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High-resolution (HR) medical imaging data provide more anatomical details of human body, which facilitates early-stage disease
diagnosis. But it is challenging to get clear HR medical images because of the limiting factors, such as imaging systems, imaging
environments, and human factors. �is work presents a novel medical image super-resolution (SR) method via high-resolution
representation learning based on generative adversarial network (GAN), namely, Med-SRNet. We use GAN as backbone of SR
considering the advantages of GAN that can signi�cantly reconstruct the visual quality of the images, and the high-frequency
details of the images are more realistic in the image SR task. Furthermore, we employ the HR network (HRNet) in GAN generator
to maintain the HR representations and repeatedly use multi-scale fusions to strengthen HR representations for facilitating SR.
Moreover, we adopt deconvolution operations to recover high-quality HR representations from all the parallel lower resolution
(LR) streams with the aim to yield richer aggregated features, instead of simple bilinear interpolation operations used in
HRNetV2. When evaluated on a home-made medical image dataset and two public COVID-19 CTdatasets, the proposed Med-
SRNet outperforms other leading edge methods, which obtains higher peak signal to noise ratio (PSNR) values and structural
similarity (SSIM) values, i.e., maximum improvement of 1.75 and minimum increase of 0.433 on the PSNRmetric for “Brain” test
sets under 8× and maximum improvement of 0.048 and minimum increase of 0.016 on the SSIMmetric for “Lung” test sets under
8× compared with other methods.

1. Introduction

Low-resolution (LR) medical images present reduced im-
portant pathological details and compromise the diagnostic
accuracy. High-resolution (HR) medical images provide
vital detailed anatomical information for clinical application
and quantitative image analysis. However, image quality is
often a¤ected by tremendous limitations. So, super-reso-
lution (SR) is an extremely crucial technique for medical
image processing [1, 2].

Recently, CNN-based SR methods [3–10], have achieved
surprising performance. �e networks are tending to be
deeper and deeper from the �rst SRCNN [3] to deeper VDSR
[4], DRRN [5] and MemNet [11], etc. and then to the very
deep RCAN [12]. In addition, the whole networks in other
e¤ective methods are constructed by simply connecting a

series of identical feature extraction modules, e.g., RDN [13],
IDN [14], MSRN [15], and SRFBN [16], which indicates that
the capability of each block is important. �e GAN model
[17] provides a new idea for image generation and also
provides a model basis for HR image generation. SRGAN
[18] is the �rst work to introduce GAN model into SR re-
construction, which has obtained higher image visual quality
and more realistic image high-frequency details. However,
the extracted features are often insu¨cient due to the rel-
atively simple design of SRGAN generation network, which
a¤ects the quality of reconstruction. Subsequently, some
new SR methods based on GAN models and deep con-
volutional networks are proposed to improve the quality of
image SR at di¤erent levels [19–24].

Unsurprisingly, deep learning intensively exploits multi-
scale features and HR representations and has achieved
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impressive results on numerous vision tasks [15, 25–30].
HRNet [31] and its variant HRNetV2 [32] have superior
performance. But they ignore the appropriate use of LR
representations for providing contextual information for HR
representations.

Although GAN-based SR models can achieve relatively
satisfactory results, there are still some shortcomings: (i) the
training process is unstable and the SR performance fluc-
tuates greatly using original GAN framework; (ii) it is not
suitable for extracting features in SR task because the
generation network is too simple, resulting in insufficient
image feature extraction and affecting the reconstruction
quality. ,erefore, we consider the advantages of GANs and
CNNs to propose a novel GAN-based architecture for
medical image SR via HR representation learning, namely,
Med-SRNet. We modify the feature aggregation parts of
HRNet and HRNetV2 and import HRNet framework to the
SR task. Figure 1 shows the SR result by Med-SRNet, in-
dicating a clearer structure like the multiple punctate lesions
in the red square regions. In summary, the contributions in
this paper are threefold:

(1) We use GAN as backbone of SR considering the
advantages of GAN that can significantly reconstruct
the visual quality of the images, and the high-fre-
quency details of the images are more realistic in the
image SR task.

(2) We employ HRNet as backbone of SR to maintain
the HR representations and repeat multi-scale fu-
sions to strengthen HR representations for facili-
tating SR. Also, we adopt deconvolution operations
to recover HR representations from the LR medical
images with the aim to yield richer aggregated fea-
tures, instead of simple bilinear interpolation op-
erations used in HRNetV2.

(3) We evaluate the proposed method with the con-
structed medical image dataset and two open-access
COVID-19 CT datasets. ,e experimental results
qualitatively and quantitatively demonstrated that
the proposed method obtains higher PSNRs/SSIMs
and preserves more local details and global features
compared with other leading edge methods.

,e rest of this paper is formed as follows. We present
related work in Section 2. Section 3 gives the proposed
method. Performance evaluation is presented in Section 4.
Conclusion with a brief summary is drawn in Section 5.

2. Related Work

In the last few years, significant improvement of the SR
quality has been achieved based on CNN models from the
first SRCNN [3] to the latest feedback network [16]. ,e
superiority of the CNN-based SR methods over the con-
ventional ones is remarkable. Due to the shallow structure,
SRCNN shows poor performance. To boost the perfor-
mance, the networks are getting deeper and deeper. For
example, the VDSR model [4] proposed by Kim et al. has a
deeper structure, and some recently proposed SR models

with very deep structure, e.g., RCAN [12], achieve satisfying
SR performance. Besides, dense connection-integrated SR
models, e.g., SRDenseNet [6] and MemNet [11], further
improve the performance. Moreover, some different forms
of methods have been proposed [9, 10, 33]. Kong et al. [9]
proposed the classSR framework to accelerate the SR net-
work, and its classification method reduces the computa-
tional cost. Mei et al. [10] proposed a nonlocal sparse
attentionmechanismwith dynamic sparse attentionmode to
achieve the robustness and efficiency of sparse representa-
tion while maintaining the ability of nonlocal remote
modeling. Lin et al. [33] proposed an improved RCAN
model, adding training iterations in the model training stage
to improve the performance of the model. For representative
computer vision tasks, i.e., object detection, image classifi-
cation, and semantic segmentation, multi-scale networks
[8, 15, 25–30] achieved outstanding results. For SR tasks,
multi-scale networks [8, 15, 25] also have superior perfor-
mance. A multi-scale residual network for image SR with the
ability of adaptively detecting the image features at different
scales was presented by Li et al. [15]. A multi-scale infor-
mation distillation network for single image SR by Sang et al.
[8] fully exploits image features and restores the LR images
to HR ones with high efficiency. More relevant to this work,
a deep multi-scale network (DMSN) for medical image SR
by Wang et al. [25] enables a better representation of global
topological structure and local texture detail of HR medical
images. But the common deficiency of these multi-scale
networks is high computational load caused by huge pa-
rameter number. To solve this problem, Sun et al. [31]
proposed a building block by establishing hierarchical re-
sidual-like connections within one single residual block,
called Res2Net, which is superior to the leading edge baseline
methods. For better performance, Sun et al. proposed
HRNet [31] and its variant HRNetV2 [32], which maintains
HR representations through the whole process. However,
HRNet and HRNetV2 ignore the appropriate use of LR
representations for providing contextual information for HR
representations. Besides, Guo et al. [34] proposed a deep
wavelet SR (DWSR) network to recover the HR image from
the LR image by predicting “missing details” of wavelet
coefficients. Huang et al. [35] used wavelet transform in the
CNN-based face SR for validation and they captured the
accurate global topology information and local textural
details of faces.

GAN-based SR methods have developed recently.
SRGAN [18] is the first work to introduce GAN model into
SR reconstruction, which has obtained higher image visual
quality and more realistic image high-frequency details.
Subsequently, some other GAN-based SR methods have
proposed, including enhanced super-resolution generative
adversarial network (ESRGAN) [19], deep convolutional
generative adversarial network (DCGAN) [20], WGAN [21],
patch GAN [22], conditional generative adversarial network
(CGAN) [23], and so on. Wang et al. [19] proposed ESR-
GAN, which replaces the residual block with the dense block
and removes the batch norm (BN) layer. Although the PSNR
of the generated image is not ideal, the sensory effect is
greatly improved. ,e discriminator of patch GAN [20]
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reduces the training parameters and makes the model
lightweight and easy to train. Gao et al. [23] proposed
CGAN-based image SR network. ,e possible mismatch
between input and output when GAN is directly applied to
SR is addressed, and its generator adopts a symmetric en-
coder-decoder structure and applies a skip connection to
achieve cross-layer transfer of low-level information. Zun
et al. [24] proposed a multi-scale parallel learning generative
network structure based on SRGAN, which consists of two
blocks of residual networks, learning the extracted LR im-
ages by the multi-scale characteristics of the two subnet-
works and then using the fusion network to fuse the high-
frequency information at different scales to generate HR
images.

3. Proposed Method

In this section, we present the architecture of the proposed
Med-SRNet. ,is work aims to reconstruct an SR medical
image from an LR one, which is obtained by the bicubic
operation of HR. Let X and Y denote the LR and HR images,
respectively. ,e end-to-end mapping function Gθ(·) be-
tween X and Y can be derived by solving the following
problem:

􏽢θ � argmin
θ

1
N

􏽘

N

i�1
L Gθ Xi( 􏼁, Yi( 􏼁, (1)

where θ is the network parameter set that needs to be op-
timized; L(.) is the loss function for minimizing the dif-
ference between X and Y; and N is the training sample
number.

GAN [17] can be recognized as an effective framework.
As shown in Figure 2, GAN is a generative model with zero-
sum game thinking, consisting of a generator G and a
discriminator D. ,e generator G falsifies the data by the
initial input noisy data, while the discriminator D deter-
mines whether the input data are falsified by the generator or
are the real data. ,e two play against each other repeatedly
through such a process, which keeps sending back infor-
mation and optimizing their network capabilities, respec-
tively, until finally the discriminator D can accurately
determine the authenticity of data while the generator G
generates data powerful enough to blur the judgment of D.

,us, following SRGAN [18], we further define a
discriminator network DθD

in which we optimize in an

alternating manner along with GθG
to solve the adversarial

min-max problem:

min
θG

max
θD

EY∼Pdata(Y) logDθD
(Y)􏽨 􏽩

+ EX∼Pdata(X) log 1 − DθD
GθG

(X)􏼐 􏼑􏼐 􏼑􏽨 􏽩,

(2)

where Pdata(X) denotes the true sample distribution and
Pdata(Y) denotes the generator distribution.

Figure 3 shows the complete architecture of the proposed
Med-SRNet. It starts from LR images. ,en, we use the
HRNet backbone network to learn. Here, wemainly focus on
the backbone network as shown in the feature extraction
part and feature aggregation part of generate network in
Figure 3.

For generate network as shown in Figure 3(a), we
employ HRNet [31] as backbone of SR, which repeats use
multiscale fusions to maintain HR representations
through the whole process. However, it only uses the
representation output from the highest resolution without
feature aggregation. In its variant HRNetV2 [32], Sun
et al. [31] aggregated the upsampled representations from
all the parallel convolutions rather than only the HR
representations. Inspired by Xiao et al. [36], deconvolu-
tional layers can recover high-quality HR representations.
So, we adopt deconvolution operation to recover HR
representations from all the parallel LR images with the
aim to yield richer aggregated features, as shown by the
red up arrows in the feature aggregation part of
Figure 3(a), instead of bilinear interpolation operation
used in HRNetV2. It takes further experiment to dem-
onstrate its effectiveness in Section 4.4.

For the feature extraction part, it starts from a HR
subnetwork as the first stage and gradually adds high-to-
low resolution subnetworks one by one to form more
stages. Meanwhile, it connects the multi-resolution sub-
networks in parallel. Multi-scale fusions are conducted
repeatedly such that each of the high-to-low resolution
representations receives information from other parallel
representations over and over, leading to rich HR
representations.

In the generator of Med-SRNet, we use 4 stages with 4
parallel subnetworks, similar to HRNet-W32 [31]. ,e
resolution is smoothly halved while the channel number is
doubled accordingly. ,e first stage is composed of 4 re-
sidual units, and each of them contains a 64-channel (width)

(a) (b) (c) (d) (e)

Figure 1: An example of medical image SR. (a),e original image. (b),e four red zones are the LR image (8×), (c) the original image (HR),
(d) the SR image by DMSN (PSNR: 24.66) [25], and (e) the proposed Med-SRNet (PSNR: 25.59).
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bottleneck, and then the width will be reduced to 32 via a
3× 3 convolution. Stages 2 to 4 contain 1, 4, and 3 con-
volution units, respectively. Every convolution unit has 4
residual blocks, each of which has two 3× 3 convolutional
layers. ,en, we obtain 4 different widths (32, 64, 128, and
256). After that, we adopt 5× 5, 7× 7, and 11× 11 decon-
volutional layers on 3 lower resolution representations,
respectively. Finally, four groups of HR representations are
aggregated via concatenation operation, followed by one
1× 1 convolution for prediction. All convolutional layers are
followed by ReLU [37].

To discriminate real HR images from generated SR
samples, we train a discriminator network, the same as
SRGAN [18]. ,e general architecture is illustrated in
Figure 3(b). Here we follow the architectural guidelines
summarized by Radford et al. [20] and use ReLU activation,
which avoids max-pooling throughout the network. ,e
discriminator network contains eight convolutional layers
with an increasing number (64 to 512) of filter kernels [38].
Strided convolutions are used to reduce the image resolu-
tion, and the number of features is doubled. ,e resulting
512 feature maps are followed by two dense layers and the

sigmoid activation function to obtain a probability for
sample classification.

Following SRGAN [18], the total loss function LSR
Total of

the proposed model is defined as weighted sum of individual
loss functions:

L
SR
Total � a1L

SR
MSE + a2L

SR
Gen,

L
SR
MSE �

1
r
2
WH

􏽘

rW

i�1
􏽘

rH

j�1
Yi,j − GθG

(X)i,j􏼐 􏼑
2
,

L
SR
Gen � 􏽘

N

n�1
−logDθD

GθG
(X)􏼐 􏼑,

(3)

where a1 and a2 are weighting parameters; LSR
MSE denotes the

content loss which is the most widely used optimization
target for image SR on which many state-of-the-art ap-
proaches rely; LSR

Gen denotes the adversarial loss of generative
network, which tries to fool the discriminator network; r is
the downsampling factor in the downsampling operation;
and W and H denote the size of the image, respectively.
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Figure 2: ,e network structure of GAN.
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Figure 3: ,e architecture of the proposed Med-SRNet. (a) Generate network. (b) Discriminant network.
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4. Experiments

In this section, experiments are performed to qualitatively
and quantitatively evaluate the proposed method. Also, the
quantitative evaluation is based on PSNR and SSIM [39] in
this work.

4.1. Medical Image Datasets. In this work, a database
suitable for medical image SR is constructed by

integrating the following medical images: the Brain, Lung,
Abdomen, and Bone. 250 images for each of these four
body parts are used in the database. Brain and Lung
images are chosen from the Cancer Imaging Archive
(TCIA) [40]. Bone and Abdomen images are provided by
the radiology department of a hospital in China. ,e
training set is composed of 175 images for each part, i.e.,
700 medical images in total; the test set is made from the
remaining 300 images.

Table 1: PSNRs for various methods on the constructed database.

Datasets Scale Bicubic DWSR [32] IDN [14] MSRN [15] SRFBN [16] DMSN [25] Med-SRNet

Brain 4 26.517 28.268 28.454 28.841 28.864 28.964 29.948
8 22.338 23.926 24.184 24.317 24.586 24.733 25.385

Lung 4 27.338 29.196 29.323 29.455 29.538 29.958 31.164
8 23.795 25.027 25.231 25.402 25.545 25.685 26.335

Abdomen 4 27.902 29.934 30.341 30.407 30.581 30.523 31.106
8 24.694 26.095 26.199 26.325 26.564 26.591 27.515

Bone 4 26.414 28.451 28.555 28.555 28.642 28.685 29.494
8 24.478 25.759 25.231 25.790 25.972 26.031 26.536

Table 2: PSNRs for various methods on the constructed database.

Datasets Scale Bicubic SRGAN [18] DCGAN [20] CGAN [23] Med-SRNet

Brain 4 26.517 28.154 28.685 29.374 29.948
8 22.338 23.635 24.361 24.952 25.385

Lung 4 27.338 29.162 29.548 30.356 31.164
8 23.795 25.014 25.432 25.744 26.335

Abdomen 4 27.902 29.634 30.597 30.673 31.106
8 24.694 25.968 26.485 26.900 27.515

Bone 4 26.414 28.361 28.763 28.822 29.494
8 24.478 25.657 25.528 26.165 26.536

Table 3: SSIMs for various methods on the constructed database.

Datasets Scale Bicubic DWSR [32] IDN [14] MSRN [15] SRFBN [16] DMSN [25] Med-SRNet

Brain 4 0.831 0.865 0.868 0.872 0.874 0.875 0.892
8 0.704 0.755 0.759 0.763 0.755 0.764 0.799

Lung 4 0.825 0.869 0.871 0.874 0.874 0.879 0.891
8 0.739 0.779 0.783 0.786 0.788 0.791 0.811

Abdomen 4 0.796 0.852 0.856 0.857 0.865 0.865 0.872
8 0.673 0.717 0.722 0.728 0.731 0.730 0.748

Bone 4 0.427 0.644 0.649 0.649 0.652 0.661 0.673
8 0.342 0.368 0.783 0.372 0.375 0.380 0.386

Table 4: SSIMs for various methods on the constructed database.

Datasets Scale Bicubic SRGAN [18] DCGAN [20] CGAN [23] Med-SRNet

Brain 4 0.831 0.858 0.862 0.880 0.892
8 0.704 0.741 0.753 0.776 0.799

Lung 4 0.825 0.861 0.869 0.881 0.891
8 0.739 0.763 0.778 0.795 0.811

Abdomen 4 0.796 0.846 0.852 0.860 0.872
8 0.673 0.705 0.719 0.740 0.748

Bone 4 0.427 0.624 0.640 0.666 0.673
8 0.342 0.361 0.775 0.381 0.386

Computational Intelligence and Neuroscience 5



In addition, we select two publicly available COVID-19 CT
datasets, termed as COVID-CT_349 (https://github.com/
UCSD-AI4H/COVID-CT) including 349 images and
COVID-CT_19 (https://github.com/ieee8023/covid-chestxray-
dataset) including 19 images. We use COVID-CT_349 as the
training set and COVID-CT_349 and COVID-CT_19 as the
test sets, respectively.

4.2. Implementation Details. For the constructed medical
image database, the 700-image training dataset is used for the
data augmentation. Following [4, 5], the original training im-
ages are first rotated by 90°, 180°, and 270° and then flipped
horizontally. ,erefore, we have seven additional augmented
versions for each original image. ,e same data augmentation
method is performed on COVID-CT_349 and COVID-CT_19.

Table 5: PSNRs for various methods on COVID-19 datasets.

Datasets Scale Bicubic SRCNN [3] SRGAN [18] DMSN [25] Med-SRNet
COVID-CT_349 ×4 26.573 30.025 32.242 32.716 34.083
COVID-CT_349 ×8 24.047 26.219 27.884 28.026 28.868
COVID-CT_19 ×4 30.963 33.795 35.692 35.714 36.643
COVID-CT_19 ×8 27.125 28.246 29.437 29.503 29.901

Table 6: SSIMs for different methods on COVID-19 datasets.

Datasets Scale Bicubic SRCNN [3] SRGAN [18] DMSN [25] Med-SRNet
COVID-CT_349 ×4 0.681 0.732 0.771 0.783 0.804
COVID-CT_349 ×8 0.627 0.679 0.708 0.716 0.753
COVID-CT_19 ×4 0.832 0.868 0.906 0.925 0.942
COVID-CT_19 ×8 0.764 0.802 0.840 0.857 0.881

Original Images Bicubic CGAN Med-SRNet

Figure 4: Qualitative results on the constructed medical image database. 1–4 columns are the original images, bicubic interpolation (8×)
images, SR images by CGAN, and SR images by the proposed Med-SRNet.
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We run the experiments on HP 7920 series tower server
with NVIDIA RTX3090 graphics card. We use Adam op-
timizer to train the proposed model. ,e initial learning rate
is set to 0.0001 for all layers and decreased by half after every
50 epochs. ,e proposed model converges after 200 epochs.
,e training procedure takes roughly 9 hours on a single
Tesla P40 GPU.

4.3. Comparison with State-of-the-Art Methods. In this
section, the performance of the proposed method is eval-
uated on both the constructed medical image database (i.e.,
Brain, Lung, Abdomen, and Bone) and COVID-19 datasets.
For a straightforward test, the published codes of other
models and the same training set are used for all methods.
Tables 1–6 show the comparison results of PSNR and SSIM
values for scales 4 and 8, indicating that the proposed Med-
SRNet obtains higher PSNR and SSIM values on these
datasets on average compared with other methods. Bold
indicates the best.

Figure 4 presents patterns of scale 8 for four image
datasets, i.e., Brain with suspected cerebrovascular malfor-
mation, Lung with atherosclerosis of aorta of pulmonary
mediastinal window, Abdomen with renal cyst, and normal
Bone sites. ,e images reconstructed by the proposed Med-
SRNet have a clearer structure and abundant detail, which is
obviously visible in the zoomed regions. Figure 5 shows the
patterns of scale 8 for COVID-19 images with the charac-
terization of ground-glass opacities. It is easy to find that the

proposed Med-SRNet obtains better results than other
methods in detail recovery.

4.4. Ablation Study. ,is section evaluates the performance
of feature aggregation component on the constructed
medical image database. Compared to SRGAN [18] and
HRNet [30], the proposed feature aggregation part adds one
component: deconvolution. ,e comparison (scale: 8×) of
PSNR for different feature aggregation parts is shown in
Table 7. Our method obtains higher PSNR on average. “BI”
and “MR” are the abbreviations of upsampled bilinear in-
terpolation operation and multi-resolution, respectively.

5. Conclusion

We present a GAN-based medical image SR network via HR
representation learning. It effectively exploits features of
medical images to boost the SR performance considering the
advantages of GAN that can significantly reconstruct the
visual quality of the images. It is important that HRNet is
employed as backbone of SR to maintain the HR repre-
sentations and repeat multi-scale fusions to strengthen HR
representations for facilitating SR. Also, deconvolution
operations are adopted to recover HR representations from
the LR images with the aim to yield richer aggregated
features, instead of simple bilinear interpolation operations
used in HRNetV2. Experimental results qualitatively and
quantitatively illuminate that the proposed method is

SRCNNHR Bicubic (8×)

SRGAN DMSN Med-SRNet

Figure 5: Qualitative results on a COVID-19 image for different methods.

Table 7: Comparison of PSNR for different feature aggregations.

Methods
Datasets

Brain Lung Abdomen Bone
Baseline1 [18] 23.926 25.014 25.968 25.657
Baseline2 [30] 24.956 25.751 26.982 26.128
Baseline2 + BI MR fusion [31] 24.993 25.814 27.106 26.196
Baseline2 + deconvolutions 25.025 25.957 27.198 26.243
Baseline1 + baseline2 + deconvolutions (ours) 25.385 26.335 27.515 26.536
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superior to other leading edge ones in LR image restorations.
In the future, we will study superior multi-scale transform
methods, which integrate SR task to better exploit features
from medical images.
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