIKw-G class and its performance compared to other
well-known distributions. The gof measures used all
revealed that the novel model performed better than its
counterparts [29,30].
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