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Smart grid is regarded as an evolutionary regime of existing power grids. It integrates arti�cial intelligence and communication
technologies to fundamentally improve the e�ciency and reliability of power systems. One serious challenge for the smart grid is
its vulnerability to cyber threats. In the event of a cyber attack, grid data may be missing; subsequently, load forecast and power
planning that rely on these data cannot be processed by generation centers. To address this issue, this paper proposes a transfer
learning-based framework for smart grid scheduling that is less reliant on local data while capable of delivering schedules with low
operating cost. Speci�cally, the proposed framework contains (1) a power forecasting model based on transfer learning which can
provide high quality load prediction with limited training data, (2) a novel adaptive time series prediction method with modeling
time series from a covariate shift perspective that aims to train the forecasting model with a strong generalization capability, and
(3) a day-ahead optimal economic power scheduling model considering a shared energy storage station.

1. Introduction

In recent years, the emergence of renewables and big data
has prompted a reform of the electrical network. As a
consequence, the concept of a smart grid becomes in-
creasingly popular [1]. A smart grid is de�ned as the next
generation electrical grid with power-�ow control, self-
healing, and energy reliability using digital communications.
Compared to the conventional power system, the smart grid
is designed to integrate millions of smart sensors and ad-
vanced computing technologies into the whole grid [2]; it
can e�ciently realize real-time automatic control, intelligent
regulation, online analysis and decision making, cooperative
interaction, and other advanced functions of the power grid.
One feature of the smart grid is the high share of renewable
generation, which poses a threat to its reliability due to the
renewable intermittency. One widely adopted solution to
this problem is to employ the energy storage system (ESS) in
microgrids. Since wind and photovoltaics power are

nondispatchable parts, the dispatching strategy of ESS be-
comes an important component in the smart grid with
renewable generation.

Most existing energy storage planning approaches rely
on historical data or highly precise generation/load forecast
[3, 4]. Current power forecasting methods can be broadly
categorized into two types: methods based on statistical
analysis [5] and methods based on arti�cial intelligence (AI)
algorithms [6]. For methods in the �rst category, the
Bayesian theory, multivariable linear regression, and
autoregressive moving average (ARIMA) are often
employed [7, 8]. �ese methods are better suited for �tting
data that have periodic features; the high percentage of
renewable energy sources considerably increases the ran-
domness of power variations, making methods in this cat-
egory less suitable for applications in smart grids. Methods
based on AI algorithms, on the other hand, are theoretically
favorable in predicting an output for systems with high
nonlinearity and complex dynamic properties. In particular,
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a recurrent neural network (RNN) [9] helps handle non-
linear problems and capture more dynamic relationships
between the input and the forecasted output compared to
the artificial neural network (ANN) [10], and the long short-
term memory (LSTM) unit proposed in [11] further im-
proves its performance in the prediction of time series data.

A noteworthy concern is that all the abovementioned
methods require sufficient training data. +e heavy reliance
on information networks leads to higher cyber risks for
smart grids [12]. In the event of a cyber-attack, the local
database could be tampered and lost, which leads to serious
consequences [13]. For instance, Ukraine’s electricity supply
system was hacked in 2017 through an attack on the data
aggregator, which is the central node containing data from
data collection base stations [14]. +is event caused massive
power outages, paralyzed connected nodes, and prevented
the control center from accessing customer load data in time
for power control and scheduling operations. It is of great
interest to reduce the grid control centers’ heavy reliance on
local users’ data, so that the day-ahead or long-term power
dispatch would not be blocked by insufficient data. +e
primary issue that needs to be addressed is load forecasting
based on inadequate local data.

Transfer learning (TL) [15, 16] is a suitable tool for
addressing the challenges discussed above. It is of great value
to introduce transfer learning in power systems to efficiently
utilize resources from different regions, discover the com-
monality of different datasets, and establish transfer learn-
ing-based forecasting methods. +e key idea of transfer
learning is to use the existing experience to solve similar
tasks, exploit similarities between data and models, and
apply the trained content to new tasks. Specifically, transfer
learning allows the use of knowledge in the dataset with
complete labels (i.e., the source domain) to solve problems in
the dataset withmissing labels (i.e., the target domain), using
a trainedmodel with good generalization capability [17].+e
research in [18] presents the outstanding contribution of
transfer learning in the field of image processing. Innovative
breakthroughs have also been made in the field of classifi-
cation and target detection [19] in recent years. Lu et al. [20]
proposed a general transfer learning-based framework for
load forecasting with limited data. +e influence of adopting
different kernel functions in transfer learning for fault di-
agnosis is studied by Li et al. in [21]. Scholars in [22] in-
vestigate the superiority of transfer learning in extracting
features and aim to predict the wind speed in different
environments. Yin et al. [23] proposed a hybrid transfer
learning-based wind power forecasting model. Unfortu-
nately, the potential relationship between statistical prop-
erties in time series and transfer learning is ignored in these
works.

One critical issue for developing transfer learning-based
forecasting methods is how to train a forecasting model with
strong generalization capabilities. Many published fore-
casting methods for smart grids are based on the assumption
that historical data follow the same distribution.+e scholars
in [24] made great improvements in load forecast based on
machine learning in certain areas, but the generalization
ability of their proposed method is not very promising since

the differences between distributions of data are not con-
sidered. In a typical grid, especially those with high pene-
tration of the renewable system that introduces high
stochasticity, the distribution of the data in the temporary
structure changes over time. Consider the illustrative graph
in Figure 1, the probability distribution of Px varies for
different intervals, and the temporal covariate shift phe-
nomenon happens after adding a new segment of data,
where Pa ≠Pb ≠Pc ≠Ptest. Here, the aforementioned issue is
embodied in two aspects. First, how to build an adaptive
prediction model to weaken the effect of covariate shift and
accommodate the diversity of sample data. Second, how to
develop a probability distribution algorithm to minimize the
divergence between the distribution for different intervals.

Load prediction provides basic data for generation
planning, day-ahead market offers, and intraday market
trading, and it is important for the economic dispatch of
power system. In the wind/photovoltaic/energy storage
complementary microgrid, the generation plan of energy
storage is the only dispatchable part. Researchers in [25]
proposed a general method for the capacity and power of
energy storage batteries and constructed a capacity alloca-
tion scheme for energy storage batteries, researchers in [26]
introduced the control and communication technology, and
operation principle of cloud energy storage based on the
Irish power system. At present, the research on shared
energy storage is in its initial stage, and the existing work
takes shared energy storage systems as the main research
object to analyze the business model and profitability of
shared energy storage systems, while in-depth research on
the charging and discharging behavior and economic
benefits of users’ participation in the shared energy storage
system is limited. +is paper introduces shared energy
storage plants among different user groups and establishes
an optimal scheduling model with the objective to minimize
daily operation cost of user groups.

+e main contributions of this paper are summarized as
follows:

(1) To address the challenge that the generation center
fails to develop power planning for grid operation
due inadequate local user data, we propose a power
forecasting method based on transfer learning,
where data from the source domain can provide
valuable reference information. Additionally, case
studies provide a detailed analysis of how to choose
the appropriate source domain, and the effect of
negative transfer on model performance is analyzed.

(2) +is work proposes to model the time series of load
prediction from the covariate shift perspective. To
train a forecasting model with strong generalization
capability with transfer learning, we generate a
combination mode where the probability distribu-
tions of time series vary for different intervals, and an
optimal split method is proposed to ensure that the
segments being divided are the most dissimilar ones.
+e temporal distribution matching algorithms are
proposed to minimize the divergence between the
distribution for different intervals. Dynamic
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programming (DP) is applied to optimize the op-
timal division points. �e case study shows that the
maximum improvement of the proposed forecasting
method is up to 52.8% in mean absolute percentage
error (MAPE) compared to other transfer learning-
based methods, and up to 64.4% compared to the
traditional method.

(3) With the accurate load prediction obtained from (1)
and (2), a novel shared energy storage station (ESS)
concept is proposed to form a framework for optimal
scheduling based on the transfer learning method.
�e case study shows that the proposed framework
can reduce the overall operating cost of the micro-
grid and maximize the bene�t of grid operation, thus
addressing the issue of energy curtailment [27] as
well as the high cost of energy storage.

�is paper is organized as follows: Section 2 presents the
structure of the transfer learning-based forecasting algo-
rithm with the limited data set, and modeling time series
from a covariate shift perspective, which is critical to de-
termining the generalization ability of forecasting models.
Section 3 proposes a framework of optimal dispatch plan-
ning for the distributed microgrid, a shared energy storage
station (ESS) is formed as a solution for multisource power
grid scheduling, and the dispatchability of the cyber-attacked

area is analyzed when using the proposed optimal economic
dispatching method.�e performance of transfer learning in
addressing fragmented test data of the target domain is then
developed. Moreover, using data obtained from the pro-
posed forecasting method, the economic analysis of the
proposed energy storage station is shown in Section 4. Fi-
nally, the main �ndings are included in Section 5.

2. Methodology of the TCS-Transfer
Learning Model

2.1. Transfer Learning-Based Structure. In most machine
learning tasks, the training and test sets come from the same
feature space and are subject to the same probability dis-
tribution. When the actual conditions are not satis�ed, it
takes a lot of resources to collect data from the target domain
to retrain a model. In particular, in a feature-rich smart grid,
retraining the model becomes ine�cient and time-con-
suming, which can seriously disrupt the schedule of the
generation center, transfer learning [28] is a new solution to
this problem.

Maximum mean discrepancy (MMD) is applied in this
paper to de�ne a more speci�c formula for the TL problem:

f∗ � argmin
f∈H

1
Ns
∑
Ns

i

l f xi( ), yi( ) + ξMMD Ds,Dt( ), (1)

where H represents the vector space that satis�es the ob-
jective function, Ns means the number of samples of the
source domain Ds, and Dt means the source domain and
target domain. Nt represents the number of samples of the
target domain, and l(x, y) denotes the loss function suitable
for di¥erent structures, and x and y represent the sample and
label, respectively. Argmin denotes the value of the variable
that minimizes the objective function. ξ represents the
metric coe�cient. �is paper selects root mean squared
error (RMSE) as the measurement of error. It is considered
that MMD is one of the most widely used distance metrics in
TL among many statistical measures, which is an e¥ective
way to measure the correlation between any two di¥erent
domains Di and Dj, and it can be formulated using the
following equations:

MMD F , Di, Dj[ ] �
1

m(m − 1)
∑
m

i≠ j
k xi, xj( ) +

1
n(n − 1)

k yi, yj( ) −
2
mn

∑
m,n

i,j�1
k xi, yj( )

1/2

, (2)

k x, x′( ) � e− x− x′‖ ‖2/2σ2 , (3)

where Di and Dj represent any two di¥erent domains, and
their sample sizes arem and n. k(·, ·) represents the Gaussian
kernel function. Radial basis kernel function k(x, x′) is used
for mapping to the higher dimensional spaces. x′ is the
center point of the kernel function, σ denoted the

expectation, which controls the range of action of the
Gaussian kernel function; the larger its value, the larger the
local range of the in�uence of the Gaussian kernel function.
F denotes the unit ball in the regenerative nuclear Hilbert
space (RNHS).
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Figure 1: �e temporal covariate shift phenomenon.
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It is worth noting that not all source domains are suitable to
be selected, Krizhevsky et al. [29] provides an in-depth analysis
of the role of pretrainingmodels for transfer tasks, a pretraining
model can be used as benchmark models for the task of the
target domain, researchers in [30, 31] also demonstrate that for
datasets with different distributions, pretraining in an appro-
priate source domain can greatly improve the accuracy of the
results, and source domain that has a weak correlation with the
target domain may cause a negative transfer phenomenon.
+erefore, it is essential to analyze the discrepancy between the
Ds and Dt; this paper measures the difference by calculating
the MMD value, and the source domain can be selected for
pretraining if the MMD is below the preset threshold value.

2.2. Problem Formulation of Temporal Covariate Shift (TCS).
+e variate xi  of the time series is assumed to follow the
same probability distribution in most existing prediction
methods, it may have achieved satisfactory results on specific
datasets, such as the load of a stand-alone device in a tra-
ditional predict scene, which is relatively uncomplicated in
its diversity. However, this assumption is not realizable in
the actual application due to the huge amount of data and
features, the variation of data distributions with the time
changing cannot be ignored. +us, our problem can be
formulated as follows: split a given time series S with m
labeled dataset into k segments with the most dissimilar
distribution S1 . . .Sk .

S � S1, . . .Sp . . .Sq . . . ,Sk ,

S � m.

⎧⎪⎨

⎪⎩
(4)

With reference to the definition of covariate drift [32]
in the classification field, the temporal covariate shift can be
presented such that the whole intervals in the same period i

follow the same probability distribution PSp,q
(x, y). +e

distribution will be different when the time period changes
PSp

(x)≠PSq
(x) (p≠ q ∈ (1, k)). To train a prediction

model with excellent generalization performance under
temporal covariate shift, the main issue is to capture the
common knowledge shared among different periods of
Sp,q.

According to the principle of maximum entropy [33, 34],
finding intervals that are the most distinct from each other
can helpmaximize the capacity of shared information within
a time series under temporal covariate change issues. It is fair
to make distributions of each interval as diverse and feasible
to maximize the entropy of the overall distributions of an
array. +is enables for more generic and adaptable future
data modeling. Worst-case training using the original se-
quence enables the model to cope with the stochastic nature
of the unknown data. Figure 2 shows the structure of the
proposed predicting method based on transfer learning, and
the primary task is to split the time series into k segments.
+e splitting problem of the time series in (5) is solved by the
greedy algorithm.

max
m1 ,...mk

1
k


1≤λi≠λj≤k

MMD Sp,Sq ,

s.t.∀i, Δ1 ≤ |λ[j] − λ[i]|≤Δ2,

(5)

where array λ[1...m] represents a set of time series, m
represents the length of it, MMD(·, ·) means the distribu-
tion-based distance function to measure the distance be-
tween distributions of any two segments Sp,Sq,
λ[c], c ∈ [i, j] denotes the coordinate position of the cut at
each time. λ[i] and λ[j] are the left and right endpoints of
the segment to be segmented, respectively. λ[j]−1 is the right
endpoint of the previous interval and λ[i] is the start point of
the next interval. Δ1 and Δ2 represent predefined constants
to prevent trivial solutions.

2.3.MatchingProcess andFine-Tune. +e proposed method
is designed to acquire the common information shared by
distinct intervals by comparing their probability distri-
butions, this section presents the process of how to
pretrain a model after obtaining the optimal split in-
tervals in raw data. In comparison to approaches that
simply depend on local or statistical knowledge, the
pretraining model M can produce a nice generalization
on unknown datasets of the target domain. +e pre-
training issue formulated in Section 2.2 can be solved by
the domain generalization (DG) [35] method, and the
distribution matching loss of the network can be estab-
lished as follows:

θ∗ � argmin
θ



k

i�1
Lpre yi, yi(  + ξ 

1<i<j<k
MMD Si,Sj , (6)

where L(·, ·) denotes the MSE loss in the source domain,
and Si and Sj are any two different intervals of λ[1 . . . m].
In the proposed method, LSTM is employed as the main
body of the network structure. Due to the special memory
unit of LSTM, potential relationships between data in a
time series can be preserved, which can provide high ac-
curacy for the prediction results. Compared to the con-
ventional recurrent neural network algorithm, which
contains only one state ht, the LSTM structure introduces
cell states ct to develop potential relationships in a long
time series. +e LSTM structure can be formulated as
follows:

it � σ Wi ∗ ht−1, xt  + b( ,

ct � tanh Wc ∗ ht−1, xt  + b( ,

ct � ft ⊙ ct−1 + it ∗ct,

ot � σ Wo ht−1, xt  + b( ,

ht � ot ∗ tanh ct( ,

(7)
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where xt is the input data, Wi,c,o represent the weight
matrices, it , ft, and ot are the input, forget, and output gates
of the LSTM structure, respectively. b represents the bias
value. ct−1 denotes the state of the memory cell. �e can-
didate value c̃t is generated by tanh layer. ht presents the
output value, ht−1 represents the output value of the previous
unit, the sigmoid function is denoted as σ, and ∗ represents
the dot product. ⊙ is the element-wise product. Figure 3
shows the structure of LSTM; the type of data being inputted
is described in Section 4.

Figure 4 shows the �owchart of the proposed transfer
learning-based forecasting structure. �e implementation
steps of the whole network are as follows:

(1) Start by collecting the raw data of power �uctuations
from neighboring cities and calculating the proba-
bility distribution of the candidate datasets

(2) Calculate the distance between the source and target
domains according to eq. (2) and select the appro-
priate source domain as the input data of the pretrain
model

(3) For the selected source domain, it is �rst divided into
k most dissimilar segments using the proposed dy-
namic programming-based method according to
eqs. (4) and (5).

(4) �e k segments are considered as di¥erent domains.
Eq. (6) is used as the new loss function in the model
with LSTM as the main network. After obtaining a
prediction network with strong generalization ca-
pability, the target domain with very less data is used
to �ne-tune by using Eq. (1)–(3).

�e proposed temporal covariate shift issue focuses on
an easily neglected problem in time series Dynamic pro-
gramming solves the optimal spilt problem of the time series,
considering the fragment as k independently distributed
individuals. �e generalization ability of the pretraining
model using source domain data is greatly improved by
taking the di¥erences between these segments as an

additional consideration in the loss function. �e deep
LSTM network can be trained with less learning time while
overcoming the problem of lacking su�cient local data as
training datasets.

3. Optimal Dispatch Planning for
Distributed Microgrid

3.1. Smart Grid with Multiple Sources of Energy Supplies.
Smart grids are increasingly used in recent years for both
residential and industrial purposes. In many microgrids, the
hybrid wind-solar generation plant is employed owing to the
complementary nature of wind and solar generation pat-
terns. �erefore, the smart grid with renewable generations
is studied in this paper as shown in Figure 5. From the
perspective of the Internet of�ings (IoT) network structure
of the smart grid, the data is collected by a large number of

xt σ ✳ ✳

✳

σ

xt xt

xt

htCt

it ot

ft

Figure 3: LSTM unit structure.
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Figure 4: Power forecasting structure based on the TCS-transfer
learning model.
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Figure 2: Schematics of the proposed predicting structure based on
transfer learning.
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smart meters in the users’ network, encrypted by the
gateway, gathered by the data aggregator, and then trans-
mitted to the control center, and this network data distri-
bution characteristic is called the “funnel effect” [36]. In a
smart grid with deeply integrated information systems, the
form of fault propagation has more possibilities. When a
node in the network fails, it will trigger the failure of the
related nodes, and the existing scheme requires all users to
work collaboratively. As long as one user fails, the whole
system cannot operate normally.+e transfer learning-based
forecasting method proposed in this paper can substantially
reduce the dependence of generation centers on the ade-
quacy of local data.

+e generation plant of the microgrid is divided into N
clusters, each having wind turbine and solar photovoltaic
(PV) systems. +e output power of the wind/PV system in
the j-th cluster can be expressed as follows:

PG,j(t) � PW.j(t) + PPV,j(t) + PD,j(t), j ∈ 1, 2, . . . , N{ },

(8)

where Pw,j, PPV,j, and PD,j represent the output power of wind
turbines, photovoltaic systems, and diesel systems, respec-
tively. In modern microgrids, generators are usually used as
backup power sources, the term PD,j(t) in (8) can be ignored
if no power failure occurs. It can be further expressed in per
unit (p.u.) value denoted by P∗G,j(t) as eq. (9), where
PG,base(t) denotes the base power in the DC bus, PG,j(t) is
the actual power value of the DC bus, andPBat(t) represents
the power of the battery.

P∗G,j(t) �
PG,j(t)

PG,base(t)
,

PPV,j(t) + PW.j(t) + PD,j(t) + PBat(t) � PL,j(t).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

3.2. Operation Mode and Market Rules of a Shared Station.
+e concept of a shared energy storage plant is shown in
Figure 5, in which the operator of an energy storage station

uses the financial advantage to establish a large shared energy
storage plant among a group of customers, and unifies the
operation and management of the energy storage station to
provide shared energy storage services to multiple customers
in the same distribution network area. +e generation center
forecasts the load based on historical electricity consumption
data and plans to use shared energy storage plants for
charging and discharging, which minimizes the economic
cost of operation of the storage devices and saves the customer
the investment cost of installing and maintaining the storage
devices. Power market rules require the dispatch plan sub-
mitted to the grid operator 24 hours ahead.

Figure 6 depicts the framework of the proposed power
dispatch schedule. +e main purpose of this work is to solve
the issue that the predicting process cannot operate due to
insufficient local data, thus, the power data of the neighbor
area is employed to train highly generalizable models, and
the precise prediction model can be obtained after fine-
tuning with few local data.

+e generation center of the energy shared storage power
station transmits the remaining power of users who need
charging directly to users who need discharging according to
the charging demand and discharging demand of each user
at each time.+e generation station of energy storage station
can utilize the complementary nature of customers’ power
consumption behavior, i.e., the difference in power con-
sumption behavior of the same customers at different times
and different customers at the same times, and canmaximize
the investment in the least amount of energy storage to meet
customers’ demand for energy storage use. +e specific
optimization strategy of shared storage stations is detailed in
Section 3.3.

3.3. Optimal Economic Scheduling of Shared Energy Storage
Station. Having explained the forecasting method and the
possible operational modes of the microgrid, the next task is
to develop the dispatch strategy for the shared ESS to
economically benefit users. +e high investment cost of
energy storage is the main reason that limits the application
of energy storage technology on the demand side of the grid.
+is paper proposed the concept of a shared energy storage
station, as shown in Figure 7, which is applied to the eco-
nomic optimization scheduling of regional users, and the
minimum daily operating cost of the user group is achieved
by coordinating the charging and discharging power of the
users. +e energy storage system allows users to store
electricity during the grid valley hours and release it during
peak hours, thereby decreasing electricity costs and relieving
the pressure on regulating the peak load. According to the
charging demand and discharging demand of each user in
each period, the generation center will deliver the remaining
electric energy of the user who needs to discharge directly to
the user who needs to charge. If the total charging and
discharging demand of users in the same time period is
discharged, the regulation center will decide whether the
users’ electricity needs to be purchased by the main grid or
stored in the shared power station according to the elec-
trovalence at that time.

Generation Center

Sharing 
Storage station

Power Generation Cluster 1

PR,N (t)PR,1 (t)

PL,1 (t)

PD,1 (t)

PL,N (t)

PD,N (t)
PBat (t)

Load

Data Aggregator Data Aggregator

Diesel

Power Generation Cluster N

Load

Diesel

Data Aggregator

Figure 5: Conceptual framework of the multienergy comple-
mentary power generation system.
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Based on the predicting method proposed in the pre-
vious sections, this part develops a scheme to obtain the
minimum grid operating cost through proper charging and
discharging of the shared energy storage station. By using
the shared energy storage station, the user saves the in-
vestment costs for the installation and maintenance of en-
ergy storage devices. Users pay the service fee to the
generation center in exchange for shared energy storage
services. +e service fee means the users pay to the gener-
ation center when they use the shared energy storage stations
for charging and discharging, it is set as 0.16$/kWh.

3.3.1. Objective Function of the Optimization Model.
According to the market rules presented in Section 3.2, the
user group connected to the shared energy storage station
uses the typical daily operating cost optimization as the

objective function to determine the capacity, the maximum
charging and discharging power of the energy storage sta-
tion, and the charging and discharging power of the storage
station for each time period of the user. +e daily operating
cost of the customer group includes the cost of electricity
purchased from the grid and the service fee paid to the
energy storage station.

minC � Cg + Cs, (10)

where C represents the daily cost of electricity for the user
community; Cg and Cs denote the cost of electricity pur-
chased by the customer from the grid and the service fee paid
to the energy storage station, respectively.

Cg � 
N

i�1


T

t�1
ρ(t) · PG,i(t) · Δt,

Cs � 
N

i�1


T

t�1
δ(t) · PE,D,i(t) + PE,C.i(t)  · Δt,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where N represents the serial number of the user group
connected to the same shared energy storage station, user
groups of three areas are selected as case studies in this paper
(i ∈ [1, 3]); ρ(t) ($/kW · h) represents the price that the users
purchase electricity from the grid. T denotes the scheduled
time periods; PG,i(t) indicates the power value purchased by
the user i from the grid at a given time interval t; Δt rep-
resents the unit time length of the power scheduled; δ(t) is
the service fee of the shared energy storage station; PE,D,i(t)

and PE,C,i(t) are discharge power and charging power of
energy storage station at time t, respectively.

3.3.2. Constraint Condition. +e constrains should be met
by the proposed power planning model. +ey include the
following: electrical power balance constraints [26] and
operational constraints of the energy storage stations:

(1) Power balance constrain of the whole grid:

Main Grid
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Figure 7: Schematic diagram of the shared energy storage station.
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Figure 6: Schematics of the proposed optimal power planning procedure.
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PG(t) + PPV,i(t) + PW,i(t) + PESS(t) − PL,i(t) � 0,

PESS � PE,D,i(t) − PE,C,i(t) � MAX PW,i(t) + PPV,i(t) − PL,i(t) ,
(12)

where PG(t) is the power purchased from the main
network; PPV,i(t) represents the output power of the
PV system of the i-th user in time interval t; PW,i(t) is
the wind power of the i-th user in time interval t.
PL,i(t) denotes the load power of the i-th user, which
is a predicted value obtained by the method pro-
posed in the previous section;PESS is the power of the
energy storage station, which satisfies the maximum
power difference between generation and load in the
grid for any period of time; PE,D,i(t) and PE,C,i(t)

represent the power under discharging and the
charging status of the energy storage system.

(2) Charging and discharging power constraints for a
shared energy storage station:

0≤PE,D,i ≤Pmaxδ
max
ESS D,

0≤PE,C,i ≤Pmaxδ
max
ESS C,

δmax
ESS D �

SOC − SOCmin

SOCl − SOCmin
,

δmax
ESS C �

SOCmax − SOC

SOCmax − SOCh

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

SOC � SOC0 −
1

Q 
t

0 ηIdt

⎛⎝ ⎞⎠ × 100%,

SOCmin ≤ SOC≤ SOCmax,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where Pmax is the rated maximum power of the
charging and discharging power of the energy
storage station; δmax

ESS D and δmax
ESS C are defined as the

discharging and charging state factor, respectively,
which ensure that the energy storage is not in an
overcharged and discharged state; SOCmin and
SOCmax represent the operating range of the energy
storage; SOCl and SOCh represent the optimal
working interval for energy storage; SOC denotes the
state of the charge value of the energy storage; SOC0
is the initial state of charge; η is the charge and
discharge efficiency; Q represents the electric charge
quantity; I is the battery current.

(3) Power balance constrain of the energy storage
station:



N

i�1
PE,D.i(t) − PE,C.i(t)


 � PD(t) − PC(t)


, (15)

δmax
ESS D + δmax

ESS C ≤ 1,

δmax
ESS D ∈ 0, 1{ }, δmax

ESS C ∈ 0, 1{ }.
 (16)

+e charging and discharging power of each user in a
time period t needs to be balanced with the charging
PC(t) and discharging PD(t) power of the energy
storage station.

3.3.3. Resolve Method. +e few nonlinear terms in the
abovementioned constraints can significantly increase the
difficulty and time during the solving process of numerically
solving the aforementioned optimization problem. To
overcome this challenge, Big-M [27] is adopted to linearize
the nonlinear constraints in this work. +e user scheduling
model based on shared energy storage stations can be
converted to a mixed integer linear programming problem.
+us, (15) can be reformulated as follows:

0≤PE,D,i ≤Pmax,

0≤PE,D,i ≤ δ
max
ESS DM,

0≤PE,C,i ≤Pmax,

0≤PE,C,i ≤ δ
max
ESS CM,

δmax
ESS D + δmax

ESS C ≤ 1,

δmax
ESS D ∈ 0, 1{ }δmax

ESS C ∈ 0, 1{ },

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where the value of M is determined as 108 in this paper.

4. Case Study on the Smart Grid System

4.1. Setup andExperimental Result of the Proposed Forecasting
Method. Field load data of three regions from Western
Australia are utilized for the case studies, covering the time
range of May 1, 2015, to July 1, 2021. A map of the regions of
the presented case studies is shown in Figure 8, where Case 1
and Case 2 are two typical industrial type electricity con-
sumption areas, and Case 3 is the residential user group.
Each node represents a region of independent microgrids
that do not interfere with each other and are powered
primarily by renewable energy. It is noted that 80% of the
historical data are used as the training set and the remaining
20% are used as a validation set. +e train/valid sets are
structured with a ratio of 8 : 2, the test set is from the real load
data from users. When load forecasting is implemented, 168
steps are batched together to train the model and predict the
net power in the next 24 steps, and the sampling interval is 1
hour and the forecasting horizon covers 24 hours. +e input
feature mainly consists of the population, temperature, and
calendar data which contain the season, number of holidays,
and weekdays. +e features are summarized in Table 1.

Figure 9 shows the raw data collected from three cases
presented in Figure 8. As shown by the yellow line, part of
the data in the western mining smelter (Case 2) is absent
because data loss occurred due to aggregator overload. +e
common deep learning-based predicting models are not
universal for different data sources, and each region needs to

8 Computational Intelligence and Neuroscience



train a locally applicable predicting model based on its own
database. According to the proposed transfer learning-based
model, after comparing the MMD value of each database
associated with the neighboring grid, the database of a
microgrid in western mining Kambalda is chosen as the
source domain.

To demonstrate the performance of the proposed
structure, this work compares the proposed TCS-transfer
learning model with four categories of methods listed as
follows:

(i) Traditional time series forecasting model LSTM
with classical gradient descent: there are also BP
[37], ANN, and CNN [38] belonging to this cate-
gory, and the most applicable time series predicting
model–LSTM is selected in this category

(ii) �e latest time series structure ELM [39] without
backward propagation: the convergence time is
substantially reduced and the training e�ciency has
been greatly improved. �e �rst two categories are
classical methods of time series forecasting.

(iii) Variants of popular domain adaptation methods
include MEDA-LSTM [40] and MMD-RNN [41],
which are also based on the concept of transfer
learning

(iv) A branch of transfer learning is that a transformer
with an attention mechanism [42, 43] has a stronger
generalization capability than the classical method.
�is paper uses 6 encoder blocks of a transformer
and 8 heads for self-attention.

�e relevant parameters are listed in Table 2. �e pa-
rameters that produce the best performance for each model
are tuned by K-fold cross-validation. �e following com-
parison discusses the e¥ectiveness of the proposed TCS-
transfer learning model mainly from two aspects: �rst, the
power grid of the western mining smelter (Case 2) is with
missing data, thus the traditional methods such as LSTM
and ELM included in categories i and ii failed to forecast the
load power due to the fragmented dataset in Case 2. For
cases of missing data in the test set, transfer learning is the
only method that can solve the problem. �e �rst part of the
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Figure 8: Geographical locations of the case study.

Table 1: Input feature of the forecasting model.

No. Input feature Description
1 No. of days Integer
2 No. of holidays Integer
3 No. of weekdays Integer
4 Holiday length Integer
5 Season Binary
6 Population Integer
7 Temperature Integer
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Figure 9: Raw data of three cases.
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comparison in this section uses different transfer learning
based approaches to predict the load power of Case 2.
Second, this paper presents that the proposed method is also
suitable for the time series forecast with a complete dataset.
+e comparison group of Case 1 and Case 3 contains both
traditional and transfer learning based methods.

4.2. Performance of Transfer Learning in Addressing Frag-
mented Test Data in the Target Domain. +is section mainly
discusses the differences between the proposed TCS-transfer
learning model and other transfer learning-based methods
in dealing with load forecasting problems. In the first set of
experiments in this paper, transformer, MMD-RNN, and
MEDA-LSTM are used to compare the superiority of the
proposed approach among transfer learning-based learning
methods, the forecast load result is shown in Figure 10.
Table 3 presents the prediction error of each method with
RMSE and MAPE. +ese prediction errors are evaluated by

RMSE �

������������


n
t�0 xt − xt( 

2

n



, (18)

MAPE �
1
n



n

t�0

xt − xt




xt

× 100%, (19)

where xt denotes the predicted value of samples, xt is the
actual value of samples, and n represents the number of
samples.

+e convergence times of different forecasting methods
are listed in Table 4; it takes 0.34 s for convergence with
regard to the proposed TCS-transfer learning structure,
which is a 60.4% increase compared with the MMD-RNN.
+e prediction accuracy (MAPE) is improved by 52.8% over
the RNN-based method, considering GPU cycles with Intel
Core i9-12900K. Although the proposed method is slightly
slower than the transformer in terms of convergence speed,
it has a great improvement in prediction accuracy.

To evaluate the effect of different splitting methods on
the training results, two additional methods of dividing the
time series in Figure 11, i.e., splits A and B, were designed in
this work. Split A denotes that the sequence is randomly
divided into k segments; split B is the method where all
intervals are with similar distributions, which is the opposite
of our proposed split method. +e proposed split method
has the objective of minimizing the cost function in (5). +e
“distance” on the Y-axis means the distribution distance
MMD with the green line and the RMSE denote the error
with the blue line. As a result, it is critical that we divide the
periods according to the worst case, where the distributions
are the most varied.

4.3. Results from the Case Study on Power Dispatch Strategy.
Figure 12 shows the results of power dispatch solved
according to eqs. (10)–(19), whose location are illustrated in
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Figure 10: Accuracy comparison between TCS-transfer learning
and other methods based on the database of Case 2.

Table 3: Comparison between MAPE and RMSE values obtained
using different forecasting methods.

Methods MAPE (%) RMSE
Ref. [41] MMD-RNN 6.09 0.457
Ref. [40] MEDA-LSTM 4.94 0.395
Ref. [42] transformer 4.13 0.196
+e proposed TCS-transfer learning 2.87 0.042

Table 2: Parameter set of different forecasting methods.

Model Meaning Value

TCS-transfer
learning

Hidden layers 2
Number of input layer

nodes 4

Number of hidden layer
nodes 32

Activation function Sigmoid, tanh
Learning rate 0.01

Optimization function ReLU
Epochs of training 400
Distance function MMD
Data preprocessing

methods
Optimal
splitting

Hidden layers 2

MMD-RNN

Number of input layer
nodes 4

Number of hidden layer
nodes 32

Optimization function ReLU
Learning rate 0.01

Epochs of training 500
Distance function MMD
Data preprocessing

methods None

Hidden layers 2
Number of input layer

nodes 4

Number of hidden layer
nodes 32

LSTM

Activation function Sigmoid, tanh
Optimization function ReLU

Learning rate 0.01
Epochs of training 500
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Table 4: Convergence time (s) of di¥erent forecasting methods.

Methods Time (s)
Ref. [41] MMD-RNN 0.86
Ref. [40] MEDA-LSTM 0.68
�e proposed TCS-transfer learning 0.36
Ref. [42] transformer 0.21
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Figure 11: Di¥erent split methods.
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Figure 8. It can be observed from Case 1 in Figure 12 that the
PV output power of the user group in the morning is less
than the demand side power; the demanded electricity for
this period is purchased from the grid as well as using part of
the shared power station considering the optimal economics.
When the PV power is higher than the demanded power, the
surplus power within the community is stored by the storage
power plant to avoid energy curtailment. At the period of 15:
00–20:00, the demand of the community cannot be met by
the PV system. While the electricity pricing is high in this
time period, the undersupplied energy is provided by the

shared energy storage station. Table 5 provides the electricity
rate obtained from the energy provider.

�e con�guration of the shared energy storage plant
results in a capacity of 2,508 kWh and a maximum charge/
discharge power of 637 kW. It can be observed from Fig-
ure 13 that at the period of 01:00–06:00, the electricity of
users is purchased from the main grid and the power station
does not provide electricity to the customer. During the 10:
00–17:00, the energy storage station is in a charging state and
the power rises from 382 kWh to the maximum value of
2,000 kWh, where the charging and discharging power value
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Figure 12: Power load balance curves of communities 1–3.
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of the energy storage plant is negative, which means that the
energy storage plant is charging; if the charge/discharge
power value is positive, it denotes that the energy storage
plant is discharging.

As can be seen from Figures 12-13, the electric loads of
communities 1–3 have reached a balanced state, and there is
no phenomenon of energy curtailment, meanwhile, the
energy storage station returns to the initial operation state
after one cycle of operation, ensuring the normal operation
of the next cycle of the energy storage station.

Table 6 compares the daily cost of each case considering
di¥erent con�guration methods of energy storage, the �rst
method presents the independent energy storage system
within each user. �e total operating cost is AUD 2618.6,
which is 36% more expensive than our proposed planning
method, and the capacity of the energy storage required by

the customer is reduced by 37.3% due to the complementary
nature of the customer’s power consumption behavior.
Moreover, the energy curtailment is well addressed and the
output power of renewables is fully utilized. One limitation
with shared energy storage stations is that they are prone to
cause harmonics after they are connected to the grid, which
can compromise power quality; therefore, more manage-
ment needs to be put into safe operation when using energy
storage stations.

5. Conclusion

�is paper proposed a framework for smart grid scheduling
that is less reliant on local data while capable of delivering
schedules with low operating costs. Speci�cally, the pro-
posed framework contains the following: (1) a power

Table 5: Electricity rates.

Level Time frame Electricity rates of the main grid [44] $AUD/kWh

Peak Commercial users 09:00–12:00; 14:00–19:00 0.253
Residential users 07:00–09:00; 17:00–20:00 0.386

Average Commercial users 12:00–14:00; 19:00–24:00 0.172
Residential users 09:00–17:00; 20:00–24:00 0.322

Trough Commercial users 24:00–09:00 0.073
Residential users 24:00–07:00 0.086
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Figure 13: Output power and SOC curves of the shared energy storage station.

Table 6: User costs with using di¥erent energy storage con�gurations per day.

Optimization planning results of schemes 1 [45] Optimization planning results of our work

No. of user
communities

Capacity of
ESS (kW·h)

Maximum charge/
discharge power (kW)

Operating costs
($AUD)

Power purchase
from the grid

(kW·h)

Service fee of
shared ESS
($AUD)

Operating costs
($AUD)

Community 1 2820 621 1416.5 583 702.5 759.2
Community 2 1005 163 566.3 16 593.4 595.4
Community 3 376 78 635.8 78 311.4 318.1
Total 4001 862 2618.6 677 1607 1672.7
Optimization planning results of schemes 1: independent con�guration of the energy storage system within each user. Optimization planning results of our
work: each user has access to a shared energy storage station.
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forecasting model based on deep transfer learning which can
provide high-quality load prediction with limited training
data; (2) a novel adaptive time series prediction method
based on a neighboring area dataset that aims to train the
forecasting model with strong generalization capability; (3) a
day-ahead optimal economic power scheduling model
considering the shared energy storage station. Results based
on a case study with field load data in Western Australia
showed that the maximum improvement of the proposed
forecasting method is up to 52.8% in MAPE compared to
other transfer learning-based methods, and up to 64.4%
compared to the traditional method.+e total operating cost
after optimization according to the proposed method was
reduced by 36.1%. +ese numbers indicate the proposed
framework is a promising approach to solving power
planning problems with incomplete datasets, in particular in
addressing the cyber threats.

In the future, we plan to explore a deeper extension of
TCS-transfer learning to a transformer for better perfor-
mance. Moreover, this work only designed a centralized
energy storage system. If multiple energy storage is needed,
optimal coordination between these dispatch-oriented en-
ergy storage systems would be considered a promising area
for future investigation.

Data Availability

+e features data input into the predicting model used to
support the findings of this study have been deposited in the
following repository: (1) Exemplary Energy Partners
Company. (http://www.exemplary.com.au/), (2) Office
Holidays (https://www.officeholidays.com/countries/aus-
tralia/2021), and (3) Australia Net Migration Rate 1950-2022
(https://www.macrotrends.net/countries/AUS/australia/net-
migration). +e net power data used to support the findings
of this study are currently under embargo, while the research
findings are commercialized. Requests for data, 6/12 months
after publication of this article, will be considered by the
corresponding author
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