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In bearing fault diagnosis, due to the insu�cient obtained supervised data and the inevitable noise contained in the vibration
signals, the problem of clustering bearing fault diagnosis with imbalanced data containing noise is caused. �anks to the ability to
quickly and fully learn boundary information in small samples, the extension neural network-type 2 algorithm (ENN-2) has the
potential in imbalanced data clustering and has been gradually applied in fault diagnosis. �erefore, in order to improve the
unstable clustering performance of ENN-2 caused by its heavy dependence on input order of samples, a novel algorithm called
linked extension neural network (LENN) is developed by redesigning the correlation function and its iterative method, which
greatly reduces the clustering iteration epochs of the algorithm. In addition, an evaluation index of clustering quality for this novel
algorithm, extension density, is also proposed. After that, a bearing fault diagnosis model of variational mode decomposition
(VMD) based denoising and LENN is proposed. Firstly, VMD is used to get intrinsic mode functions (IMFs), and the correlation
coe�cients of IMFs are calculated for signal denoising. Secondly, the features are extracted from denoised signals and selected by
PCA algorithm, and the fault diagnosis is �nally completed by LENN. Compared with ENN-2, K-means, FCM, and DBSCAN
based models, the proposed model identi�es the faults with di�erent severities more accurately and achieves superior diagnostic
ability on di�erent imbalance degrees of datasets, which can further lay a foundation for clustering fault diagnosis based on
vibration signals.

1. Introduction

Bearing is one of the most common connecting parts in
rotating machinery, which is more likely to break down
because of wear, fatigue, corrosion, or overload. �erefore,
diagnosis timely and accurately of bearing conditions is of
great signi�cance to ensure the mechanical operation steady
and reliable. Much study in recent years has focused on
bearing fault diagnosis based on vibration signals, including
signal acquisition and noise reduction, feature extraction
and selection, and fault recognition. However, in industry,
diagnostic data is often derived from monitoring signals,
bringing great di�culties to record the machinery condi-
tions by frequent downtime checking or manual labeling,
which is time-consuming and laborious and resulting in
insu�cient labeled data for fault diagnosis [1]. Moreover, the
number of obtained fault samples is always far less than that

of normal samples from monitoring signals, generating the
diagnostic problem of imbalanced data.

Clustering analysis is especially suitable for fault recog-
nition when there is no su�cient labeled data. Because of the
nonlinear and unstable characteristics of bearing vibration
signals, scholars preserve in their attempts to construct
clustering diagnosis models with stronger identi�cation
ability. For example, after processing the data by ensemble
empirical mode decomposition (EEMD) and linear dis-
criminant analysis (LDA), Hou et al. [2] used Gath-Geva
clustering algorithm (GG) to identify the faults of rolling
bearing and got a satisfactory clustering result with better
intraclass compactness. Chang et al.[3] achieved 96% accu-
racy of permanent magnet synchronous motors demagneti-
zation fault diagnosis by auto-encoder and K-means
algorithm. In addition, Li et al. [4] integrated K-means in the
neural network architecture for unsupervised learning and
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proposed a deep representation clustering-based diagnosis
model to address the data sparsity issue in data-driven ma-
chinery fault diagnosis. Also, K-means was utilized together
with K-nearest neighbor algorithm (KNN) to identify a
transformer’s fault category by cumulative votes [5]. On the
other hand, for the algorithms which are unnecessary to set
the number of fault categories before clustering, the study of
Li et al. [6] describes a method to generate clustering template
of rolling bearing so as to reduce the effect of noise on di-
agnostic accuracy using density-based spatial clustering of
applications with noise (DBSCAN). )is algorithm was also
widely used in wind turbine condition monitoring [7] and
diagnosis [8], photovoltaic power station fault detection [9],
bolts with mission pins on transmission lines detection [10],
and thermal runaway diagnosis of battery systems [11].
Moreover, Wei et al.[12] adopted affinity propagation clus-
tering algorithm (AP) and a novel adaptive feature selection
technique to identify different fault categories and severities of
bearings successfully, and another bearing fault diagnosis
model based on expectation maximization algorithm (EM)
and wavelet packet was proposed by Zhang et al. [13] for coal
cutter. Other clustering algorithms, including spectral clus-
tering [14], fuzzy C-means (FCM) [15], clustering by fast
search and find of density peaks algorithm (CFSFDP) [16],
and extension neural network-type 2 (ENN-2) algorithm
[17–19] were also applied to diagnosis. In conclusion, the
clustering algorithms represented by K-means need to know
the number of fault categories before clustering, which is
contrary to the fact that clustering analysis does not require
prior knowledge; however, the clustering algorithms repre-
sented by DBSCAN do not need to know the number of fault
categories, but suffer a complex parameter adjustment process
during training. )erefore, there remains a need for an ef-
ficient clustering method with less prior knowledge, simple
parameter tuning process, and stable performance.

At the same time, considering the vibration signals used for
fault diagnosis not only contain the running state signals of
bearings but also contain a lot of aliasing signals with noises,
signal denoising methods have generated considerable recent
research interest. )e commonly used denoising methods
mainly include wavelet threshold denoising method, empirical
mode decomposition (EMD), ensemble empirical mode de-
composition (EEMD), and local mean decomposition (LMD).
For example, Komaty et al. [20] introduced a signal-filtering
method of EMD and a similarity measure. In their studies,
white Gaussian and colored noises were almost removed from
the signals by selecting the decomposedmodes according to the
similarity between the estimation of the probability density
function (pdf) of the input signal and that of each mode, and
combined EEMD with grey theory, Jia et al. [21] removed the
noise of signals by evaluating noise levels of decomposed
components of signals by grey relational analysis and selecting
the noise-dominant components by grey model. Yang et al.
[22] proposed an adaptive signal denoising method based on
LMD. However, these decomposition methods have end-effect
and modal aliasing phenomena and are more sensitive to
sampling frequency, resulting in pretty large decomposition
error. To overcome the defects above, Dragomiretskiy and
Zosso [23] in 2014 have proposed variational mode

decomposition (VMD), which is a new time-frequency analysis
method with adaptive signal. Based on VMD, some research
combined this method with other algorithms for signal
denoising, such as singular value decomposition (SVD) [24],
data-driven time-frequency analysis (DDTFA) [25], and
wavelet threshold noise reduction [26], and there were also
many studies that selected the decomposed modes in some
evaluationmethods and reconstructed the signal after VMD for
noise reduction, such as kurtosis criterion [27], Bhattacharyya
distance [28], and a novel parameter called signal clarity
proposed by Li et al. [29]. In addition, Wang et al. [30] used
VMD innovatively to eliminate outliers and noise points in
features extracted from signals so as to achieve the purpose of
signal-filtering and denoising.

However, few researchers have addressed the problem of
bearing clustering fault diagnosis on imbalanced data with
noise at the same time. )us, in this paper, close attention is
paid to develop an effective clustering algorithm on imbalanced
data and construct a bearing fault diagnosis model dealing with
the insufficient data contained noise. In our study, an improved
clustering algorithm of ENN-2, called linked extension neural
network (LENN), is proposed firstly, and based on this al-
gorithm and VMD-based denoising method, a novel bearing
fault diagnosis model is presented and applied to analyze the
fault conditions and severities of bearings. To validate the
effectiveness of the proposed algorithm and the model, three
comparative experiments are designed and conducted on
commonly used artificial clustering datasets and real bearing
fault signals. )e results manifest that the proposed model
yields higher identification accuracy of minority fault clusters
on imbalanced data with noise comparing with the models
based on ENN-2, K-means, fuzzy C-means (FCM), and
DBSCAN. Our study provides a promising method for ma-
chinery fault diagnosis based on insufficient labeled signals
with imbalance, permitting an easier parameter adjustment
process with less prior knowledge.

)e rest of this paper starts with the novel LENN al-
gorithm in Section 2. Section 3 provides a brief description
of the proposed model, and the proposed algorithm and
model are experimentally verified in Section 4. In Section 5,
the concluding remarks are drawn.

2. Linked Extension Neural Network

Extension neural network-type 2 algorithm (ENN-2) is a
new clustering algorithm based on extension theory [31].
With no need to set the number of clusters manually in
advance, ENN-2 shows good clustering ability and fast
convergence speed in simple construction. But in fact, the
performance of ENN-2 relies heavily on the initial points
and correct input order of the samples. To overcome these
deficiencies, we develop a novel clustering algorithm called
linked extension neural network (LENN).

2.1. Network Structure. Following the form of ENN-2, the
structure of LENN contains only two layers, which is shown
in Figure 1.)e number of input layer nodes depends on the
feature dimension of data, and the number of output layer

2 Computational Intelligence and Neuroscience



nodes is determined by the number of clusters. Between the
two layers, the upper and lower bounds of the clusters
connect the neurons as the connection weights, and output
neurons are successively constructed in the process of it-
eration (represented by color shades in Figure 1), with only
one node activated at a time to indicate the clustering result.

2.2. Improved Correlation Function

2.2.1. Correlation Function in ENN-2. In ENN-2, the cor-
relation function ED based on the extension distance is used
to measure the distance between a sample and a target
cluster. )e extension distance in extension theory describes
the distance between a point x and an interval V � 〈a, b〉

quantitatively, which is defined as

ρ(x, V) � x −
a + b

2




−

a − b

2
, (1)

where a and b are the lower and the upper bounds of V,
respectively.

Given the center of the kth cluster is Zk � [zk1, zk2, · · · ,

zkn], the boundary of the kth cluster can be represented by
introducing a hyperparameter to measure the distance be-
tween the center and the ideal boundary as

Wk � 〈ak1, bk1〉, 〈ak2, bk2〉, . . . , 〈akn, bkn〉 

� 〈zk1 − λ, zk1 + λ〉, 〈zk2 − λ, zk2 + λ〉, . . . , 〈zkn − λ, zkn + λ〉 ,

(2)

Also, based on the definition of extension distance, the
correlation function ED between a sample
X � [x1, x2, · · · , xn] and the boundary Wk of the kth cluster
is defined as

EDk � 
n

j�1

xij − zkj



 − bkj − akj /2

bkj − akj



/2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, k � 1, 2, . . . , K.

(3)

As shown in Figure 2, ED measures the extension re-
lationship between a feature and its boundary. From

Figure 2, it can be seen that, for the jth dimension of the kth
cluster, when xj ∈ 〈akj, bkj〉, EDkj ≤ 1.

For a sample X � [x1, x2, · · · , xn] with n-dimensional
features, the sample X could be classified into the kth cluster
if

EDk ≤ n, k � 1, 2, . . . , K. (4)

)anks to this property of ED, the algorithm can esti-
mate a sample belongs to which cluster and update the
boundary and the center of the corresponding cluster to
revise its information for iteration. )erefore, ENN-2 does
not require the number of clusters K before learning and can
obtain better clustering results by only adjusting the unique
hyperparameter λ.

However, since the input order of samples determines
the updating direction of clusters’ boundaries and centers in
the iteration process, ENN-2 is greatly affected by the initial
point selection and the input order of samples and shows
unstable clustering performances. )erefore, it is necessary
to improve this algorithm.

2.2.2. Improved Correlation Function in LENN. Different
from ENN-2, each sample could be considered as a center
during iteration in LENN. Take X � [x11, x12, · · · , x1n] for
example, its boundary WX1 can be represented as (4) with
the hyperparameter λ:

WX1
� 〈ax11, bx11〉, 〈ax12, bx12〉, . . . , 〈ax1n, bx1n〉 

� 〈x1 − λ, x1 + λ〉, 〈x2 − λ, x2 + λ〉, . . . , 〈xn − λ, xn + λ〉 .
(5)

In order to measure the correlation distance between the
sample X � [x21, x22, . . . , x2n] and WX1, the new correlation
function is defined as

EDX1 ,X2
� 

n

j�1

x2j − x1j



 − bx1j − ax1j /2

bx1j − ax1j /2
+ 1⎡⎢⎢⎣ ⎤⎥⎥⎦

� 
n

j�1

x2j − x1j









λ
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(6)

)e new correlation function is plotted in Figure 3. For
the jth feature of the two samples, when X2j ∈ 〈aX1j, bX1j〉,
EDX1j,X2j≤ 1, and taking all features into account, the sample
X2 could be considered to belong to the same cluster as
sample X1 if

xi1

1

The weight of upper bounds
The weight of lower bounds

m

yk

ym

y1

K

xij

xin

Input layer Output layer

...
...

...
...

Figure 1: Structure of linked extension neural network (LENN).

ED

1

x
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Figure 2: Image of correlation function ED in ENN-2.
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EDX1 ,X2
≤ n. (7)

2.3. Learning Algorithm of LENN. )e learning process of
LENN is an unsupervised learning. It takes a dataset X �

[x1, x2, · · · , xm] with samples as the input, and after cal-
culating the correlation distances between samples level by
level, the clustering results of the dataset are finally output in
just one epoch. )e specific learning steps are as follows:

(1) Set an optimal hyperparameter λ in (0
��������
max(xij)


].

(2) Input a sample Xi � [xi1, xi2, · · · , xim] randomly and
mark the cluster which belongs to as k� 0. Calculate
the improved correlation function ED between Xi

and all the other unmarked samples according to
equation (5) and mark the samples which meet the
requirements of ED≤ n as k � 0. (3) For all the
qualified samples in step (2), each sample is taken as
the center to traverse, and EDs between this sample
and all the remaining unmarked samples are cal-
culated. Similarly, the samples that meet the con-
dition of ED≤ n are also marked as k � 0 until no
qualified samples left. (4) A sample is randomly
generated from the remaining unmarked samples for
input to create a new cluster k � k + 1. Repeat steps
(2) and (3).

(5) )e learning process is finished until all samples are
marked.

At the end of the iteration, if a cluster contains too few
samples, it can be regarded as noise.

)e iterative approaches of ENN-2 and LENN are both
graphically presented in Figure 4. During the iteration,
ENN-2 needs to update the central coordinates each time
(represented by the orange dots), and the updating di-
rection is significantly affected by the input order of the
samples. Ideally, the input order of the samples should be
sorted according to the distance between samples from
small to large, which is pretty difficult to ensure for the
unpretreated messy datasets. As can be seen from
Figure 4(a) clearly, sample 6 is closer to the center

corresponding to sample 4 than sample 5. If sample 6 is
input for calculation first according to (3), the result meets
the requirement of (4), indicating sample 6 and samples
1∼4 belong to the same cluster, and then the final clustering
results of the whole dataset contain 2 clusters. But, if input
sample 5 first for calculation, the result of (3) does not
satisfy (4) because of the distant relationship of sample 5
and the current center, and then a new cluster is created for
iteration, resulting in the final results of 3 clusters. How-
ever, in Figure 4(b) of LENN, one specific sample is
regarded as the center each time, and all the qualified
samples which satisfy (7) with the sample are found and
marked in this iteration. Taking two-dimensional eigen-
space as an example, the learning essence of LENN is to find
the samples consecutively which fall in the square con-
structed by the initial center sample with 2λ as the side
length. All the qualified samples are classified into the same
cluster with their center. And then, the next iteration
begins with a subsample of the cluster. Finally, all qualified
samples of the same cluster are found by this iterative
linkage method. )erefore, in Figure 5, samples 1, 4, 6, 5,
and 10 are successively taken as the centers for iteration,
and the final clustering result contains only 2 clusters with
samples 1∼9 belonging to the same cluster.

According to the learning process of the algorithm,
LENN has the following remarkable advantages:

(1) Based on extension distance, LENN defines a new
approach to categorization by distance calculation.

(2) )ere is no need to preset the number of clusters as
in ENN-2; in addition, it is not necessary to initialize
clustering center.

(3) )e improved algorithm only needs one epoch to
complete the clustering process and converges faster.

(4) LENN is not sensitive to the initial center and the
input order of the samples and preserves more stable
clustering ability than ENN-2.

Nevertheless, LENN is very sensitive to the hyper-
parameter λ, so it is necessary to select the optimal λ before
learning.

2.4. Parameter Selection Method. In LENN, the selection of
the hyperparameter λ seriously affects the final number of
clusters and the accuracy of clustering results. As shown in
Figure 5, for a smaller λ (such as λ � 7.2 in Figure 5(a)), the
constructed squares will be smaller with fewer qualified
samples contained, resulting in more clusters in the end, and
for a bigger λ (such as λ � 8.7 in Figure 5(b)), the constructed
squares will be likewise bigger with more qualified samples
contained, and fewer clusters are produced finally.

For clustering algorithms, silhouette coefficient is often
used for evaluation with no real labels. However, this index is
more suitable to analyze the clustering effectiveness of
balanced data [32]. Considering this paper is primarily
concerned with imbalanced data clustering problem, a novel
evaluation index extension density EDe is developed to tune
the hyperparameter λ based on extension distance, which is
defined as

EDX1n,X2n

EDX12,X22

EDX11,X21

X1j  – λ X1j  X1j + λ

X2j  – λ X2j  X2j + λ

Xnj  – λ Xnj  Xnj + λ

0

x

x

x

....
..

.....
.

1

1

1

Figure 3: Image of new correlation function ED in LENN.
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E De � 
C

k�1


n
xi ∈Mk,j�1 xij − zkj



 − bkj − akj/2
mk

, (8)

where mk is the number of samples in the kth cluster, Zkj is
the center of the jth feature, and akj and bkj represent the
lower and upper bounds of the kth cluster respectively, akj,
bkj and can be computed by

akj � minxi∈Mk
xj ,

bkj � minxi∈Mk
xj ,

zkj �
bkj − akj

2
.

(9)

Typically, EDe declines with the increasing λ, and the
optimal λ lies in the turning point of the curve.

3. Proposed Bearing Fault Diagnosis Model

3.1. Signal Denoising. Bearing vibration signals tend to
present nonlinear and nonstationary characteristics with
noise inevitably. Without signal denoising, the outliers in
raw data will be transferred into the feature space through
feature extraction and affecting the diagnostic results of the
model. Compared with empirical mode decomposition
(EMD) and ensemble empirical mode decomposition

(EEMD), variational mode decomposition (VMD) can ef-
fectively extract each frequency component of the signal and
solve the problems of mode mixing and white noise.
)erefore, VMD-based method is used for noise reduction
in this paper.

3.1.1. 1e Principle of VMD. VMD is a variational problem
solving process based on classical Wiener filter, Hilbert
transform, andmixing, which can be written as the following
constrained optimization form:

min
uk{ }, ωk{ }


k

zt δ(t) +
j

πt
 ∗ uk(t) e

− jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭

s.t. 
K

k�1
uk � f,

(10)

where K is the number of modes to be decomposed, δ(t)

represents Dirac function, ∗means the convolution operator,
and uk  and ωk  stand for the kth intrinsic mode function
(IMF) and center frequency after decomposition.

)e solution process of this problem is as follows:

(1) Transform the constrained variational problem to a
nonconstrained variational problem by introducing
the quadratic penalty factor α and Lagrange multi-
plier λ(t):

0 x

y

1
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3
2

ENN-2

The centers
The clusters

6

7

8

9

11

(a)
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Figure 4: Iterative approaches: (a) ENN-2 and (b) LENN.
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Figure 5: )e influence of hyperparameter λ on LENN clustering process: (a) a smaller λ and (b) a bigger λ.
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L uk , ωk , λ(  � α
k

zt z(t) +
j

πt
 

∗
uk(t) 

�������

�������

2

2
+ f(t) − 

k

uk(t)

���������

���������

2

2

+〈λ(t), f(t) − 
k

uk(t)〉. (11)

(2) Solving the minimization problem of equation (12),
alternating direction method of multipliers
(ADMM) is adopted to seek the saddle point of the

augmented Lagrange expression by alternatively
updating un+1

k , ωn+1
k , and λn+1, and un+1

k can be ob-
tained by

u
n+1
k � argmin

uk∈X
α zt δ(t) +

j

πt
 

∗
uk(t) e

− jωkt

�������

�������

2

2
+ f(t) − 

i

ui(t) +
λ(t)

2

���������

���������

2

2

⎧⎨

⎩

⎫⎬

⎭, (12)

where ωk equals to ωn+1
k , and iui(t) equals to

i≠kui(t)n+1.
Next, transform to frequency domain by Parseval/

Plancherel Fourier isometric transform:

u
∧n+1

k � argmin
uk

∧
,uk∈X

α jω 1 + sgn ω + ωk( ( u
∧

k ω + ωk(  

������

������

2

2
+ f
∧

(ω) − 
i

u
∧

i(ω) +
λ
∧
(ω)

2

�����������

�����������

2

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (13)

Replace ω in (13) with ω − ωk and then we can get

u
∧n+1

k � argmin
uk

∧
,uk∈X

α j ω − ωk(  1 + sgn ω + ωk( ( u
∧

k(ω) 

������

������

2

2
+ f
∧

(ω) − 
i

u
∧

i(ω) +
λ
∧
(ω)

2

�����������

�����������

2

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (14)

(14) is then converted to the form of nonnegative fre-
quency interval integral:

u
∧n+1

k � argmin 

∞

0

4α ω − ωk( 
2

u
∧

k(ω)





2
+ 2 f
∧

(ω) − 
i

u
∧

i(ω) +
λ
∧
(ω)

2





2

dω
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (15)

and set the first item in (15) to zero to obtain the quadratic
optimization problem:

u
∧n+1

k (ω) �
f
∧

(ω) − i≠ku
∧

i(ω) + λ
∧
(ω)/2

1 + 2α ω − ωk( 
2 . (16)

Similarly, the minimization problem of the center fre-
quency can be obtained by converting the center frequency
updating problem to frequency domain:

ωn+1
k �


∞
0 ω u
∧n+1

k (ω)





2
dω


∞
0 u
∧n+1

k (ω)





2
dω

, (17)

where u
∧n+1

k (ω) is the Wiener filtering of f
∧

(ω) − i≠ku
∧

i(ω),
and ωn+1

k represents the center of power spectrum.

Also, the learning process of VMD is as follows:

(1) Initialize u
∧1

k , ω1
k , λ
∧1

  and n.

(2) Update uk and k
ω according to equations (16) and

(17).
(3) Update λ by

λ
∧n+1

(ω)←λ
∧n

(ω) + τ f
∧

(ω) − 
k

u
n+1
∧

(ω)⎡⎣ ⎤⎦. (18)

(4) For a given discriminant accuracy of ε> 0, if

k‖u
∧n+1

k ‖k‖u
∧n+1

k − u
∧n

k‖
2

2/‖u
∧n

k‖
2

2 < ε, stop iteration,
otherwise return to step (2).

3.1.2. VMD-Based Denoising Method. )e VMD-based
denoising method comprises two steps: (a) decompose the
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vibration signal by VMD. (b) Calculate correlation coeffi-
cients of IMFs obtained by VMD for noise filtering and
reconstruct the denoised signal. )e parameters α, λ(t),
and K of VMD should be set before decomposition, which
may affect the results noticeably.

Correlation coefficient is to describe the correlation
degree between the original signal Y and its IMFs X(i),
which is defined as

ρi �
COV(X(i), Y)
�������
D(X(i))

 �����
D(Y)

 . (19)

)e correlation coefficient also offers a means of mea-
suring the degree of noise contained in IMFs. )us, by
selecting the sensitive IMFs according to (20) below [33], we
are able to obtain the reconstructed denoised signal:

μi �
max ρi( 

10∗max ρi(  − 3
, (20)

where μi is the threshold of the ith IMF. Retain the IMFs of
ρi < μi as sensitive IMFs for signal reconstruction, and
remove the unqualified IMFs directly.

3.2. Feature Extraction and Selection

3.2.1. Bearing Fault Features. In feature extraction, to reflect
the operation conditions of bearings accurately, objectively,
and simply, statistical features are extracted from the
denoised signals in this study, including 11 time domain
statistical features F1 ∼ F11 and 12 frequency domain sta-
tistical features F12 ∼ F23 shown in Table 1 [34]. For time
domain statistical features extracted from raw signals, F1
and F3 ∼ F5 reflect the amplitude and energy of vibration in
time domain; F1 and F6 ∼ F11 present the distribution of the
signal in time series. For frequency domain statistical fea-
tures extracted from FFTspectrums, F12 shows the vibration
energy in frequency domain; F13 ∼ F15, F17, and F21 ∼ F23
stand for the dispersion and concentration degree of the
spectrum; F16 and F18 ∼ F20 represent the position variation
of the main frequency band.

Here, x(n) is a signal series in time domain, n� 1, 2, . . .,
N; N is the number of data points. s(k) is a frequency
spectrum of signal x(n), k� 1, 2, . . ., K, K is the number of
spectrum lines, and fk is the frequency value of the kth
spectrum line.

3.2.2. Feature Selection Based on PCA. Although the mul-
tidomain features obtained above better describe the signals
than using time domain or frequency domain features only,
there may be feature redundancy, which will affect the di-
agnostic performance of the model. Considering the lack of
labels of samples in clustering fault diagnosis, a commonly
used unsupervised feature reduction algorithms principal
component analysis (PCA) is adopted in the diagnosis
model. )e specific steps of PCA are as follows:

Let the multidomain characteristic matrix obtained
above be Xn×m � [X1, X2, · · · , Xm], where the number of

samples is m, and the dimension of features is n, then its
covariance matrix C can be obtained by

C �
1
m

(X − X)(X − X)
T
, (21)

where X is a n × m matrix composed of row vectors of X,
Xi � 1/m 

m
j�1 xij,i � 1, 2, · · · n.

After that, the eigenvalues and the eigenvectors of the
covariance matrix C are calculated by

C − λIn


 � 0, (22)

where λ1, λ2, · · · , λn are the eigenvalues of C, and
P1, P2, · · · , Pn are the corresponding eigenvectors of the
eigenvalues.

Arrange the eigenvectors according to the magnitude of
the corresponding eigenvalues, take the front k rows of
eigenvectors to form the matrix P, and obtain the k-di-
mensional data Y by

Y � PX. (23)

3.3. Bearing Fault Diagnosis Model of VMD-Based Denoising
and LENN. Based on the above techniques, a bearing fault
diagnosis model of VMD-based denoising and LENN is
proposed in this paper, including three stages: (a) signal

Table 1: Statistical features of time domain and frequency domain.

No. Equation
Time domain features

F1 
N
1 x(n)/N

F2
������������������


N
1 (x(n) − F1)/N − 1



F3 (
N
1

�����
|x(n)|


/N)2

F4
������������


N
1 (x(n))2/N



F5 max|x(n)|

F6 
N
1 (x(n) − F1)

3/(N − 1)F3
2

F7 
N
1 (x(n) − F1)

4/(N − 1)F4
2

F8 F5/F4

F9 F5/F3

F10 F4/1/N 
N
1 |x(n)|

F11 F5/1/N 
N
1 |x(n)|

Frequency domain features
F12 

K
1 s(k)/K

F13 
K
1 (s(k) − F12)

2/K − 1

F14 
K
1 (s(k) − F12)

4/KF2
13

F15 
K
1 (s(k) − F12)

3/K(
���
F13


)3

F16 
K
1 fks(k)/

K
1 s(k)

F17
������������������


K
1 (fk − F16)

2s(k)/K


F18
����������������


K
1 f2

ks(k)/
K
1 s(k)



F19
�������������������


K
1 f4

ks(k)/
K
1 f2

ks(k)



F20 
K
1 f2

ks(k)/
����������������


K
1 s(k) 

K
1 f4

ks(k)



F21 F17/F16

F22 
K
1 (fk − F16)

3s(k)/KF3
17

F23 
K
1 (fk − F16)

4s(k)/KF4
17
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denoising based on VMD and correlation coefficient cal-
culation of IMFs; (b) feature extraction and selection by
PCA; (c) clustering fault diagnosis on LENN. )e specific
diagnostic steps are as follows, which are shown in Figure 6.

(1) After signal acquisition, divide the raw signals into
some segments of 2048 data points.

(2) For the sake of noise reduction, decompose each
signal and calculate correlation coefficients and
thresholds of IMFs according to equations (19)∼(20).
Reconstruct the signals by retaining the sensitive
IMFs and removing the IMFs of ρi ≥ μi.

(3) Based on the denoised signals, 11 time domain
statistical features are extracted from the signals and
12 frequency domain statistical features are extracted
from their FFT spectrums according to Table 1.

(4) In order to avoid the influence of redundant features
on the diagnosis results and improve the diagnostic
speed of the model, PCA algorithm is used to obtain
low-dimensional fault features for diagnosis.

(5) Finally, the proposed LENN algorithm will identify
bearing fault conditions by clustering the obtained
low-dimensional feature matrix into different clus-
ters and achieve fault diagnosis.

4. Experimental Verification

4.1. Experiment of LENN Algorithm on Artificial Datasets.
In order to verify the clustering effectiveness and stability of
the proposed LENN algorithm on imbalanced data, LENN,
ENN-2, and three commonly used clustering algorithms,
namely, K-means, fuzzy C-means (FCM), and DBSCANwere
experimented on three artificial datasets commonly used for
clustering testing, which were Flame, Jain and Aggregation.
)ese three datasets are all in two dimensions with different
degrees of imbalance, which are summarized in Table 2. From
Figure 7 of the real distributions of the datasets, it can be seen
that Flame consists of a circle and a semiring, Jain contains
two semirings, and Aggregation is composed of many
rounded or crescent clusters with two clusters connected,
which increase the difficulty of clustering.

Adopt Rand Index to evaluate the clustering results of
the algorithms here, which is defined as

RI �
a + b

a + b + h + g
, (24)

where a denotes the number of data pairs (xi, xj) whose
clustering results and real labels are in the same category; b
represents the number of data pairs (xi, xj) whose clustering
results and real labels fall in the different categories; h de-
notes the number of data pairs (xi, xj) whose clustering
results are of the same category while real labels are of
different categories; and g represents the number of data
pairs (xi, xj) whose clustering results turn to be of different
categories while real labels turn to be of the same category.

In the experimental process of LENN, the optimal value
range of λwas narrowed in each round of the experiment based
on (0

�������
max(xij)


] to obtain the optimal λ, and the optimal λ

selection processes of LENN on three datasets are shown in
Figure 8. As can be seen from the figure, RI reaches a peak at
the inflection point of the EDe drop-down curve, and the
corresponding value of λ is just the desired λ, and for ENN-2,
the optimal λ was determined in the same way based on (0, 1].
)e parameter K of K-means was set according to the real
number of categories of each experimental dataset, and the
parameter setting of FCM was the same as above. In the
training process of DBSCAN, the optimal combination of the
radius parameter ε and the field density threshold MinPts was
searched for several times with the initial range of ε set as (0, 2]
and the initial range of MinPts set as [2, 10]. In order to
eliminate the influence of the sample input order on the ex-
perimental results, each experiment was conducted for ten
times by disrupting the sample input order randomly to obtain
RI score of the five algorithms, which are depicted in boxplots
in Figure 9 and summarized in Table 3. Figure 10 presents the
clustering performances of LENNgraphically on three datasets.

In general, LENN achieved better performances in
higher accuracy and stability on the three different datasets.
Comparing Figure 9 and Table 3, it can be observed that, in
terms of clustering accuracies, LENN and DBSCAN were
not affected by the shape of data distribution, showing
higher RI scores overall; while ENN-2, K-means, and FCM
were highly affected by the shape of data distribution, all of
them performed worse on semiorbicular clusters than
rounded clusters, among which ENN-2 scored lowest on
Flame and FCM scored lowest on Jain; in terms of clustering
stability, which was visible in Figure 9, LENN showed ex-
tremely stable clustering performances on different input
orders of samples, and there were small fluctuations in
clustering stability of DBSCAN, K-means, and FCM, while
ENN-2 showed the worst stability with the largest range of
RI reaching 0.2436 on Flame. In particular, LENN scored
highest on both Flame and Jain with nearly no impact of
imbalanced data distribution on clustering, while scored
slightly lower than that of DBSCAN on Aggregation. )at
was because, for Flame and Jain in Figure 10, all misclassified
points of LENN, which were considered as noise, were
individuals far away from their surrounding points; while for
Aggregation, two clusters were closely connected distinctly
by several data points, resulting in the algorithm which
classified the two connected clusters as one cluster because of
LENN’s iterative distinguish mechanism; in spite of this,
LENN could still fully identify the other minority clusters in
Aggregation. As for ENN-2, only a small number of cases
showed higher clustering accuracies on Aggregation, indi-
cating that ENN-2 is better at processing rounded clusters,
but still relies heavily on an appropriate sample input order.
It could be concluded that the proposed LENN algorithm
could deal with the clustering problem on imbalanced data
in terms of higher accuracy and stability, addressing the
limitations of dependency on input order of samples.

4.2. Bearing Fault Diagnosis Process of Proposed Model.
)e main purpose of this work was to establish an effective
bearing fault diagnosis model on imbalance data with noise,
so in this part, experiments were carried out based on

8 Computational Intelligence and Neuroscience



bearing fault data from Case Western Reserve University
[35, 36] to test the performance of the proposed VMD-based
denoising and LENN model by comparing with the ENN-2-
based model.

4.2.1. Experimental Data. )e test rig for data acquisition is
shown in Figure 11, which consists of a motor driving a
shaft, a force meter, a torque transducer, and an electrical
control device. In this part, we selected the data of a 6205-
2RS deep-groove ball bearing from SKF Company, which
were grouped into five categories, including normal, minor
inner race fault (with the fault size of 0.1778mm), serious
inner race fault (with the fault size of 0.5334mm), minor ball
fault (with the fault size of 0.1778mm), and serious ball fault
(with the fault size of 0.5334mm). After dividing the raw

signals into segments of 2048 data points, five datasets above
comprised the whole data of this experiment with the im-
balance degree of 2 :1:1 :1:1, which are listed in Table 4.

4.2.2. Signal Denoising and Feature Extraction and Selection.
Firstly, VMD was carried out on the segmented fault
samples. Here, set α � 2000, λ(t) � 1.5, and the initial
distribution of center frequency was uniform. Considering
improper selection of the number of decomposition K will
lead to excessive or insufficient decomposition, therefore, K
was determined according to the change of the center fre-
quency of each mode in this paper. Taking VMD results of
minor inner race fault (MIF) for example, as shown in
Table 5, there were similar center frequencies appearing
when K� 5, which may be attributed to mode mixing and
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VMD and correlation coefficient calculation
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Feature extraction
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Figure 6: Flowchart of the proposed bearing fault diagnosis model.

Table 2: Description of the artificial datasets.

No. Dataset Degrees of imbalance Feature dimensions Number of categories Number of samples
1 Flame 147 : 93 2 2 240
2 Jain 276 : 97 2 2 373
3 Aggregation 272 :170 :127 :105 : 45 : 35 : 34 2 7 788
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Figure 7: )e real distributions of the datasets. (a) Flame. (b) Jain. (c) Aggregation.
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excessive decomposition. )us, K was set as four. Similarly,
the number of decomposition K of other datasets was de-
termined to be four, and the VMD results of a sample of five
conditions are shown in Figure 12.

)en, the correlation coefficients and thresholds cor-
responding respectively to IMFs and the original signal were
calculated according to equations (19)∼(20). )e obtained

results of all samples are graphically presented in Figure 13.
Retain the corresponding IMFs whose correlation coefficient
is above the red line and get the reconstructed signals.

Next, after signal denoising, extract the 23-dimensional
features of each sample from both time and frequency
domain according to Table 1, and PCA was used for feature
selection and dimension reduction. By comparing the
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Figure 9: Boxplots of the results of five algorithms on three datasets. (a) Flame. (b) Jain. (c) Aggregation.

Table 3: RI scores of the five algorithms.

Algorithm Target Flame Jain Aggregation

LENN Mean 0.9284 0.9971 0.8061
Range 0 0 0

ENN-2 Mean 0.3547 0.4941 0.8033
Range 0.2436 0.0998 0.1240

K-means Mean 0.4311 0.3217 0.7663
Range 0 0.0060 0.0024

FCM Mean 0.4422 0.3004 0.7005
Range 0 0 0.1276

DBSCAN Mean 0.9028 0.9584 0.8934
Range 0.0273 0 0.0003
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dimensionality reduction results in two and three dimen-
sions in Figure 14, it is visible that, in two dimensions, the
cluster of normal is far away from others, while the other
four clusters are pretty closer; moreover, the clusters of the
same parts with different severities are very close to each
other, with connected and overlapped points appearing in
the clusters of minor and serious inner race fault, which is
not conducive to fault diagnosis. In three dimensions, all the
clusters could be well separated, and for the clusters of the
same parts with different severities, there seem to be no
overlaps among the clusters. )erefore, the feature matrix of
three dimensions was selected and finally input into the
proposed LENN and ENN-2 algorithms.

4.2.3. Fault Diagnosis Results and Analysis. At the end, the
obtained matrix was input into LENN and ENN-2 using RI
in (24) for comparison. Similarly, for the sake of eliminating
the influence of sample input order on experimental results,
each diagnosis experiment was conducted for 10 times by
randomly shuffling the input order of samples. Two of the
diagnosis results of ENN-2 and LENN-based models are
depicted in Figure 15, with the detailed results summarized
in Table 6.

It is particularly evident from the results that overall, there
was a marked increase in the performance of LENN-based
model than that of ENN-2-based model in terms of clustering
accuracy and stability. As can be seen from Figure 15, both of
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Figure 11: CWRU bearing test rig35.
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Figure 10: Clustering performances of LENN on three datasets. (a) Flame. (b) Jain. (c) Aggregation.

Table 4: Description of bearing fault data.

Fault type Motor speed (rpm) Motor load (hp) Sample frequency (kHz) Fault size (mm) Number of samples
Normal (N) 1797 0 12 - 119
Minor inner race fault (MIF) 1797 0 12 0.1778 59
Serious inner race fault (SIF) 1797 0 12 0.5334 59
Minor ball fault (MBF) 1797 0 12 0.1778 59
Serious ball fault (SBF) 1797 0 12 0.5334 59
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the two models performed well on the data of MIF, SIF, MBF,
and SBF because of the compact data distribution and good
differentiation, with only three SIF points misclassified into
MIF in ENN-2-based model. However, for the cluster in
normal condition, its distribution was relatively loose, resulting

in ENN-2-based model which could not identify the whole
cluster correctly and generated multiple clusters and noise
points in the results, while LENN-based model only marked
very few points at the edge of the cluster as noise which were far
from their near points, and fromTable 6, it can be observed that
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Figure 12: VMD results of a sample of five conditions: (a) normal, (b) minor inner race fault, (c) serious inner race fault, (d) minor ball fault,
and (e) serious ball fault.
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Table 5: Center frequencies corresponding to different values of K of minor inner race fault.

K Center frequency (Hz)
2 693 2776
3 685 2740 3578
4 615 1301 2745 3579
5 615 1300 2729 3345 3616
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ENN-2-basedmodel needed an average iteration of two epochs
to converge, while LENN-based model converged in only one
epoch, and a significant improvement of RI score was obtained
in LENN-based model (0.9754) than ENN-2-based model
(0.5835). In addition, the clustering results of ENN-2-based
model changed greatly with different sample input orders,
while the performances of LENN-basedmodel were very stable.
All the results strongly confirm the proposed model preserves
higher clustering accuracy and more stable performances.

4.3. Impact of Imbalance Degree of Datasets on Diagnostic
Models. As outlined in the introduction, the problem of
imbalanced data fault diagnosis in real industrial production
increases the difficulty of clustering fault diagnosis. )us, the
impact of different imbalance degrees of datasets on diag-
nostic models was investigated experimentally. )e bearing

fault data used in Section 4.2 was still adopted in this ex-
periment, and based on the signal denoising and feature
extraction and selection method proposed in this paper, four
diagnostic models commonly used in clustering diagnosis
were constructed and compared on datasets in different
imbalance degrees selected randomly by certain proportions
(shown in Table 7), which were models on LENN, K-means,
FCM, and DBSCAN. )e specific parameter settings of the
models were in line with the settings in Section 4.1. To evaluate
the performances andmeasure the ability of themodels to deal
with the clustering problem on imbalanced data, RI, macro-
recall, and macro-F score were adopted in this experiment,
and by conducting each experiment randomly for 10 times, we
were able to get the average scores of each model.

Macro-recall measures the clustering performance of
each class, especially the minority classes, which can be
computed by

macro − R �
1
n



n

i�1
Recall �

1
n



n

i�1

TPi

TPi + FNi

, (25)

where TPi and FNi represent the number of correctly and
incorrectly predicted samples of the ith class, respectively.

Macro-F score is a comprehensive evaluation of the
precision and recall of clustering results, which is defined as
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Figure 14: Dimensionality reduction results of bearing fault data: (a) in two dimensions and (b) in three dimensions.
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Figure 15: Diagnosis results of the models: (a) ENN-2-based model and (b) LENN-based model.

Table 6: Detailed results of ENN-2- and LENN-based models.

Model Average
epochs

Average
score

Max
score

Min
score Range

ENN-
2 2 0.5835 0.6833 0.4520 0.2313

LENN 1 0.9754 0.9754 0.9754 0
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macro − F1 �
1 + β2  × macro − R × macro − P

β2 ×(macro − R + macro − p)
, (26)

where β denotes the relative importance of macro-R and
macro-P, which is usually set as one, and macro-P can be
obtained by

macro − P �
1
n



n

i�1
Precision �

1
n



n

i�1

TPi

TPi + FPi

, (27)

where FPi represents the number of samples which are
misclassified into the ith class but do not belong to that class
actually.

Table 8 collects the scores of the models on four datasets
in different imbalance degrees. Two extreme cases with data
imbalance degrees of 2 :1 :1 :1 :1 and 10 :1 :1 :1 :1 are taken
to draw confusion matrices of the clustering results, which
are shown in Figure 16.

It is apparent that, with the increase of data imbalance
degrees, the clustering scores of all models showed a
downward trend to varying imbalance degrees on the
whole, among which LENN-based model performed no-
ticeably best in all cases, while the configurations of
K-means and FCM-based models were far from optimal.
Comparing Table 8 and Figure 16, it can be observed that,
the proposed model achieved considerably higher scores
than other three models on all the datasets. Even on dataset
4 of the most extreme imbalance degree of 10 : 1 : 1 : 1 : 1,
LENN-based model also recognized four minority clusters
precisely, with ten samples of minor inner race fault, nine
samples of serious inner race fault, eight samples of minor

ball fault, and nine samples of serious ball fault identified
correctly, DBSCAN-based model identified relatively few
samples of these minor clusters; while K-means-based
model regarded the samples of the same position but
different severities as one cluster, failing to further sub-
divide the severities of samples, and FCM-based model
directly identified all the four minority clusters as the same
cluster, which scored lowest among the models. In addi-
tion, in the training process of LENN-based model on
datasets with different imbalance degrees, the value of
optimal λ grew gradually with the increase of data im-
balance degree (shown in Figure 17). )is was because, as
the samples became more and more sparse, the distances
between the samples increased, which required a larger λ to
construct an extension correlation relationship between the
samples, and this also indicated that the value of optimal λ
was related to the final clustering results. In other words,
the smaller of λ, the more precise the constructed extension
relationship between samples would be, and the higher the
accuracy of the proposed model could be obtained.

In conclusion, the imbalance degree of datasets increases
the difficulty of fault diagnosis, especially for clustering
algorithms relying on the selection of initial center points,
and the appearances of minority clusters make it difficult for
these algorithms to identify the fault categories correctly by
distance calculation. At the same time, surprising outcomes
of the experiments manifest that, by expressing the infor-
mation of minority clusters more precisely through the
constructed extension correlation function, the proposed
LENN-based model shows good efficiency in identifying the
minority clusters on imbalanced data.

Table 7: Imbalance degrees of experimental data.

No. )e number of samples in each condition (N :MIF : SIF :MBF : SBF) Imbalance degree
Dataset 1 100 : 50 : 50 : 50 : 50 2 :1 :1 :1 :1
Dataset 2 100 : 30 : 30 : 30 : 30 3 :1 :1 :1 :1
Dataset 3 100 : 20 : 20 : 20 : 20 5 :1 :1 :1 :1
Dataset 4 100 :10 :10 :10 :10 10 :1 :1 :1 :1

Table 8: Average scores of models on datasets in different imbalance degrees.

No. Target LENN K-means FCM DBSCAN

Dataset 1
RI 0.9485 0.5191 0.5301 0.8278

Macro-R 0.9700 0.4960 0.4960 0.9140
Macro-F1 0.9667 0.4933 0.4933 0.9333

Dataset 2
RI 0.9314 0.4806 0.4814 0.8113

Macro-R 0.9510 0.4950 0.4950 0.8901
Macro-F1 0.9487 0.4827 0.4827 0.9052

Dataset 3
RI 0.9250 0.4522 0.4376 0.6839

Macro-R 0.9322 0.4950 0.4950 0.8130
Macro-F1 0.9367 0.4827 0.4827 0.8486

Dataset 4
RI 0.8920 0.3822 0.2024 0.4329

Macro-R 0.9100 0.4940 0.4860 0.7500
Macro-F1 0.9357 0.4786 0.4500 0.8929
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Figure 17: RI and optimal λ of LENN-based model on data with different imbalance degrees.
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Figure 16: Confusion matrices of the results on two imbalance degrees of the datasets (2 :1 :1 :1 :1 and 10 :1 :1 :1 :1): (a) LENN on Dataset
1, (b) K-means on Dataset 1, (c) FCM on Dataset 1, (d) DBSCAN on Dataset 1, (e) LENN on Dataset 4, (f ) K-means on Dataset 4, (g) FCM
on Dataset 4, and (h) DBSCAN on Dataset 4.
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5. Conclusions

(1) A novel clustering algorithm called linked extension
neural network (LENN) is developed based on ex-
tension neural network-type 2 (ENN-2), which is far
less sensitive to initial point selection and sample
input order by improved correlation function and
new iterative method. Furthermore, to evaluate the
clustering performance, extension density is pro-
posed as an evaluation target for this algorithm.

(2) With the intention of improving the bearing fault
diagnosis ability on imbalanced data with noise, a
clustering fault diagnosis model of VMD-based
denoising and LENN is constructed. )e experi-
mental results provide compelling evidence that the
proposed model preserves powerful identification
ability of minority fault clusters and achieves better
diagnosis performance on imbalanced data with
noise.
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