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Automatic classi�cation and retrieval of �ne art collections have received much attention in recent years. In this article, we explore
the applicability of convolutional neural networks (CNNs) for art-related image classi�cation tasks. To examine how hyper-
parameters a�ect model performance, we use di�erent hyperparameters in our experiments and �nd that a higher resolution and
appropriate training steps with mix-up can improve model performance. To determine how transfer learning a�ects the �nal
results, we systematically compare the e�orts of �ve weight initializations of the models for di�erent tasks. We show that �ne-
tuning networks pretrained on a larger dataset have better generalizability.  is phenomenon shows the a priori knowledge that
models learn in the real world also applies to the art world, and we call this method as big transfer learning (BiT).  rough
extensive experiments on �ne art classi�cation, we demonstrate that the proposed transfer learning approach outperforms the
previous work by a large margin and achieves state-of-the-art performance in the art �eld. Furthermore, to show how computers
capture features in paintings to make classi�cations, we visualized the results of di�erent classi�cation tasks to help us understand
the operation mechanism of the models. Additionally, we use our models to retrieve paintings by analyzing di�erent image
similarity aspects.  e results show that models can be employed to retrieve paintings even if they are computer-generated.

1. Introduction

 e number of �ne art collections that have been digitized
has increased rapidly in recent years. To manage and index
these vast collections, we must classify, index, and retrieve
paintings. Art experts can identify the artist, genre, style, and
some other metadata of paintings using their experience.
However, this manual work is time-consuming and requires
history and art experts.  erefore, the automatic recognition
of artworks’ characteristics can not only generate the existing
metadata such as artist, genre, and style in new collections
but also create new metadata types related to the artwork’s
content or speci�c stylistic characteristics [1, 2].

Consequently, many studies have been conducted to
investigate how to teach a computer to understand various
painting characteristics. Research progress in the domain of
�ne art classi�cation has also made great progress recently
by large and well-annotated �ne datasets [3], and recent
breakthroughs in computer vision achieved by deep

convolutional neural networks (CNNs) [4, 5]. More datasets,
from small to large, have been introduced in the art �eld for
di�erent tasks, Painting-91 [6], the Rijksmuseum Challenge
Dataset [7, 8], WikiArt [9], ART500K [10, 11], the OmniArt
dataset [12], and the newly introduced Multi-
taskPainting100k dataset [13]. In addition, datasets such as
SemArt [14, 15] and BibleVSA [16] are introduced to per-
form visual-semantic retrieval [17]. e use of a large dataset
makes it possible to use CNNs for �ne art classi�cation tasks
[3, 18, 19].

One of themain recent successes of deep CNNs is the use
of pretraining parameters trained with extra labeled out-of-
domain data, such as ILSVRC-2012 [20], which contains
1.3M images, ImageNet-21k [21], which contains 14M
images, and JFT [22], which contains 300M images [23].
Compared with these large public datasets, digitized
paintings are still limited, and it is di©cult to train a gen-
eralized model without over�tting. Excellent performance
has been achieved in many di�erent image-related
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classification tasks in many fields by fine-tuning CNNs
pretrained on the ImageNet dataset [24–26]. ,is research
inspires us to explore how transfer learning works on fine-
art-specific tasks such as artist, genre, and style recognition.

In our work, we explore how transfer learning affects fine
art recognition performance. Our contributions are as
follows:

(i) We use different training schedule lengths and
resolutions without mix-up to test the impact on the
final results and find that a higher resolution and
appropriate training steps with mix-up can improve
model accuracy.

(ii) We use 5 weight initialization methods in the
models, with both pretrained in-domain and out-of-
domain data, to explore the impact of weight ini-
tialization. We show that the pretrained weight
initialization method influences the fine-tuning
performance. By using models pretrained on a
larger dataset, the model has better generalizability.
,e model will perform better if it is fine-tuned in a
larger art dataset first.

(iii) We compare our results with those of previous
work.,is comparison shows that our results obtain
state-of-the-art results in all tasks with different
datasets. Furthermore, we evaluate the performance
with little downstream data and find that it still
works well in the specific task.

(iv) We visualize and analyze some phenomena worth
attention. ,e results show that one of the reasons
for misclassification was the similar elements or
painting styles among the paintings.

(v) We build a painting retrieval system based on the
trained classification models. It shows that models
can be used to retrieve content-based searches
across art datasets with both existing paintings and
computer-generated paintings.

2. Related Work

Automatic art classification is a basic research topic in
painting computational aesthetics. Early work in automatic
art analysis first extracted handcrafted features from the
images and performed classification using traditional ma-
chine learning methods [27–29]. For example, Falomir et al.
[30] presented QArt-Learn approach for style painting
categorization using the k-nearest neighbor and support
vector machine methods with quantum chromodynamics
(QCD) color features and quantitative global features. Saleh
and Elgammal [31] explored how different features and
metric learning approaches influence the classification re-
sults and achieved the best results with the feature fusion
method. Zhong et al. [32] used the RGB and brush stroke
information to classify fine art painting images. In recent
years, deep CNNs have achieved great success in computer
vision using large hand-labeled datasets such as the
ImageNet dataset [20]. ,e research is mainly carried out
through a model structure selection, data augmentation,

feature fusion, and transfer learning [33]. Model structure
selection means optimizing the model structure to improve
model performance in art classification. Zhao et al. [34]
compare the performance of different models that have
made great success in ImageNet recently for art classifica-
tion. Sandoval et al. [19] introduced a two-stage image
classification approach including a deep CNN and a shallow
neural network to improve the style classification accuracy.
For the data augmentation, Badea et al. [35] used the Sun
database [36] to augment some WikiArt classes and used
ResNet-34, which was not initialized on ImageNet, to
perform genre classification tasks. Feature fusion means
incorporating expert knowledge into automatic feature
models. Chu and Wu [37] learned deep correlation features
(LDCF) from Gram and obtained 64.32% and 78.27% in
artist and style classification tasks, respectively, in Painting-
91. Bianco et al. [13] proposed the MultitaskPainting100k
dataset and used a spatial transformer network (STN), which
was introduced by [38] with the injection of histogram of
oriented gradient (HOG) features to achieve accuracies of
56.5%, 63.6%, and 57.2% in artist, genre, and style tasks,
respectively. Chen and Yang [39] presented an end-to-end
trainable architecture including adaptive cross-layer corre-
lation, and the results show it can adaptively weight features
in different spatial locations.

Transfer learning aims at transferring the trained model
parameters to a new model training. A well-established
paradigm has been to pretrain models using larger-scale data
and then to fine-tune the models on the specific tasks
[40–42]. Tan et al. [9] achieved the best results by fine-tuning
AlexNet pretrained on the ImageNet dataset. Viswanathan
[43] use ResNet-18 with pretrained weights from the
ImageNet dataset in artist classification tasks. Cetinic et al.
[44] used a fine-tuned CaffeNet pretrained on domain-
specific datasets and achieved the best performance. ,e
average accuracy for the artist, style, and genre classification
tasks obtained through the most advanced methods is de-
scribed in Section 3.3. From the aforementioned studies, for
specific tasks in art classification, transfer learning is gen-
erally performed using the ILSVRC-2012 version of
ImageNet [21] or domain-specific datasets for model pre-
training. To fill this gap regarding pretraining only with
ILSVRC-2012, we pretrained the model on a larger dataset,
ImageNet-21K [23] to further enhance the pretraining
performance. Furthermore, we evaluated the influence of
hyperparameters and downstream dataset size on the ef-
fectiveness of transfer learning to obtain a better transfer
learning method and improve the model performance for art
classification.

In addition to attribute prediction, Ypsilantis et al. [45]
built the Met dataset for Instance-Level Recognition (ILR) in
the artwork domain. Zhao et al. [46] used artistic comments
to classify painting attributes and find word embeddings can
be used to explain the meaning of the label.

3. Materials and Methods

3.1. Datasets. With the aim of classifying paintings, we use
three different datasets to identify the artist, genre, and style
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classification tasks. Our first source is Painting-91 [6], which
is a small dataset used for analyzing digital paintings. ,is
dataset contains 4,266 images from 91 different painters. In
total, 2,338 paintings have been labeled with the style to
which the painting belongs. ,e styles used in this study are
as follows: Abstract Expressionism, Baroque, Construc-
tivism, Cubism, Impressionism, Neoclassicism, Pop Art,
Post-Impressionism, Realism, Renaissance, Romanticism,
Surrealism, and Symbolism. ,is dataset is widely used
because the categories of artist and style are distributed
uniformly and is convenient for training due to its small
size. Another large-scale dataset is WikiArt-WikiPaintings,
which is collected from WikiArt [31]. ,e nonprofit
painting art website and painting art are shared and an-
notated by volunteers. As the number of paintings on
websites increases over time, the painting screening
methods of different papers are different, so the number of
paintings and the number of categories among algorithms
are different. For a fair comparison, we use the dataset as
Tan et al. [9] set. More than 80,000 fine art paintings are
collected from WikiArt, including more than 1,000 artists,
27 different styles, and 45 different genres. ,en, we use a
limited number of samples available in some classes for the
tasks. In the end, all the paintings are used for style clas-
sification; only 10 genres with more than 1,500 paintings
are chosen for genre classification, and 23 artists with more
than 500 paintings are used for artist classification. ,e
distribution of per class in each task can be seen in Figure 1.
Furthermore, we explore another source of paintings-
MultitaskPainting100k. ,e dataset comes from the Painter
by Numbers Kaggle competition, which predicts whether a
pair of images are from the same artist or not. It contains
103,250 images of paintings mainly from WikiArt. ,e rest
of the paintings are provided by the artists specifically for
competition. ,en, classes are removed with fewer than 10
entries in each task. After selection, 99,816 paintings for
1,508 artists, 125 styles, and 41 genres are used in the dataset.
Different from WikiArt-WikiPaintings, each image record
includes 3 attributes, allowing every image to be used for
artist, style, and genre classification tasks.,e distribution of
categories is more uneven, which means that some cate-
gories have only a small number of images, which makes the
classification tasks more difficult. In our experiments, we use
the same data splitting scheme to fairly compare with
previous studies. Larger training datasets contain more
painting diversity and can enhance model generalization.
,e total number of images per task and dataset, including
the training/testing split and the number of classes, is
provided in Table 1. Examples of representative images from
three different data sources are shown in Figure 2.

3.2.Model Selection. ,emodels used in our experiment are
ResNet-50 with ResNet-v2 architecture [47], which is
modified from ResNet [48]. We use group normalization
[49] instead of batch normalization [50] and add weight
standardization [51] to all the convolutional layers. To re-
search how transfer learning works in the art domain using
external data, we use the initialized parameters pretrained on

CIFAR-10 [52], ILSVRC-2012, ImageNet-21k [23], and the
in-domain dataset MultitaskPainting100k.

3.3. Training Setting. ,e pseudocode of fine-tuning the
CNN and obtaining the accuracy can be seen in Algorithm 1.
In each iteration, we randomly sample b images to compute
the gradients and then update the network parameters.
Instead of limiting the training epochs, we limit the training
steps. For hyperparameter selection, we use stochastic
gradient descent (SGD) [53] with an initial learning rate of
0.03, a momentum of 0.9, and a batch size of 64. In general, a
larger training set size can significantly improve the gen-
eralization of the model. Makantasis et al. [54–57] reduced
the number of weight parameters by making the parameter
weights satisfy rank-1 canonical decomposition, which in
turn reduces the required training samples. Here, for the
data augmentation, we first resize a larger image to
512 × 512, take a random crop to 480 × 480, then make
random horizontal flips, and normalize them in the training
data. We resize to 480 directly and normalize the test data.
For the schedule length, we use 500 steps in Painting-91
and 10,000 steps in WikiArt and MultitaskPainting100k.
During fine-tuning, we first warm up and then decay the
learning rate 3 times by a factor of 10 at some steps of the
training steps (see Section 4.2). Finally, we use mix-up (1)
with λ � 0.1 in all the tasks in the WikiArt and Multi-
taskPainting100k datasets to perform data augmentation,
as shown in Algorithm 1:

x � λxi +(1 − λ)xj,

y � λyi +(1 − λ)yj,

⎧⎨

⎩ (1)

where xi and xj are the raw input vectors and yi and yj are
the labels. ,en, we obtain the new vectors and labels. ,e
loss function is defined using the cross-entropy loss function:

loss(x, class) � −log
exp(x[class])
jexp(x[j])

 

� −x[class] + log 
j

exp(x[j])⎛⎝ ⎞⎠,

(2)

where x ∈ RN×C is the output of the models, class ∈ RN is
the label of the painting, and 0≤ class[i]≤C − 1.

4. Results and Discussion

In this section, we evaluate our fine-tuning strategy on 3
different tasks in 3 datasets.We want to answer the following
questions:

(i) How do different hyperparameters, including the
resolution, training schedule length, and whether to
use mix-up regulation, affect the art classification
results?

(ii) How do different weight initializations trained from
the out-of-domain and in-domain data affect the
final result in each task?

Computational Intelligence and Neuroscience 3
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Figure 1: Class distribution of the WikiArt in each task. (a) WikiArt artist distribution. (b) WikiArt genre distribution. (c) WikiArt style
distribution.

Table 1: Number of images and classes for the different sources and tasks.

Source Task Class Train Test Total

Painting-91 Artist 91 2,275 1,991 4,266
Style 13 1,250 1,088 2,338

WikiArt
Artist 23 13,344 5,706 19,050
Genre 10 45,501 19,492 64,993
Style 27 57,023 24,421 81,444

MultitaskPainting100k
Artist 1,508 69,821 29,995 99,816
Genre 41 69,821 29,995 99,816
Style 125 69,821 29,995 99,816
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(iii) Can our model achieve satisfactory results
in art classification, even with limited labeled
data?

(iv) How can a painting retrieval system be built, and
how does it perform using painting embeddings to
retrieve paintings?

4.1. Test Performance. We run our experiments using the
training setting as shown in Section 3.3, and the results of
each task are summarized in Tables 2–4, together with the
results of previous state-of-the-art approaches measured on
the datasets. BiT-S and BiT-M are pretrained on ILSVRC-
2012 and ImageNet-21k, respectively. ,e WikiArt datasets
are both from the WikiArt website, and as the number of

paintings on websites increases over time, there are differ-
ences in the selection methods of paintings for different
studies, so the number of paintings and number of categories
are different among the algorithms. We also report the
number of classes and samples considered in the experi-
ments presented in each paper in Table 3. Although the
dataset configurations are not exactly the same, because the
data are from the same source, they still have a certain
reference value. MultitaskPainting100k has 2 versions: the
original version and resizing to 256. We use these 2 versions
and find that the original images obtain higher performance
(68.14%, 65.82%, 72.64%) (Table 4). ,is finding proves that
a compressed image uses interpolation to enlarge the image
loses much information. All related works have been de-
scribed in Section 2 and compared to the references above,

(a) (b) (c)

Figure 2: Examples of images from the three data sources. (a) Painting91. (b) WikiArt. (c) MultitaskPainting100k.

Input: Initialize(net)
Output: Test Acc
(1) while 1 do
(2) for batch� 1,2, . . .,#images/b do
(3) images ← uniformly random sample b images
(4 x, y← progress(images);
(5) lr← get lr(lr, step);
(6) x, ya, yb← mixup data (x, y);

(7 z← forward (net, x);

(8 ℓ← loss (z, ya, yb);

(9 grad ← backward (z, ya, yb);

(10 update(net,grad);
(11) step++;
(12) if lr � None then
(13) break;
(14) end
(15) end
(16) end
(17) Acc�Eval(net, testk)

ALGORITHM 1: Fine-tuning the neural network and obtaining the painting classification accuracy.

Computational Intelligence and Neuroscience 5



and all of our models achieve state-of-the-art performance.
Note that we use fewer epochs and do not perform a
hyperparameter grid search, which means that it still has
room for improvement and proves how important it is for
weight initialization pretrained on a large, generic dataset.

4.2. Parameter Sensitivity. We explore the test accuracies
with different hyperparameters for the artist, style, and genre
classification tasks: the training schedule length, resolution,
and whether to use mix-up. For both the training schedule
length and resolution, we use 4 kinds of combinations. For
painting resolution, we set (160, 128), (256, 224), (448, 384),
and (512, 480). ,e former represents the resized size in the
training phase, while the latter represents the random
cropping size in the training and testing phases. Due to the
different input image resolutions, the floating point oper-
ations (FLOPs) of the model are 1.35 GFlops, 4.13 GFlops,
12.14 GFlops, 18.97 GFlops, respectively. For the training
schedule length, we use [100, 200, 300, 400, 500], [500, 1,500,
3,000, 4,500, 5,000], [500, 3,000, 6,000, 9,000, 10,000], and
[500, 6,000, 12,000, 18,000, 20,000]. ,e first parameter
means the warm-up steps, the last is the end step, while the
others mean steps in which the learning rate decays by a
factor of 10. Figure 3 shows the test accuracy for different
resolutions and training schedule lengths without mix-up.
We can see that using a higher resolution can increase the
recognition accuracy, which means that clearer paintings
carry more information. A longer training schedule length
can also increase the accuracy, but when longer than 10,000,
the effect is not obvious. ,is indicates that too long training
schedule length can cause overfitting of the model training.
Using mix-up can improve the performance in the artist and
genre recognition task, but it has no effort in the style
classification task, and models perform worst in style clas-
sification. ,is finding shows that the task of identifying
painting styles is challenging for computers.

4.3. Impact of Weight Initialization. To evaluate how weight
initialization affects task performance, we use the pretrained
ResNet50 model to explore how upstream pretraining affects
the fine-tuning performance:

(i) BiT-M is trained on the full ImageNet-21k dataset, a
public dataset containing 14.2M images and 21K
classes organized by theWordNet hierarchy. Images
may contain multiple labels.

(ii) BiT-S is trained on the ILSVRC-2012 variant of
ImageNet, and it contains 1.28M images and 1,000
classes.

(iii) BiT-M-S is trained on the ImageNet-21k dataset and
then fine-tuned on ILSVRC-2012.

(iv) BiT-M-C is trained on the ImageNet-21k dataset
and then fine-tuned on CIFAR-10, which contains
60,000 32 × 32 color images in 10 classes, with 6,000
images per class.

(v) BiT-M-Mul is trained on the ImageNet-21k dataset
and then fine-tuned on MultitaskPainting100k.

,e first 4 weight initialization models are out-of-do-
main data and from Kolesnikov et al. [23]. ,e last are in-
domain data and trained by us. To make a fair comparison,
we set the schedule to 10,000 steps and use mix-up regu-
lation.,e other settings are the same as those in Section 3.3.
,e results for the weight initialization impact are shown in
Table 5. We find that models pretrained on ImageNet-21k
have a better generalization performance than those pre-
trained on ILSVRC-2012. Even fine-tuning in the out-of-
domain datasets does not hurt the generalizability. Models
fine-tuned on art datasets can improve their generalizability
in painting classification tasks. We calculate the test per-
formance every 100 stages and plot the graph as shown in
Figure 4. It can be found that BiT-M-Mul performs best in
different stages of training. ,is finding proves that weight
initialization using in-domain data achieves an excellent
performance. Because there are many identical images be-
tween MultitaskPainting100k and WikiArt, we do not use
the result of BiT-M-Mul as the final result, but it still has
reference significance. ,e models pretrained on ImageNet-
21k (BiT-M, BiT-M-S, and BiT-M-C) perform better in most
of the training steps compared with weight initialization
using ILSVRC-2012 (BiT-S). ,is finding shows that larger
datasets have better generalizability, although they are not as
effective as pretraining in the field.

4.4. Effect of the Size of the Labeled Data. To evaluate the
model performance in small downstream data, we ran-
domly select the number of images per class and test the
performance. Figure 5 is an example of a randomly selected
5-shot WikiArt dataset. ,e low data performance is shown
in Figure 6. ,e X-axis is the number of images per class.
,e blue bars show fine-tuning on the full dataset, the
orange bars show the state-of-the-art results from previous
work, and the green bars show fine-tuning on the models
pretrained on ILSVRC2012. We note that BiT-M can
achieve a higher test accuracy with limited labeled images in
WikiArt. For instance, BiT-M achieves a test accuracy of

Table 2: State-of-the-art results for artist and style categorization on the Painting-91 dataset.

Reference Method
Painting-91

Artist Style Average
[37] LDCF (learned from gram) 64.32 78.27 71.30
[39] Cross-layer correlation 70.65 78.13 74.39
[34] Structure selection 71.27 79.23 75.25
BiT-S (ours) Big transfer learning 61.23 75.64 68.44
BiT-M (ours) Big transfer learning 72.07 79.60 75.84
,e bold values show that the proposed BiT-M model achieves state-of-the-art performance compared with previous work and BiT-S model.

6 Computational Intelligence and Neuroscience



Table 3: State-of-the-art results for artist, genre, and style categorization on the WikiArt dataset, including samples and classes in each task.

Reference Year Method
Artist Style Genre

Sample Classes Acc. (%) Samples Classes Acc. (%) Samples Classes Acc.
(%)

[9] 2016 CNN fine-tuning (AlexNet) 19,050 23 76.11 81,444 27 54.5 64,993 10 74.14
[31] 2016 Feature fusion 18,599 23 63.06 78,449 27 45.97 63,691 10 60.28
[43] 2017 CNN fine-tuning (ResNet18) 17,100 57 77.7
[35] 2017 CNN fine-tuning (ResNet-34) 79,434 26 61.15
[44] 2018 CNN fine-tuning (CaffeNet) 20,320 23 81.94 96,014 27 56.43 86,087 10 77.6

[19] 2019 Two-stage classification
approach 26,400 22 66.71

[32] 2020 RGB and brush stroke channels 9766 19 88.38 30,825 25 58.99 28,760 10 76.27
[34] 2021 Structure selection 19,050 23 91.73 81,444 27 69.97 64,993 10 78.03
BiT-S (ours) Big transfer 19,050 23 91.34 81,444 27 68.27 64,993 10 80.88
BiT-M (ours) Big transfer 19,050 23 93.50 81,444 27 71.24 64,993 10 82.39
,e bold values show that the proposed transfer learning approach outperforms the previous work by a large margin and achieves state-of-the-art per-
formance in the art field.
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42.31% with only 5 images per genre. When each category
contains 100 images, the models achieve accuracies of
84.77% and 68.74% in the artist and genre classification
tasks, respectively. Due to the large number of categories
and the small number of paintings in each category, the
classification performance of models in Multi-
taskPainting100k is not outstanding. Our model achieves
state-of-the-art performance in all the tasks in these 2
datasets. ,is finding proves that pretraining plays an
important role in classification tasks.

4.5. Interpretation of the Classification Results. Figure 7
shows the embedding of paintings using fine-tuned BiT-
M models. ,ere are a few observations that are worth
attention combined with Figure 8(c). Categories such as

abstract paintings, landscapes, and portraits are clustered,
which makes these categories well distinguished, similar to
the excellent performance of CNNs in face detection and
scene recognition. ,ese paintings achieve 95%, 90%, and
86% recognition rates in each category, respectively. ,e
paintings belonging to sketches and studies are confused
with other types of paintings, which results in an accuracy
of only 66% for these types of paintings. Upon further
examination of Figure 8(c), cityscapes are mistaken for
landscapes because they all include outdoor scenes; illus-
trations and nude paintings are often referred to as genre
paintings because they all contain people, which can also be
seen in Figure 5. Regarding style classification
(Figure 8(b)), we can observe that the most obvious type of
style is Ukiyo-e (96%), which is a genre of woodblock prints
and paintings that flourished in Japan from the late 17th to
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Figure 3: Test accuracy with different hyperparameters.
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Table 4: State-of-the-art results for artist, genre, and style categorization on the original MultitaskPainting100k dataset and the resized one.

Reference Method
MultitaskPainting100k

Artist Style Genre Average
[13] STN+HOG 56.5 57.2 63.6 56.85
[34] Structure selection 65.50 63.15 67.83 65.49
BiT-S (ours) Big transfer-256 51.38 60.16 70.23 55.77
BiT-M (ours) Big transfer-256 66.04 64.32 71.97 65.18
BiT-S (ours) Big transfer-ori 53.72 61.12 70.48 61.77
BiT-M (ours) Big transfer-ori 68.14 65.82 72.64 68.87
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Figure 4: Continued.
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late 19th centuries. Action Painting was a style widespread
from the 1940s until the early 1960s and is closely asso-
ciated with Abstract Expressionism.,is style is difficult for
computers to distinguish because of the relationship be-
tween the two contains and is contained, and nearly half of
the Action Paintings are predicted as Abstract Expres-
sionist paintings. Synthetic Cubism (58%) and Analytical
Cubism (70%) are easy to categorize into Cubism because
Analytical Cubism and Synthetic Cubism are the two key
phases of Cubism. From the style analysis above, we can
also see that inadequate datasets, Analytical Cubism, and
Synthetic Cubism are the different stages of Cubism. Action
and Color Field painting are 2 substyles of Abstract Ex-
pressionism based on 2 different ways of applying color. It
can be seen that the model performs best in the artist
classification task (Figure 8(a)). Pablo Picasso’s (84%) ar-
tistic career runs through almost his entire life, and his
work is often categorized into periods, which makes his
works rich and diverse. However, it makes it difficult for the
models to distinguish his artwork. Ivan Aivazovsky (99%)
was a Russian Romantic painter and is considered one of
the greatest masters of marine art. ,e vast majority of his
works are seascapes. Raphael Kirchner (99%) was a famous
postcard painter and is best known for Art Nouveau. ,e
content of his paintings is often sweet and colorful girls and
gorgeous life as the background. Rembrandt (99%) was a
Dutch painter; Rembrandt lighting, which was named for
him, is often used in his paintings. We can find that the
artists that models can recognize with high precision
usually use certain objects or technologies in their paint-
ings. ,ese findings are in line with the results of Tan et al.
[9]. ,is finding shows that the recognition mechanism of
the model for paintings is basically the same. However,
after using a higher painting resolution and better model

pretrained using a larger dataset and other methods, our
classification accuracy is higher than that of this previous
work.

4.6. Feature Extractor for Image Similarity. In addition to
exploring task-specific classification, we aimed at retrieving
the paintings of similar categories. To accomplish the re-
trieval goal, we used various models to perform feature
extraction and then calculated the similarity between fea-
tures using the cosine distance. We use paintings from
different sources as the input and search for similar paintings
in terms of artist, style, and genre from Multi-
taskPainting100K. For each of them, we retrieved the 6 most
similar paintings using artist, style, and genre features. ,e
Young Ladies of Avignon (Figure 9) is a large oil painting
created in 1907 by the Spanish artist Pablo Picasso. It depicts
five nude female prostitutes in a brothel, and the three
figures on the left exhibit facial features in the Iberian style of
Picasso’s native Spain, while the two figures on the right are
shown with African mask-like features. ,is incredible
painting marked not only a major turning point in Picasso’s
personal art history but also a revolutionary breakthrough in
the history of Western modern art, which marks the birth of
Cubism. Only 4 of 6 paintings belonging to Pablo Picasso
were retrieved by the system using artist features. It also
shows difficulty recognizing the artists who have different
painting styles because we know Picasso was a prolific
painter and his works were rich and varied in style from
Section 4.5. Because portraits and nude paintings (nu) all
have human bodies, when retrieving genres, some portrait
paintings were also retrieved. In total, it performed well in
style and genre retrieval. Berendey’s Sloboda (Figure 10)
(which does not belong to the MultitaskPainting100k
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Figure 4: Validation accuracy curves of differently initialized models for the WikiArt artist, style, and genre classification tasks: (a) Artists.
(b) Styles. (c) Genres.
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Figure 6: Test accuracy by varying the number of images per class in the training data. (a) WikiArt. (b) MultitaskPainting100k.
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Figure 8: Confusion matrix [59] for WikiArt artist, style, and genre classification tasks using the Bit-M fine-tuned model. ,e color bar
shows the normalized intensity. (a) Artists. (b) Styles. (c) Genres.
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Figure 9: Similarity results for the young ladies of Avignon by Pablo Picasso, belonging to the cubism style and nude painting (nu) genre.
Similarity results: the top 6 paintings retrieved using the artist features (first row), style features (second row), and genre features (third row).
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dataset) was painted by Nicholas Roerich, who was a Russian
painter, writer, archaeologist, theosophist, philosopher, and
public figure.We can obtain the correct retrieval use only the

genre. It is difficult to distinguish the author and style very
well even for adults who have less experience in art. It shows
that sketches and studies are difficult to classify especially in
terms of the artist and style due to the single color. ,is
phenomenon also verifies why the recognition rate of
sketches and studies is the lowest in genre classification.
DeepArt is a website that allows users to create unique artist
images in the style of your favorite artist by using transfer
learning [60]. Here, we use Lenna, which is a standard test
image widely used in the field of image processing since
1973, as the source image and van Gogh’s self-portrait as the
style source to create a new image and feed it to the retrieval
system in Figure 11. Van Gogh is one of the greatest of the
Post-Impressionists, and the eye-catching colors, prominent
brushstrokes, and outline forms in his works have strongly

Nicholas Roerich
Art Nouveau (Modern)

sketch and study

Martiros Saryan Nicholas Roerich Theo van Doesburg Vasily Surikov Martiros Saryan Isaac Levitan

Expressionism Expressionism Expressionism Impressionism Art Nouveau (Modern) Symbolism

sketch and study sketch and study sketch and study illustration sketch and study sketch and study

Figure 10: Similarity results for Berendey’s Sloboda by Nicholas Roerich. Similarity results: the top 6 paintings retrieved using the artist
features (first row), style features (second row), and genre features (third row).

Vincent van Gogh Vincent van Gogh Vincent van Gogh John French Sloan Vincent van Gogh John French Sloan

Post-Impressionism Post-Impressionism Post-Impressionism Post-Impressionism Post-Impressionism Post-Impressionism

portrait portrait portrait portrait portrait portrait

Figure 11: Similarity results for Lenna using van Gogh’s self-portrait, which belongs to the Post-Impressionist style, and the portrait genre
as the style source. Similarity results: the top 6 paintings retrieved using the artist features (first row), style features (second row), and genre
features (third row).

Table 5: Comparison of the classification accuracies achieved with
different initializations.

Weight initialization
Tasks/acc. (%)

Average
Artist Style Genre

BiT-M 94.01 71.49 82.07 82.52
BiT-S 91.45 67.88 80.57 79.97
BiT-M-C 93.88 71.59 82.13 82.53
BiT-M-S 93.94 71.31 81.80 82.35
BiT-M-Mul 95.20 75.78 84.52 85.17
It shows BiT-M-Mul model achieves state-of-the-art performance com-
pared with other weight initialization models.
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influenced the trend of modern artistic expressionism. In-
terestingly, all 3 of themost similar paintings retrieved by the
system using artist features are from Vincent van Gogh, and
the first is just the painting as the style source. All 6 paintings
retrieved using the style and genre features belong to the
Post-Impressionism style and portrait genre, similar to the
style source image. ,is shows that this system is still very
useful for computer-generated images.

5. Conclusions

In this study, we use transfer learning and fine-tuning on 3
art collections for 3 different art-related classification
tasks. We focus on exploring the impact of different
weight initializations and show that the pretrained model
influences the fine-tuning performance. Moreover, we
show that pretraining on ImageNet21k yields a better
generalizability. Our approach achieves a state-of-the-art
performance in all the tasks in the 3 datasets compared
with previous work. In addition, we build an image re-
trieval system that provides similar paintings with respect
to artist, style, and genre features, which helps users better
understand the paintings. ,e retrieval results show that
this system works well not only on existing paintings but
also on computer-generated paintings. In this work, we
used convolutional neural networks (CNNs) to perform
various types of artwork classifications. In a given set of
paintings, the artists, styles, genres, and other features
may be related to each other. For example, van Gogh’s
paintings have a high probability of being classified as
Post-Impressionist, as he was the greatest Post-Impres-
sionist. ,erefore, in future work, we will attempt to add
other features to construct classification approaches based
on both color features and contextual relationships be-
tween labels. In Section 4.5, we found problems with
dataset tags, such as Action Paintings for Abstract Ex-
pressionism and Analytical Cubism and Synthetic Cubism
for Cubism. ,erefore, it is necessary to build a more
comprehensive and in-depth painting dataset and con-
sider both quantity and quality. Also, we will further
explore the effect of different convolutional kernels and
convolutional network sizes in art classification.

Data Availability

Painting-91 is available at https://www.cat.uab.cat/∼joost/
painting91.html. WikiArt is available at https://github.com/
cs-chan/ArtGAN. MultitaskPainting100K is available at
https://www.ivl.disco.unimib.it/activities/paintings.

Conflicts of Interest

,e authors declare no conflicts of interest.

Acknowledgments

,is research was partly supported by “Pioneer” and
“Leading Goose” R&D Program of Zhejiang (Grant no.
2022C01105) and Key Laboratory of E&M (Zhejiang

University of Technology), Ministry of Education and
Zhejiang Province (Grant no. EM 2016070101).

References

[1] M. R.Mohammadi and F. Rustaee, “Hierarchical classification
of fine-art paintings using deep neural networks,” Iran Journal
of Computer Science, vol. 4, no. 1, pp. 59–66, Sep. 2020.

[2] S. Jiang, Q. Huang, Q. Ye, and W. Gao, “An effective method
to detect and categorize digitized traditional Chinese paint-
ings,” Pattern Recognition Letters, vol. 27, no. 7, pp. 734–746,
2006.

[3] E. Cetinic, T. Lipic, and S. Grgic, “Learning the principles of
art history with convolutional neural networks,” Pattern
Recognition Letters, vol. 129, pp. 56–62, 2020.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, and
E. Protopapadakis, “Deep learning for computer vision: a brief
review,” Computational Intelligence and Neuroscience,
vol. 2018, pp. 1–13, Article ID 7068349, 2018.

[5] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew,
“Deep learning for visual understanding: a review,” Neuro-
computing, vol. 187, pp. 27–48, 2016.

[6] F. S. Khan, S. Beigpour, J. Van de Weijer, and M. Felsberg,
“Painting-91: a large scale database for computational
painting categorization,” Machine Vision and Applications,
vol. 25, no. 6, pp. 1385–1397, 2014.

[7] T. Mensink and J. Van Gemert, “,e Rijksmuseum Chal-
lenge,” Proceedings of International Conference onMultimedia
Retrieval, in Proceedings of the International Conference on
Multimedia Retrieval, pp. 451–454, Association for Com-
puting Machinery, New York, NY, USA, April 2014.

[8] N. Van Noord, E. Hendriks, and E. Postma, “Toward Dis-
covery of the Artist’s Style: learning to recognize artists by
their artworks,” IEEE Signal Processing Magazine, vol. 32,
no. 4, pp. 46–54, 2015.

[9] W. R. Tan, C. S. Chan, H. E. Aguirre, and K. Tanaka, “Ceci
n’est pas une pipe: a deep convolutional network for fine-art
paintings classification,” in Proceedings of the 2016 IEEE In-
ternational Conference on Image Processing (ICIP),
pp. 3703–3707, IEEE, Phoenix, AZ, USA, September 2016.

[10] H. Mao, J. She, and M. Cheung, “Visual arts search on mobile
devices,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 15, no. 2s, pp. 1–23,
2019.

[11] H. Mao, M. Cheung, and J. She, “DeepArt,” in Proceedings of
the 25th ACM International Conference on Multimedia,
pp. 1183–1191, Association for Computing Machinery, New
York, NY, USA, October 2017.

[12] G. Strezoski and M. Worring, “OmniArt,” ACM Transactions
on Multimedia Computing, Communications, and Applica-
tions, vol. 14, no. 4, pp. 1–21, 2018.

[13] S. Bianco, D. Mazzini, P. Napoletano, and R. Schettini,
“Multitask painting categorization by deep multibranch
neural network,” Expert Systems with Applications, vol. 135,
pp. 90–101, 2019.

[14] N. Garcia and G. Vogiatzis, “How to read paintings: semantic
art understanding with multi-modal retrieval,” in Proceedings
of the Computer Vision – ECCV 2018Workshops, pp. 676–691,
Munich, Germany, September 2018.

[15] N. Garcia, B. Renoust, and Y. Nakashima, “Context-aware
embeddings for automatic art analysis,” in Proceedings of the
2019 on International Conference on Multimedia Retrieval,
pp. 25–33, New York, NY, USA, June 2019.

Computational Intelligence and Neuroscience 17

https://www.cat.uab.cat/%7Ejoost/painting91.html
https://www.cat.uab.cat/%7Ejoost/painting91.html
https://github.com/cs-chan/ArtGAN
https://github.com/cs-chan/ArtGAN
https://www.ivl.disco.unimib.it/activities/paintings


[16] L. Baraldi, M. Cornia, C. Grana, and R. Cucchiara, “Aligning
text and document illustrations: towards visually explainable
digital humanities,” in Proceedings of the 2018 24th Interna-
tional Conference on Pattern Recognition (ICPR), pp. 1097–
1102, IEEE, Beijing, China, August 2018.

[17] M. Cornia, M. Stefanini, L. Baraldi, M. Corsini, and
R. Cucchiara, “Explaining digital humanities by aligning
images and textual descriptions,” Pattern Recognition Letters,
vol. 129, pp. 166–172, 2020.

[18] B. Saleh and A. Elgammal, “A unified framework for painting
classification,” in Proceedings of the 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), pp. 1254–
1261, IEEE, Atlantic City, NJ, USA, November 2015.

[19] C. Sandoval, E. Pirogova, and M. Lech, “Two-stage deep
learning approach to the classification of fine-art paintings,”
IEEE Access, vol. 7, pp. 41770–41781, 2019.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: a large-scale hierarchical image database,” in
Proceedings of the 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, Florida,FL, USA, June
2009.

[21] O. Russakovsky, J. Deng, H. Su et al., “Imagenet large scale
visual recognition challenge,” International Journal of Com-
puter Vision, vol. 115, no. 3, pp. 211–252, 2015.

[22] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting
unreasonable effectiveness of data in deep learning era,” in
Proceedings of the IEEE International Conference on Computer
Vision, pp. 843–852, Venice, Italy, October 2017.

[23] A. Kolesnikov, L. Beyer, X. Zhai et al., “Big Transfer (BiT):
General Visual Representation Learning,” 2020, https://arxiv.
org/abs/1912.11370.

[24] A. K. Reyes, J. C. Caicedo, and J. E. Camargo, “Fine-tuning
deep convolutional networks for plant recognition,” CLEF
(Working Notes), vol. 1391, pp. 467–475, 2015.

[25] N. Pittaras, F. Markatopoulou, V. Mezaris, and I. Patras,
“Comparison of fine-tuning and extension strategies for deep
convolutional neural networks,” MultiMedia Modeling, in
Proceedings of the International Conference on Multimedia
Modeling, pp. 102–114, Springer, January 2017.

[26] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A com-
parative study of fine-tuning deep learning models for plant
disease identification,” Computers and Electronics in Agri-
culture, vol. 161, pp. 272–279, 2019.

[27] L. Shamir, T. Macura, N. Orlov, D. M. Eckley, and
I. G. Goldberg, “Impressionism, expressionism, surrealism,”
ACM Transactions on Applied Perception, vol. 7, no. 2,
pp. 1–17, 2010.

[28] R. S. Arora and A. Elgammal, “Towards automated classifi-
cation of fine-art painting style: a comparative study,” in
Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pp. 3541–3544, IEEE, Tsukuba, Ja-
pan, November 2012.

[29] S. Agarwal, H. Karnick, N. Pant, and U. Patel, “Genre and
style based painting classification,” 2015 IEEE Winter Con-
ference on Applications of Computer Vision, IEEE, in Pro-
ceedings of the 2015 IEEEWinter Conference on Applications of
Computer Vision, pp. 588–594, January 2015.

[30] Z. Falomir, L. Museros, I. Sanz, and L. Gonzalez-Abril,
“Categorizing paintings in art styles based on qualitative color
descriptors, quantitative global features and machine learning
(QArt-Learn),” Expert Systems with Applications, vol. 97,
pp. 83–94, 2018.

[31] B. Saleh and A. Elgammal, “Large-scale classification of fine-
art paintings: learning the right metric on the right feature,”

International Journal for Digital Art History, vol. 0, no. 2, Oct.
2016.

[32] S.-h. Zhong, X. Huang, and Z. Xiao, “Fine-art painting
classification via two-channel dual path networks,” Interna-
tional Journal of Machine Learning and Cybernetics, vol. 11,
no. 1, pp. 137–152, 2020.

[33] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[34] W. Zhao, D. Zhou, X. Qiu, and W. Jiang, “Compare the
performance of the models in art classification,” PLoS One,
vol. 16, no. 3, pp. e0248414–16, 2021.

[35] M. Badea, C. Florea, L. Florea, and C. Vertan, “Efficient
domain adaptation for painting theme recognition,” 2017
International Symposium on Signals, Circuits and Systems
(ISSCS), IEEE, in Proceedings of the 2017 International
Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4,
July 2017.

[36] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: large-scale scene recognition from abbey to zoo,” in
Proceedings of the 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3485–3492,
IEEE, San Francisco, CA, USA, June 2010.

[37] W.-T. Chu and Y.-L. Wu, “Image style classification based on
learnt deep correlation features,” IEEE Transactions on
Multimedia, vol. 20, no. 9, pp. 2491–2502, 2018.

[38] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Reading text in the wild with convolutional neural net-
works,” International Journal of Computer Vision, vol. 116,
no. 1, pp. 1–20, 2015.

[39] L. Chen and J. Yang, “Recognizing the style of visual arts via
adaptive cross-layer correlation,” in Proceedings of the 27th
ACM International Conference on Multimedia, pp. 2459–
2467, New York, NY,USA, October 2019.

[40] W. Zhao,W. Jiang, and X. Qiu, “Deep learning for COVID-19
detection based on CT images,” Scientific Reports, vol. 11,
no. 1, p. 14353, 2021.

[41] W. Zhao, W. Jiang, and X. Qiu, “Fine-tuning convolutional
neural networks for COVID-19 detection from chest X-ray
images,” Diagnostics, vol. 11, no. 10, p. 1887, 2021.

[42] K. He, R. Girshick, and P. Dollar, “Rethinking ImageNet pre-
training,” in Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4917–4926, Seoul,
Republic of Korea, November 2019.

[43] N. Viswanathan, “Artist Identification with Convolutional
Neural Networks,” Standford193CS231N Report, Art Com-
puter Science, Stanford, CA, USA, 2017.

[44] E. Cetinic, T. Lipic, and S. Grgic, “Fine-tuning convolutional
neural networks for fine art classification,” Expert Systems
with Applications, vol. 114, pp. 107–118, 2018.

[45] N.-A. Ypsilantis, N. Garcia, G. Han, S. Ibrahimi,
N. Van Noord, and G. Tolias, “,e Met Dataset: Instance-
Level Recognition for Artworks,” 2022, https://arxiv.org/abs/
2202.01747.

[46] W. Zhao, D. Zhou, X. Qiu, and W. Jiang, “How to represent
paintings: a painting classification using artistic comments,”
Sensors, vol. 21, no. 6, p. 1940, 2021.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” in Proceedings of the European
Conference on Computer Vision, pp. 630–645, Springer, New
York, NY, USA, September 2016.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE

18 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/2202.01747
https://arxiv.org/abs/2202.01747


Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Las Vegas, NV, USA, June 2016.

[49] Y. Wu and K. He, “Group normalization,” in Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 3–19, Munich, Germany, September 2018.

[50] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift,” 2015, https://arxiv.org/abs/1502.03167.

[51] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille, “Micro-
batch Training with Batch-Channel Normalization and
Weight Standardization,” 2019, https://arxiv.org/abs/1903.
10520.

[52] A. Krizhevsky, “Learning Multiple Layers of Features from
Tiny Images,” University of Toronto, Toronto, Canada, Tech.
Rep, 2009.

[53] L. Bottou, “Stochastic gradient descent tricks,” in Neural
Networks: Tricks of the Trade, pp. 421–436, Springer, New
York, NY, USA, 2012.

[54] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and
A. Nikitakis, “Tensor-based classification models for hyper-
spectral data analysis,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 12, pp. 6884–6898, 2018.

[55] K. Makantasis, A. Doulamis, N. Doulamis, A. Nikitakis, and
A. Voulodimos, “Tensor-based nonlinear classifier for high-
order data analysis,” in Proceedings of the 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2221–2225, Calgary, Canada, April 2018.

[56] K. Makantasis, A. Voulodimos, A. Doulamis, N. Doulamis,
and I. Georgoulas, “Hyperspectral image classification with
tensor-based rank-R learning models,” in Proceedings of the
2019 IEEE International Conference on Image Processing
(ICIP), pp. 3148–3125, Taipei, Taiwan, September 2019.

[57] K. Makantasis, A. Georgogiannis, A. Voulodimos,
I. Georgoulas, A. Doulamis, and N. Doulamis, “Rank-R FNN:
a tensor-based learning model for high-order data classifi-
cation,” IEEE Access, vol. 9, Article ID 58609, 58620 pages,
2021.

[58] L. Van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9, no. 11,
2008.

[59] S. Haghighi, M. Jasemi, S. Hessabi, and A. Zolanvari, “PyCM:
multiclass confusion matrix library in Python,” Journal of
Open Source Software, vol. 3, no. 25, p. 729, 2018.

[60] L. A. Gatys, A. S. Ecker, and M. Bethge, “A Neural Algorithm
of Artistic Style,” 2015, https://arxiv.org/abs/1508.06576.

Computational Intelligence and Neuroscience 19

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1903.10520
https://arxiv.org/abs/1903.10520
https://arxiv.org/abs/1508.06576

