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Hypertension is the main cause of blood pressure (BP), which further causes various cardiovascular diseases (CVDs). �e recent
COVID-19 pandemic raised the burden on the healthcare system and also limits the resources to these patients only. �e
treatment of chronic patients, especially those who su�er from CVD, has fallen behind, resulting in increased deaths from CVD
around the world. Regular monitoring of BP is crucial to prevent CVDs as it can be controlled and diagnosed through constant
monitoring. To �nd an e�ective and convenient procedure for the early diagnosis of CVDs, photoplethysmography (PPG) is
recognized as a low-cost technology. �rough PPG technology, various cardiovascular parameters, including blood pressure,
heart rate, blood oxygen saturation, etc., are detected. Merging the healthcare domain with information technology (IT) is a
demanding area to reduce the rehospitalization of CVD patients. In the proposed model, PPG signals from the Internet of things
(IoT)-enabled wearable patient monitoring (WPM) devices are used to monitor the heart rate (HR), etc., of the patients remotely.
�is article investigates various machine learning techniques such as decision tree (DT), näıve Bayes (NB), and support vector
machine (SVM) and the deep learningmodel one-dimensional convolutional neural network-long short-termmemory (1D CNN-
LSTM) to develop a system that assists physicians during continuous monitoring, which achieved an accuracy of 99.5% using
PPG-BP data set. �e proposed system provides cost-e�ective, e�cient, and fully connected monitoring systems for
cardiac patients.

1. Introduction

Healthcare is one of the most important domains that need
faster development. Currently, digital health has gradually
increased in our daily life through wearable medical devices
such as smartwatches and smartphone applications for real-
time monitoring and diagnostic purpose [1]. �e innovation
of wireless communication technology and the availability of
electronic components enabled the Internet of things (IoT)
application [2] in wearable patient monitoring (WPM)
devices.

Such models specify that this is a small addition in the
�eld of arti�cial intelligence, robotics, and telemedicine [1].

�e IoT in the health sector will probably reach around
409.9 billion USD in 2022 according to Grand View Re-
search Inc. [3]. A variety of WMP devices are available that
use a wireless network to transmit medical information to
mobile and Web applications, but they face accuracy,
precision, and reliability issues [4]. Hypertension is the
important risk factor of cardiovascular diseases (CVDs) [5];
according to the report of the World Health Organization
(WHO), CVD is the main chronic disease and the major
contribution to the global burden of diseases. �e report
states that 31% of the deaths around the world are caused by
CVD [6]. �us, blood pressure (BP) can be monitored for
the primary detection of CVD.�ree parameters are mostly
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evaluated, such as systolic blood pressure (SBP), diastolic
blood pressure (DBP), and mean arterial pressure (MAP),
to �nd BP in millimeters of mercury (mmHg) [7, 8]. Two
common ways are used for �nding BP: noninvasive and
invasive methods. Noninvasive BP measurement is done
through cu�-based readings, but it is not comfortable for
infants, injured, and overweight people [9]. Also, its end
result is discrete (that is, some set of intervals is required)
and thus uncomfortable to the patient. �e invasive pro-
cedure involves arterial lines management for monitoring
continuous BP, but it is not appropriate to employ due to
vulnerability of infections [10]. In cardiology, patients’
home is preferred for continuous monitoring of temper-
ature, blood pressure, heart rate, and ECG of the patients.
�us, a cu�-less, noninvasive, and continuous BP moni-
toring system is required.

1.1. Calculating BP through Photoplethysmography.
Photoplethysmography (PPG) has been innovated to
monitor BP without a need of an inªatable cu� [11, 12]. PPG
is a versatile and low-cost technology [9], and it uses human
skin vessels to �nd changes in light transmitted or reªected
through the photoelectric sensor [13]. It signi�es the vari-
ation of human blood volume and di�erentiates the systolic
and diastolic processes of the heart, which are associated
with BP. �e light emitting diode (LED) and photodiode
(PD) are used to evaluate the variations in the reªected light.
Moreover, the estimation of BP using PPG is very authentic.
PPG can be extended to di�erent aspects of cardiovascular
surveillance, including identi�cation of blood oxygen sat-
uration, heart rate, BP estimation, cardiac output, respira-
tion, arterial aging, endothelial control, microvascular blood
ªow, and autonomic function. PPG does not need any
certain method to connect sensors at prede�ned locations in
the body [14]; simply, it can be collected from the wrist,
�nger, or earlobe [15]. �is simplicity has made PPG an eye-
catching biosignal usually for wearable applications to es-
timate heart rate (HR) during exercise and other physical
movements.

�e sample of PPG signal captured and its sinusoidal
waves is illustrated in Figures 1 and 2, respectively.

Various methods such as periodograms, spectrograms,
and wavelets are used to evaluate the biosignals as dem-
onstrated in Figures 3–5, respectively.

1.2. Motivation. High BP puts strain on the heart and the
arteries, increasing the probability of heart attack, dementia,
stroke, and kidney diseases. Continuous monitoring is
crucial to control and manage high BP. Moreover, various
researchers show that home-based noninvasive sensors can
be deployed for remote monitoring to reduce rehospitali-
zation of cardiac patients [16]. Like other computing sys-
tems, the WPM devices have hardware and software
modules. Hardware is concerned with data collection,
conversion of electrical signals, and communication with the
decision-making subsystem. Software is the second module
concerned with making decisions based on the obtained
signals.�e second module is the main focus where machine

learning becomes useful. �e advancement in the �eld of
machine learning is probably increasing the diagnostic
prediction through WPM devices. �us, it is unavoidable
that machine learning techniques are required to improve
the reliable diagnosis of di�erent diseases.
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Figure 1: PPG signal.
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Figure 2: PPG sinusoidal waves.
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Figure 3: Periodograms.
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1.3. Article Contributions. �e proposed work is used to
monitor cardiac disorder with the help of WPM devices,
cloud computing, and arti�cial intelligence (AI). �e main
contributions of this manuscript are as follow:

(i) A novel framework has been proposed to deal with
challenges of integration of remote patient data
from di�erent sources and make an accurate
diagnosis.

(ii) �e proposed CAD system receives PPG-recorded
signals using IoT-enabled WPM and performs in-
telligent diagnostic process with signi�cantly im-
proved accuracy.

(iii) To meet the excessive resources requirement of
intelligent algorithms on the medical data, the
proposed framework uses cloud computing.

(iv) �e proposed framework ensures timely diagnoses
along with doctor’s recommendation to the con-
cerned patient in an e�ective manner.

1.4. Article Layout. �e rest of the paper is structured in the
following sequence: Section 2 provides a brief description of
the related literature; Section 3 describes the proposed
method; results and discussions are reported in Section 4,

and the conclusion and future direction are presented in
Section 5.

2. Related Literature

A rapid growth in the adoption of WPM and Internet of
things (IoT) models around the world has been observed
over the last decades. Advancement in the e-healthcare
systems and smart home automation technologies provide
the facility to avail in-home medical services without hos-
pital visits. �us, the IoT has been recognized as a possible
solution to relieve the burdens on healthcare societies.
Various researchers and foundations proposed di�erent
models in the �eld of e-health, remote healthcare, and smart
healthcare system [17–19]. An extensive work of IoT in
healthcare applications is carried out in [20] with emphasis
on problems and their possible solutions.

Automation for smart home is an emerging domain of
IoT and has been applied in several areas to assist in daily
living to support humans and to make their life easy; for
example, home appliances based on remote control [21],
energy management in the house [22], security systems [23],
movement detection in the home [24], and providing
healthcare facility to disabled, outdoor patients, and elderly
persons [25, 26].
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Figure 4: Spectrograms.
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Agarwal and Lau [27] proposed a health monitoring
system to evaluate the blood pressure (BP) of patients using
smart devices. (ey argued that the recorded values of
systolic and diastolic pressure can be easily forwarded to a
cardiologist or physician through a Web interface that can
further be evaluated by a physician to facilitate the patient
online. A healthcare system employing body sensor network
(BSN) has been proposed by Gope and Hwang [28]. (e
proposed system also called BSN-Care is used tomeasure the
physiological parameters BP and electrocardiogram (ECG)
to check heart condition through a WPM device. (e data
received from the patient’s body are sent to the BSN-Care
server and then are used for evaluation. In case of abnor-
mality, the system alerts the family member and physician of
the patient for a prompt response.

Chen et al. [29] recommended an e-healthcare system via
an RFID system. (e system is used to evaluate the patients’
health condition and performs communication between the
doctor and the patient. It can also be employed to collect
patients’ information such as temperature and BP through
BSN. Furthermore, it is also capable to maintain the medical
history and profile of the patients for future use. Chatrati
et al. [30] developed a health monitoring system based on a
smart home for remote monitoring of chronic patients
related to BP and diabetes. (e system is utilized to monitor
the patient’s BP and glucose level from home and send alerts
and real-time notifications to registered healthcare centers
or physicians in case of any abnormality. Xiao et al. [31]
employed a model based on compressed sensing for rec-
ognition of PPG signals, where the authors applied the
discrete wavelet transform as features extraction followed by
SVM classifier and attained an accuracy of 91.31%.

3. Proposed Method

It is dangerous to provide patient services physically during
the COVID-19 pandemic; hence, online consultation and
telemedicine are becoming more popular. (e number of
CVD patients is increasing day by day, causing more deaths,
and is further multiplied during the current pandemic. To
prevent this increasing number and reduce the burden on
the healthcare society, constant monitoring of CVD patients
is required. Despite the advancement of diagnostic proce-
dures in CVDs, main clinical issues persist in this area.
Integrating data from different sources for remote patients
and making a proper diagnosis is a major challenge. Ma-
chine learning has usually been costly and performed by
scientists through high-performance processors. As we
know that professional processing units are too costly,
machine learning can be accomplished through cloud en-
vironments [32, 33]. (is article proposes a cloud-based
CVD diagnosis system to facilitate the assessment and
monitoring of patients remotely. In this model, we focused
to diagnose cardiac diseases such as normal, pre-
hypertension, stage 1 hypertension, and stage 2
hypertension.

In the proposed method, the PPG signals are recorded
through IoT-enabled WPM devices during physical activity
such as low-, medium-, and high-intensity arm movements

containing driving, walking, and sitting for a while to find
heart rates.

(e PPG signals are then sent through the Internet to the
CAD server in the cloud for further processing. (e diag-
nostic report is sent back to the concerned patient via the
doctor’s recommendation for a better prescription to the
patients, after processing through machine learning algo-
rithms configured in the cloud.(e overall framework of the
proposed system is exhibited in Figure 6, containing WPM
and cloud-based CAD server. Using such a system, patients
would be capable to accomplish the goals of CVD diagnosis
at home at a minimal cost.

3.1. PPG-BP Data Set. In this work, we used an openly
accessible data set called PPG-BP [34], which is a combi-
nation of PPG and BP. (is database incorporates the
comprehensive clinical and anonymous data of patients
admitted to Guilin People’s Hospital, China. (e clarity of
the data permits clinical analyses to investigate and enhance
the understanding of connections between PPG signals and
cardiovascular health. Moreover, the goal is to provide an
effective, simple, and noninvasive technology such as easy to
employ and wearable. (e PPG-BP data set was gathered
from 219 patients, aged between 21 and 86 years. 48% of the
data were of males. (e data set comprises various diseases,
including BP, HR, hypertension, etc., as presented in Table 1.
In this dataset, the outcome of the data is categorized into
four labels, i.e., Prehypertension, Stage 2 Hypertension,
Stage 1 Hypertension, and Normal. Most of the data in this
dataset contain the category of Prehypertension and Normal
labels as illustrated in Figure 7.

3.2. PPG-DaLiA Data Set. In this work, we used an openly
accessible data set called PPG-DaLiA, i.e., PPG data set for
motion compensation and heart rate estimation in daily life
activities [30]. (e activities and their duration included in
the data set are presented in Table 2. (is data set contains
eight different types of activities, which are usually per-
formed in daily routine. (e activities included low-, me-
dium-, and high-intensity arm movements such as driving,
walking, and table soccer, respectively, to find variable heart
rates. Figures 8 and 9 demonstrate the heart rate information
extracted from the ECG signal during sequence of activites
performed by two different persons.

3.3. Automatic Detection of Heart Rate. In order to thor-
oughly evaluate the abundant information contained in the
PPG signals, it is essential to acquire the most reliable and
high-quality PPG signal. Moreover, we must ensure that the
obtained data have complete heartbeat, less noise, cycles, and
motion artifacts.(e above twomentioned data sets are used
for heart rate detection. (e PPG-BP data set is evaluated
through the conventional method of machine learning, and
the second data set called PPG-DaLiA is evaluated through
one-dimensional convolutional neural network-long short-
term memory (1D CNN-LSTM).

4 Computational Intelligence and Neuroscience



3.4. Detection of Heart Rate through Machine Learning.
�e PPG-BP data set contained all the said information.
Such data can be evaluated through di�erent machine
learning algorithms with di�erent parameters. Supervised
machine learning classi�ers such as decision tree (DT), näıve
Bayes (NB), support vector machine (SVM), and ensemble
classi�ers are used to evaluate the proposed model using
k-fold cross-validation [35].

3.4.1. Decision Tree (DT). DT classi�es the instances by
arranging them based on values via a top-down approach
[36]. �e variable used in a splitting condition is chosen
according to the splitting criteria to reduce impurity. To
select the best value, we used the Gini diversity index (GDI)
as a splitting condition, which is formulated as in equation
(1):

x(t) � ∑
y≠x

P(y|t)P(x|t). (1)

�e GDI is the probability of misclassi�cation; thus, the
e�ciency of GDI is to perform the split at a node where the
probability of misclassi�cation is lower. �e parameters
employed during the experiment are presented in Table 3.

3.4.2. Ensemble Classi�er. An ensemble classi�er involves
multiple learning approaches such as boosting and bagging
to achieve better performance. During the experiments
using the ensemble classi�er, the proposed approach
achieved the highest results. �e parameters used for this
classi�er are presented in Table 4.

3.5. Detection of Heart Rate through 1D CNN-LSTM. �e
deep learning models are applied in many real-world ap-
plications [37]. In this section, we applied the 1D CNN-
LSTM model for heart rate detection using the PPG-DaLiA
data set. �e 1D CNN can be used to extract robust features
of 1D time-series sequence data using convolution
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Figure 6: Proposed method.

Table 1: PPG-PB data set.

Subject_
ID

Sex
(M/F)

Age
(year)

Height
(cm)

Weight
(kg)

Systolic BP
(mmHg)

Diastolic
BP

(mmHg)

Heart rate
(b/m)

BHI
(kg/m2) Hypertension

0 2 Female 45 152 63 161 89 97 27.27 Stage 2 hypertension
1 3 Female 50 157 50 160 93 76 20.28 Stage 2 hypertension
2 6 Female 47 150 47 101 71 79 20.29 Normal
3 8 Male 45 172 65 136 93 87 21.97 Prehypertension
4 9 Female 46 155 65 123 73 73 27.06 Prehypertension
. . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
214 415 Male 24 180 70 111 70 77 21.60 Normal
215 416 Female 25 156 47 93 57 79 19.31 Normal

216 417 Male 25 176 55 120 69 72 17.76 Stage 2
prehypertension

217 418 Male 25 173 63 106 69 67 21.05 Normal
218 419 Male 24 175 58 108 68 65 18.94 Normal

Computational Intelligence and Neuroscience 5
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Figure 7: Data distribution based on hypertension.

Table 2: Activities with duration.

S/No. Activities Duration
1 Sitting 10
2 Stairs 5
3 Table soccer 5
4 Cycling 8
5 Driving 15
6 Launch 30
7 Walking 10
8 Working 20

Te
m
pe
ra
tu
re

28

29

30

31

32

33

34

35

36

Time
0 5000 1000 15000 20000 25000 30000 350000

Figure 8: Heart rate information extracted from person 1.

H
ea
rt
ra
te

40

60

80

100

120

140

Time
0 5000 10000 15000 20000 25000 3000 35000

Figure 9: Heart rate information extracted from person 2.
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operations through several �lters. In this work, the 1D CNN-
LSTM model contains two convolution layers, one LSTM
layer, two fully connected (FC) layers, and a soft-max output
layer, as illustrated in Figure 10.

3.6. Performance Evaluation. �e performance of the pro-
posed model has been evaluated using accuracy, confusion
matrix, and ROC curve. �e confusion matrix is used to
evaluate parameters such as TP (true positive), TN (true
negative), FP (false positive), and FN (false negative).
Moreover, the ROC curve is employed to evaluate the
classi�cation performance through graphical portrayal [38].
�e ROC curve is computed by drawing false positive rate
(FPR) against true positive rate (TPR) [39].

4. Results and Discussion

To evaluate the performance of classi�cation, results ob-
tained using parameters like accuracy, confusionmatrix, and
ROC curve are used. �e obtained accuracy using the PPG-
BP data set is presented in Table 5. It shows that all types of
decision trees (�ne, medium, and coarse) achieved the
highest results of 99.5%. Similarly, the ensemble classi�er
(bagged tree) achieved the second highest result of 97.7%.
�ese results obtained through a decision tree and ensemble

classi�er are further assessed through confusion matrix, as
presented in Figures 11 and 12, respectively.

�e ROC curve is also used to exhibit the analysis results
achieved through the best classi�er. Figure 13 demonstrates
the decision tree classi�cation performance with an AUC
value of 1.00, while Figure 14 shows the performance of
ensemble classi�er (bagged trees) with an AUC value of 0.99.

Similarly, to evaluate the classi�cation performance of
PPG-DaLiA data set using the 1DCNN-LSTMmodel, an 80-
20% split is used to train the model using 50 epochs. �e
proposed approach, in this case, has achieved an accuracy of
97.56%. �e result is further evaluated through confusion

Table 3: Parameters used for decision tree.

Classi�er Type Split criteria Max no. of splits

Decision tree
Fine

GDI
100

Medium 20
Coarse 4

Table 4: Parameters used for ensemble classi�er.

Type of ensemble Learner No. of learners
Bagged trees Decision tree 30

Conv
Layer1

Input
Layer Conv

Layer2
FC

Layer1
Dropout

FC
Layer2

FC
Layer3

Software
LayerLSTM

Layer

Pooling
Layer1

...

... ...

...

Figure 10: Illustration of 1D CNN-LSTM.

Table 5: Obtained accuracy using PPG-BP data set.

Data set Classi�er Type Accuracy (%)

PPG-BP

Decision tree
Fine tree 99.5

Medium tree 99.5
Coarse tree 99.5

Naı̈ve Bayes Gaussian näıve Bayes 90.4
Kernel naı̈ve Bayes 87.2

SVM

Linear SVM 94.1
Quadratic SVM 88.6
Cubic SVM 87.2

Fine Gaussian SVM 49.3
Medium Gaussian SVM 83.6
Coarse Gaussian SVM 74.4

Computational Intelligence and Neuroscience 7
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matrix, as presented in Figure 15. It is clear from both data
sets that we achieved better accuracy using the PPG-BP data
set through conventional methods of learning compared
with PPG-DaLiA data set. �e reason is that the PPG-DaLiA
data set is complex, although the model is trained using an
advanced deep learning method. However, this result can be
further improved using a hyperparameter setting.

Furthermore, some key challenges are also concern with
machine learning and deep learning models in CVD

diagnosis. For example, any wrong classi�cation might
produce severe damage and bad impact.

4.1. Comparison with Existing Work. �e proposed tech-
nique is also compared with some recent work, as presented
in Table 6. In Table 6, it is clearly indicated that our proposed
technique is better in terms of accuracy compared with [40].
However, the accuracy obtained in [41] is equal to the
proposed one, and hence we added another data set and
applied deep learning in the proposed work to gain more
attraction.

5. Conclusions and Future Work

�is research work employed machine learning and deep
learning to analyze CVD patients using PPG signals. �e
proposed system was evaluated through various models on
publicly available data sets such as PPG-BP and PPG-
DaLiA data sets. �e proposed model achieved an accuracy
of 99.5% and 97.56% using the PPG-BP and PPG-DaLiA
data sets, respectively. �e reason for choosing PPG signal
in the proposed work is that it is a low-cost technology,
which can easily be captured through IoT-based WPM
devices and be processed on cloud computing. �e em-
ployment of such a model is very helpful for the com-
munity, especially the people residing in remote and
backward areas. In the future, this work may focus on more
data sets with the involvement of image processing and
advanced deep learning methods.

�e notations that are used in this paper are summarized
in Table 7.
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PPG-DaLiA data set.

Table 6: Comparison with published work.

Ref. Method Data set Accuracy (%)
Yen et al. [40] ResNetCNN PPG-BP 73
Nour and Polat [41] Decision tree PPG-BP 99.5
Proposed Decision tree PPG-BP 99.5
Proposed CNN-LSTM PPG-DaLiA 97.56

Table 7: Summary of the notation.

Notation Meaning
BP Blood pressure
CAD Computer aided diagnosis
CVD Cardiovascular disease
DBP Diastolic blood pressure
DT Decision tree
ECG Electrocardiogram
FN False negative
FP False positive
FPR False positive rate
HR Heart rate
IoT Internet of things
LED Light emitting diode
NB Naı̈ve Bayes
PD Photodiode
PPG Photoplethysmography
SVM Support vector machine
SBP Systolic blood pressure
TN True negative
TP True positive
TPR True positive rate
SBP Systolic blood pressure
SBP Systolic blood pressure
WHO World Health Organization
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In this work, we used publicly available data sets called PPG-
BP [34] to analyze the clinical data and PPG-DaLiA dataset
[30] to evaluate motion compensation and heart rate esti-
mation in daily life activities.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(e authors extend their appreciation to King Saud Uni-
versity for funding this work through Researchers Sup-
porting Project number: RSP-2021/133, King Saud
University, Riyadh, Saudi Arabia.

References

[1] B. Norgeot, B. S. Glicksberg, and A. J. Butte, “A call for deep-
learning healthcare,” Nature Medicine, vol. 25, no. 1,
pp. 14-15, 2019.

[2] T. Saba, A. Rehman, T. Sadad, H. Kolivand, and S. A. Bahaj,
“Anomaly-based intrusion detection system for iot networks
through deep learning model,” Computers & Electrical En-
gineering, vol. 99, Article ID 107810, 2022.
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