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�is paper investigates the bifurcation issue of fractional-order four-neuron recurrent neural network with multiple delays. First,
the stability and Hopf bifurcation of the system are studied by analyzing the associated characteristic equations. It is shown that
the dynamics of delayed fractional-order neural networks not only depend heavily on the communication delay but also sig-
ni�cantly a�ects the applications with di�erent delays. Second, we numerically demonstrate the e�ect of the order on the Hopf
bifurcation. Two numerical examples illustrate the validity of the theoretical results at the end.

1. Introduction

Recurrent neural network (RNN) is a type of recursive
neural network that takes sequence data as input, recurses in
the evolution direction of the sequence, and all nodes (re-
current units) are connected in a chain. Till now, several
recurrent neural networks (RNNs) have been widely con-
sidered in various �elds such as signal processing, optimi-
zations control, image processing, robotics, pattern
recognitions, and automatic control, so they have attracted
extensive attention of researchers in recent years [1–7]. Since
the applications of RNNs dependmore heavily on dynamical
neural networks, quite a few e�orts have been undertaken to
study their dynamical properties and a large number of
useful results have been investigated, including oscillation,
stability, bifurcation, synchronization, and chaos of various
RNNs [8–14].

As the matter of fact, for some applications of nonlinear
dynamical models, time delay has a signi�cant impact, and in
addition to a�ecting stability, it causes oscillations and other
unstable phenomena, such as chaos [15]. Communication
delays and the response times of neurons are considered key
factors in the performance of neural networks, and this is
caused by the �nite switching speed of ampli�ers and the
noninstantaneous signal transmission between neurons [16].

In recently years, many scholars have been interested in
studying the dynamics of neural networks with such time
delays [17–19]. It must be pointed out that exponential sta-
bilization of memristor-based RNNs with disturbance and
mixed time delays by periodically intermittent control has
been considered by Wang et al. [20]. Using the appropriate
Lyapunov–Krasovski functionals and applying matrix in-
equality approach methods, Zhou [21] discussed the passivity
of a class of recurrent neural networks with impulse and
multiproportional delays. Zhou and Zhao [22] investigated
the exponential synchronization and polynomial synchro-
nization of recurrent neural networks with and without
proportional delays. Robust stability analysis of recurrent
neural networks is studied in Refs. [23, 24]. Furthermore, time
delays are ubiquitous and unavoidable in the real world. Due
to the existence of delays, the system can become unstable,
and the dynamic behavior of nonlinear systems becomes
more di¢cult. Moreover, since the solution space of the delay
dynamical is in�nite, it makes the systems more complex and
bifurcation occurs. Hence, it is necessary to consider the
properties and dynamics of neural networks via delays, such
as time delay [25, 26], multiple delays [27, 28] time-varying
delays [29, 30], and so on. In 2013, Zhang and Yang [31]
studied a four-neuron recurrent neural network withmultiple
delays, described as follows:
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. x1(t) � −x1(t) + f x2 t − τ1( ( ,

. x2(t) � −x2(t) + f x3 t − τ1( ( ,

. x3(t) � −x3(t) + f x4 t − τ1( ( ,

. x4(t) � −x4(t) + ω1f x1 t − τ2( (  + ω2f x2 t − τ2( (  + ω3f x3 t − τ2( ( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

C5(α1β1 + α2β2)/(α
2
1 + α22)≠ 0where xi(t)(i � 1, 2, 3, 4)

stand for state of the ith neuron at time t, ωk ∈ R(k � 1, 2, 3)

are the network parameters or weight, f(·) is the connection
function between neurons, and τj ≥ 0(j � 1, 2) are the
communication time delay. By using the distribution of the
solutions of the associated characteristic equation, the Hopf
bifurcation and local stability of the four-dimensional RNNs
with two delays are studied. For more recurrent neural
network research results, see references [5, 10, 12, 20].

In more than three centuries, fractional calculus has
developed into a classical mathematical concept. Nonlinear
dynamics systems have shown that it has an exceptionally
important role in generalizing ordinary differentiation and
integration to arbitrary noninteger order. (erefore, if we
study the effects of the memory and genetics factors, frac-
tional neural network is sometimes more realistic and more
general than integer neural networks. In recent years, the
application of fractional order neural networks has devel-
oped rapidly, and the complex dynamical behaviors of
fractional neural networks has become a very important
research hot points, such as stability or multistability, Hopf
bifurcation, synchronization, chaos, and so on. For instance,
in Ref. [32], the multistability of a fractional-order com-
petitive neural networks with delay is investigated by using
the fractional calculus and partitioning of state space. In Lu
and Xue [33] study, adaptive synchronization is investigated
for fractional delayed stochastic neural networks. Yuan and
Huang [34] considered the quantitative analysis of frac-
tional-order neural networks with time delay. Udhayakumar
and Rajan [35] discussed Hopf bifurcation of a delayed
fractional-order octonion-valued neural networks.

We also know that Hopf bifurcations, which include
subcritical and supercritical ones, can be used to efficiently
design biochemical oscillators. Furthermore, fractional or-
der neural networks with same delay cannot accurately
describe the dynamical properties of real world neural
networks compared with the ones with different delays. In
recent years, some researchers have considered the dy-
namical behavior of fractional models with time delay
[36–48]. In 2019 [49], we also investigated the existence of
Hopf bifurcation for four-neuron fractional neural networks
with leakage delays. To the best of our knowledge, so far
there are few results on the Hopf bifurcation of four-di-
mensional fractional-order recurrent neural network with
multiple delays are reported, and therefore, the study of
Hopf bifurcation of fractional-order dynamical systems with
multiple delays remains an open problem.

Based on the above motivations, we are dedicated to
presenting a theoretical exploration of stability and Hopf

bifurcation for a four-neuron fractional-order recurrent
neural network with multiple delays in this work. (e main
contributions can be highlighted as follows:

(i) A novel delayed fractional-order recurrent neural
network with four-neuron and two different delays
is studied

(ii) Double main dynamical properties of the fractional-
order recurrent neural network with two delays are
investigated: stability and oscillation

(iii) (e Hopf bifurcation is discussed in terms of delays
and order

In the article, we shall give some some lemmas and
definitions of fractional-order calculus in Section 2, and
models description in Section 3. In Section 4, the local
stability of the trivial steady state of delayed fractional-order
RNNs is examined by applying the associated characteristic
equation. In addition, the authors will care about the Hopf
bifurcation of fractional-order RNNs with multiple delays.
In Section 5, two numerical examples are provided to
demonstrate the theoretical results. (e last section gives
some conclusions.

2. Preliminaries

(is section we will give some Caputo definitions and lemma
for fractional calculus as a basis for the theoretical analysis
and simulation proofs.

Definition 1 (see [50]). (e fractional integral of order ϕ for
a function f(x) is defined as follows:

I
ϕ
f(x) �

1
Γ(ϕ)


x

x0

(x − s)
ϕ−1

f(s)ds, (2)

where ϕ> 0, and Γ(·) is the Gamma function satisfying
Γ(s) � 

∞
0 xs−1e−xdx.

Definition 2 (see [50]). Caputo fractional derivative of order
ϕ for a function ψ(x) ∈ Ck[x0,∞),R) is defined by

D
ϕψ(x) �

1
Γ(n − ϕ)


x

x0

ψ(k)
(s)

(x − s)
ϕ− k+1 ds, (3)

where x≥x0 and k − 1≤ϕ< k, k ∈ N+.
Moreover, when ϕ ∈ (0, 1), then

D
ϕψ(x) �

1
Γ(1 − ϕ)


x

x0

ψ′(s)

(x − s)
ϕ ds. (4)
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Lemma 1 (see [51]). Consider the following fractional order
autonomous model.

D
ϕ
u � Ju, u(0) � u0, (5)

in which 0<ϕ≤ 1, u ∈ Rk, and J ∈ Rk×k. 1en the zero so-
lution of the system (5) is asymptotically stable in the Lya-
punov sense if all roots λi are the system (5) of character
equation satisfy |arg(λi)|>ϕπ/2(i � 1, 2, . . . , k), and then
each component of the states decays towards 0 like t− ϕ. In

addition, this model is stable if and only if |arg(λi)|≥ ϕπ/2
and those critical eigenvalues that satisfy |arg(λi)| � ϕπ/2
have geometric multiplicity one.

3. Mathematics Model Elaboration

(is article considers the following four-neuron fractional-
order recurrent neural network with two delays:

D
ϕ
x1(t) � −x1(t) + f x2 t − τ1( ( ,

D
ϕ
x2(t) � −x2(t) + f x3 t − τ1( ( ,

D
ϕ
x3(t) � −x3(t) + f x4 t − τ1( ( ,

D
ϕ
x4(t) � −x4(t) + ω1f x1 t − τ2( (  + ω2f x2 t − τ2( (  + ω3f x3 t − τ2( ( ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

where ϕ ∈ (0, 1] are fractional order; xi(t)(i � 1, 2, 3, 4)

stand for state variables; ωi(i � 1, 2, 3) denote the connec-
tion weights; the function of connecting neurons is denoted
by f(x(·)); and τ1 and τ2 are the communication time
delays.

Remark 1. In fact, if ϕ � 1, the fractional delayed neural
networks (6) changes into the general neural network (1).

Accordingly, the main purpose of this article is to in-
vestigate the stability and the application of Hopf bifurca-
tions of the neural networks (6) taking different time delays
τ1 and τ2 as the bifurcation parameters by the method of
stability analysis [52]. In addition, the effects of the order on
the creation of the Hopf bifurcation for the proposed
fractional order neural network with multiple delays are also
numerically discussed.

(roughout of this paper, assume that the following
condition holds true:

(C1)f(·) ∈ C(R, R), f(0) � 0, xf(x)> 0, for x≠ 0.

4. Main Results

(is section chooses τ1 or τ2 as a bifurcation parameter to
study the stability analysis and Hopf bifurcation for the
fractional order RNNs (6) and to study the bifurcation
points accurately.

4.1. Bifurcation Depending on τ1 in Equation (6). In this
subsection, we first study the effects of τ1 on bifurcations of
system (6) by establishing τ2.

Applying Taylor series formula, the following form of
equation (6) at the origin is

D
ϕ
x1(t) � −x1(t) + m1x2 t − τ1( ,

D
ϕ
x2(t) � −x2(t) + m2x3 t − τ1( ,

D
ϕ
x3(t) � −x3(t) + m3x4 t − τ1( ,

D
ϕ
x4(t) � −x4(t) + m4x1 t − τ2(  + m5x2 t − τ2(  + m6x3 t − τ2( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

By applying Laplace transformation, its characteristic
equation is given as

de t

s
ϕ

+ 1 −m1e
sτ1 0 0

0 s
ϕ

+ 1 −m2e
−sτ1 0

0 0 s
ϕ

+ 1 −m3e
−sτ1

−m4e
−sτ2 −m5e

−sτ2 −m6e
−sτ2 s

ϕ
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0, (8)

where mk � f′(0)(k � 1, 2, 3), mk � ωjf′(0)(j � 1, 2, 3,

k � 4, 5, 6).
From (8), we have

K1(s) + K2(s)e
−sτ1 + K3(s)e

−2sτ1 + K4(s)e
−3sτ1 � 0, (9)

where

K1(s) � s
4ϕ

+ 4s
3ϕ

+ 6s
2ϕ

+ 4s
ϕ

+ 1,

K2(s) � −m3m6 s
2ϕ

+ 2s
ϕ

+ 1 e
−sτ2 ,

K3(s) � −m2m3m5 s
ϕ

+ 1 e
−sτ2 ,

K4(s) � −m1m2m3m4e
−sτ2 .

(10)

Multiplying esτ1 and e2sτ1 on both sides of equation (9),
respectively, we can obtain
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K1(s)e
2sτ1 +K2(s)e

sτ1 + K3(s) + K4(s)e
−sτ1 � 0,

K1(s)e
sτ1 +K2(s) + K3(s)e

−sτ1 + K4(s)e
−2sτ1 � 0.

⎧⎨

⎩

(11)

Let K1(s) � A1 + iB1, K2(s) � A2 + iB2, K3(s) � A3+

iB3, K4(s) � A4 + iB4, and from equation (9), we have

A1 + iB1( e
2sτ1 + A2 + iB2( e

sτ1 + A3 + iB3(  + A4 + iB4( e
−sτ1 � 0,

A1 + iB1( e
sτ1 + A2 + iB2(  + A3 + iB3( e

−sτ1 + A4 + iB4( e
−2sτ1 � 0.

⎧⎨

⎩ (12)

Take s � iw � w(cos π/2 + i sin π/2)(ω> 0) be a purely
imaginary root of equation (11). Apply inserting s into

equation (11) and separating the imaginary and real parts
yields the following equations:

A1 cos 2ωτ1(  − B1 sin 2ωτ1(  + A2 + A4( cos ωτ1(  + B4 − B2( sin ωτ1(  � −A3,

B1 cos 2ωτ1(  + A1 sin 2ωτ1(  + B2 + B4( cos ωτ1(  + A2 − A4( sin ωτ1(  � −B3,

A1 cos 2ωτ1(  − B1 sin 2ωτ1(  + A2 + A4( cos ωτ1(  + B4 − B2( sin ωτ1(  � −A3,

B1 cos 2ωτ1(  + A1 sin 2ωτ1(  + B2 + B4( cos ωτ1(  + A2 − A4( sin ωτ1(  � −B3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Evidently,

cos ωτ1(  �
F12(ω)

F11(ω)
� Fc1(ω),

sin ωτ1(  �
F22(ω)

F21(ω)
� Fs1(ω),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where A1, A2, A3, A4, B1, B2, B3, B4, F11, F12, F21, and F22 are
given Appendix A. Obviously, from fist to second equation
of system (14), it can be implied that

F
2
c1(ω) + F

2
s1(ω) � 1. (15)

From equation (13), one can obtain

τ(l)
1 �

1
w

arccos
F12(w)

F11(w)
+ 2lπ , l � 0, 1, 2, . . . . (16)

Remark 2. (is is an inhomogeneous system of linear
equations (13), and the independent variables are
cos (2ωτ1), sin (2ωτ1), cos (ωτ1), sin (ωτ1), respectively.
According Cramer’s rule of linear equation, if the coefficient
determinant of the system of linear equations is not equal to
0, we can easily solve solutions of linear equations (13). (at
is, we can obtain cos (ωτ1) and sin (ωτ1) or cos (ω2τ1) and
sin (2ωτ1).

Define the bifurcation point of fractional neural network
with multiple delays (6) as

τ∗10 � min τ(l)
1 , l � 0, 1, 2, . . . . (17)

If τ1 vanishes, then equation (9) becomes

H1(s) + H2(s)e
−sτ2 � 0, (18)

where

H1(s) � s
4ϕ

+ 4s
3ϕ

+ 6s
2ϕ

+ 4s
ϕ

+ 1,

H2(s) � −m3m6s
2ϕ

− 2m3m6s
ϕ

− m3m6 − m2m3m5s
ϕ

− m2m3m5 − m1m2m3m4.
(19)

If τ2 � 0, then the equation (18) becomes

0 � s
4ϕ

+ 4s
3ϕ

+ 6s
2ϕ

+ 4s
ϕ

+ 1 − m3m6s
2ϕ

− 2m3m6s
ϕ

− m3m6

− m2m3m5s
ϕ

− m2m3m5 − m1m2m3m4.
(20)

Suppose that all roots s of the equation (18) obey Lemma
1, then we get that both roots λi in equation (18) have
negative real parts.

(e imaginary and real parts of Hj(s)(j � 1, 2) can be
denoted by HI

j an dHR
j , respectively. Multiplying e2sτ2 on

both sides of equation (18), we can obtain

H1(s)e
sτ2 + H2(s) � 0. (21)

Also, let s � iv � v(cos π/2 + i sinπ/2)(v> 0) be a purely
imaginary root of equation (11) if and only if

H
R
1 cos vτ2(  − H

I
1 sin vτ2(  � −H

R
2 ,

H
I
1 cos vτ2(  + H

R
1 sin vτ2(  � −H

I
2.

⎧⎨

⎩ (22)

(is leads to form
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cos vτ2(  � −
H

R
2 H

R
2 + H

I
1H

I
2

H
R
1 2 + H

I
12

� fc1(v),

sin vτ1(  � −
−H

R
2 H

I
1 + H

R
1 H

I
2

H
R
1 2 + H

R
1 2

� fs1(v).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

It is not difficult to see that

f
2
c1(w) + f

2
s1(w) � 1. (24)

Additionally, we will give the following assumptions
which hold true.

(C2) (e equation (24) has at least a positive real root.
From equation (24), the values ofv can be obtained

according to Mathematics software Mathematica 10.0, and
then the Hopf bifurcation point τ20 of fractional order re-
current neural network (6) with τ1 � 0 can be derived.To
demonstrate our main results, we further present the fol-
lowing hypothesis: (C3)Υ1Ω1 + Υ2Ω2/Ω21 +Ω22 ≠ 0, where

Υ1 � w0
A2 sinw0τ10 − B2 cosw0τ10 + 2 A3 sin 2w0τ10 − B2 cos 2w0τ10( 

+ 3 A4 cos 3w0τ10 + B4 sin 3w0τ10( ,


Υ2 � w0
A2 cosw0τ10 + B2 sinw0τ10 + 2 A3 cos 2w0τ10 + B2 sin 2w0τ10( 

+ 3 A4 cos 3w0τ10 + B4 sin 3w0τ10( ,


Ω1 � A1′ + A2′ − τ1A2 cosw0τ10 + B2′ − τ1B2 sinw0τ10 + A3′ − 2τ1A3 cos 2w0τ10 + B2′ − τ1B3 sin 2w0τ10
+ A4′ − 3τ1A4 cos 3w0τ10 + B4′ − 3τ1B4 sin 3w0τ10,

Ω2 � B1′ + B2′ − τ1B2 cosw0τ10 − A2′ − τ1A2 sinw0τ10 + B3′ − 2τ1B3 cos 2w0τ10 − A2′ − τ1A3 sin 2w0τ10
+ B4′ − 3τ1B4 cos 3w0τ10 − A4′ − 3τ1A4 sin 3w0τ10.

(25)

Lemma 2. Let s(τ1) � ](τ10) + iw(τ1) be a root of equation
(9) near τ1 � τ1j satisfying ](τ1j) � 0, w(τ1j) � w0, then the
following transversality condition is satisfied.

Re
ds

dτ1
 | w�w0 ,τ1�τ10( )≠ 0. (26)

Proof. With implicit function theorem, we can differentiate
equation (9) with respect to τ1, and thus we get

0 � K1′(s)
ds

dτ1
+ K2′(s)e

−sτ1 ds

dτ1
+ K2(s)e

−sτ1 −τ1
ds

dτ1
− s  + K3′(s)e

−2sτ1 ds

dτ1

+ K3(s)e
−2sτ1 −2τ1

ds

dτ1
− 2s  + K4′(s)e

−3sτ1 ds

dτ1
+ K4(s)e

−3sτ−1
−3τ

ds

dτ1
− 3s .

ds

dτ1
�
Υ(s)

Ω(s)
,

(27)

where

Υ(s) � s K2(s)e
−sτ1 + 2K3(s)e

2−sτ1 + 3K4(s)e
−3sτ1 ,

Ω(s) � K1′(s) + K2′(s) − τ1K2(s) e
−2sτ1 + K3′(s) − 2τ1K3(s) e

−2sτ1

+ K4′(s) − 3τ1K4(s) e
−3sτ1 .

(28)

We further suppose that Υ1 and Υ2 are the real and
imaginary parts of Υ(s), respectively, and Ω1 and Ω2 are the
real and imaginary parts of Ω(s), respectively, then

Re
ds

dτ
 | τ�τ∗0 ,w�w∗0( ) �

Υ1Ω1 + Υ2Ω2
Ω21 +Ω22

. (29)

Computational Intelligence and Neuroscience 5



From (C3), we conclude that the transversality condi-
tion holds true. (is completes the proof of Lemma 2.

From the above investigation, we can obtain the fol-
lowing results. □

Theorem 1. assumptions (C1)–(C3) hold true, then the
following results can be given:

(i) 1e zero equilibrium point of fractional order four-
neuron recurrent neural network with multiple delays
(6) is asymptotically stable when τ1 ∈ [0, τ∗10).

(ii) If τ1 ∈ [0, τ∗10), then fractional order four neurons
recurrent neural network with multiple delays (6)
causes Hopf bifurcation at the origin when τ1 � τ∗10.
1at is, a branch of periodic solutions can bifurcate
from the zero equilibrium point at τ1 � τ∗10.

4.2. Bifurcation Depending on τ2 in Equation (6). As in the
previous subsection, next we change another delay τ2 to the
bifurcation parameter to account for the bifurcation of the
model (6). It is hard to point out that equation (8) changes as
follows:

q1(s) + q2(s)e
−sτ2 � 0, (30)

where

q1(s) � 1 + 4s
2ϕ

+ 6s
2ϕ

+ 4s
3ϕ

+ s
4ϕ

,

q2(s) � −m3m6 1 + 2s
ϕ

+ s
2ϕ

 e
−sτ1 − m2m3m5 1 + s

ϕ
 e

−2sτ1

− m1m2m3m4e
− 3sτ1 .

(31)

Multiplying e2sτ2 on both sides of equation (30), we can
obtain

q1(s)e
sτ2 + q2(s) � 0. (32)

Suppose q1(s) � a1 + ib1 and q2(s) � a2 + ib2, and from
equation (32), we have

a1 + ib1( e
sτ2 + a2 + ib2 � 0, (33)

where a1, a2, b1, b2 are given in Appendix B.
Take s � iw � w(cos π/2 + i sin π/2)(ω> 0) as a root of

equation (33) if and only if

a1 cos wτ2(  − b1 sin wτ2(  � −a2,

b1 cos wτ2(  + a1 sin wτ2(  � −b2,
 (34)

that is,

cos wτ2 � −
a1a2 + b1b2

a
2
1 + b

2
1

� ρ(w),

sin wτ2 � −
−a2b1 + a1b2

a
2
1 + b

2
1

� ϱ(w).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

It is simple to derive the following equation.

ρ2(w) + ϱ2(w) � 1. (36)

From (35), one can obtain

τ(l)
2 �

1
w

[arccos ϱ(w) + 2lπ], l � 0, 1, 2, . . . . (37)

(e bifurcation point is defined by
ωk(k � 1, 2, 3)(C3)(Υ1Ω1 + Υ2Ω2)(Ω21 +Ω22)≠ 0

τ∗20 � min τ(l)
2 , l � 0, 1, 2, . . . . (38)

C5(α1β1 + α2β2)/(α
2
1 + α22)≠ 0 here τl

2is defined by equation
(38)

If τ2 � 0, then the equation (32) becomes

M1(s) + M2(s)e
− sτ1 + M3(s)e

− 2sτ1 + M4(s)e
− 3sτ1 � 0,

(39)

where

M1(s) � 1 + 4s
ϕ

+ 6s
2ϕ

+ 4s
3ϕ

+ s
4ϕ

,

M2(s) � −m3m6 1 + 2s
ϕ

+ s
2ϕ

 

M3(s) � −m2m3m5 1 + s
ϕ

 ,

M4(s) � −m1m2m3m4.

(40)

Assume that all roots s of equation (39) observe Lemma
1, then we get that both roots of equation (39) have negative
real parts.

(e imaginary and real parts of Mi(s)(i � 1, 2, 3, 4) can
be expressed as Ml

i an dMR
i , respectively. Multiplying both

sides of the equation (39) by e2sτ1 and esτ1 yields

M1(s)e
2sτ1 + M2(s)e

sτ1 + M3(s) + M4(s)e
− sτ1 � 0,

M1(s)e
sτ1 + M2(s) + M3(s)e

− sτ1 + M4(s)e
− 2sτ1 � 0.

⎧⎨

⎩

(41)

Let s � iv � v(cos π/2 + i sin π/2)(v> 0) be a solution of
equation (41). Substituting s into equation (41) and sepa-
rating the imaginary and real units yields the following
equations:

M
R
1 cos 2vτ1(  − M

I
1 sin 2vτ1(  + M

R
2 + M

R
4 cos vτ1(  + M

I
4 − P

I
2 sin vτ1(  � −M

R
3 ,

M
I
1 cos 2vτ1(  + M

R
1 sin 2vτ1(  + M

I
2 + M

I
4 cos vτ1(  + M

R
2 − P

R
4 sin vτ1(  � −M

I
3,

P
R
1 cos 2vτ1(  − M

I
1 sin 2vτ1(  + M

R
2 + P

R
4 cos vτ1(  + M

I
4 − P

I
2 sin vτ1(  � −M

R
3 ,

P
I
1 cos 2vτ1(  + M

R
1 sin 2vτ1(  + M

I
2 + P

R
4 cos vτ1(  + M

R
2 − P

R
4 sin vτ1(  � −M

I
3,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(42)
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which lead to

cos vτ1 �
E12(v)

E11(v)
� C(v)

2
,

sin vτ1 �
E22(v)

E21(v)
� S(v)

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)

Obviously, from first and second equation of system
(43), we get

C(v)
2

+ S(v)
2

� 1. (44)

To theoretically gain the sufficient conditions for the
Hopf bifurcation, we assume that the following assumptions
hold true:

(C4) Equation (36) has at least a positive real root.
By means of equation (36), the values of ω can be ob-

tained according to mathematical software Mathematica
10.0, and then the bifurcation point τ10 of recullrent frac-
tional four-neuron neural networks (6) with τ2 � 0 can be
derived.As a summary of our main results, we provide the
following assumption: (C5)α1β1 + α2β2/α21 + α22 ≠ 0, where

α1 � a1′ + a2′ − τ20a2( cos w0τ20 + b2′ − τ2b2( sin w0τ20,

α2 � b1′ + b2′ − τ20b2( cos w0τ20 − a2′ − τ2a2( sin w0τ20,

β1 � w0 a2 sin w0τ20 − b2 cos w0τ20( ,

β2 � w0 a2 cos w0τ20 + b2 sin w0τ20( .

(45)

Lemma 3. Let s(τ2) � η(τ2) + iw(τ2) be a root of equation
(9) near τ2 � τ2j satisfying η(τ2j) � 0, w(τ2j) � w0, then we
get the following transversality condition

Re
ds

dτ2
 | w�w0 ,τ2�τ20( )≠ 0. (46)

Proof. Similar to Lemma 2, by utilizing the implicit function
theorem and differentiating (9) with respect to τ2, we get

0 � q1′(s)
ds

dτ2
+ q2′(s)e

− sτ2 ds

dτ2
+ q2(s)e

−sτ2 −τ2
ds

dτ2
− s ,

ds

dτ2
�
β(s)

α(s)
,

(47)

where

β(s) � sq2(s)e
−sτ2 ,

α(s) � q1′(s) + q2′(s)e
−sτ2 − τ2q2(s)e

−sτ2 .
(48)

We further suppose that α1 and α2 are the real and
imaginary units of α(s), respectively, and β1 and β2 are the
real and imaginary parts of β(s), respectively, then we get

Re
ds

dτ2
 | w�w0 ,τ2�τ20( ) �

α1β1 + α2β2
α21 + α22

. (49)

As a direct consequence of (C5), we can conclude that
the transversality condition is satisfied. (en the proof of
Lemma 3 is complete.

Based on the above analysis, the following conclusions
can be drawn. □

Theorem 2. By assuming that assumptions (C1), (C4), and
(C5) are valid, the following conditions can be inferred:

(i) 1e zero equilibrium point of fractional order four-
neuron recurrent neural network with multiple delays
(6) is asymptotically stable when τ2 ∈ [0, τ∗20))

(ii) 1e fractional order four-neuron recurrent neural
network with multiple delays (6) experiences a Hopf
bifurcation at its origin when τ2 � τ∗20; that is, a
family of periodic solutions can bifurcate from the
zero equilibrium point near τ2 � τ∗20

5. Numerical Examples

To demonstrate the validity and feasibility of the conclusions
reached in this paper, we provide two examples. (e sim-
ulations were based on a prediction and correction scheme
[53] of Adama–Bashforth–Moulton and step-size h � 0.01.

5.1. Example 1. Consider the four-neuron fractional re-
current neural networks with multiple delays as

D
ϕ
x1(t) � −x1(t) + f x2 t − τ1( ( ,

D
ϕ
x2(t) � −x2(t) + f x3 t − τ1( ( ,

D
ϕ
x3(t) � −x3(t) + f x4 t − τ1( ( ,

D
ϕ
x4(t) � −x4(t) + ω1f x1 t − τ2( (  + ω2f x2 t − τ2( (  + ω3f x3 t − τ2( ( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(50)
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Choose parameters ϕ � 0.9,ω1 � 2,ω2 � ω3 � −2, action
function f(·) � tanh(·); therefore, f(0) � tanh(0) � 0,

f′(0) � 1.
Let the initial values be selected as

(x1(0), x2(0), x3(0), x4(0)) � (0.15, −0.14, 0.1, 0.2) for the
system (50). First, taking fixed τ2 such that τ2 � 0.6 by
complex computing, we get ω10 � 5.23599, and then
τ10 � 0.312709. Obviously, it is easy to verify that the
conditions in (eorem 1 are satisfied. (e numerical sim-
ulations in Figures 1 and 2 that the zero equilibrium point of
system (50) is locally asymptotically stable when τ1 �

0.25< τ10 � 0.312709. Moreover, Figures 3 and 4 simulates
that the zero equilibrium point of system (50) is unstable,
and Hopf bifurcation occurs when τ1 � 0.35> τ10
� 0.312709.(e bifurcation diagrams are plotted in Figure 5,
which illustrates the theoretical results.

5.2.Example2. (e same as example 1, let ϕ � 0.95, and now
we consider the following four-neurons fractional current
network with double different delays:

t

-0.05

0

0.05

0.1

0.15

x 1
 (t

)
x 3

 (t
)

x 2
 (t

)
x 4

 (t
)

t

-0.2

-0.1

0

0.1

t

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 200
t

-0.4

-0.2

0

0.2

0.4

Figure 1: Time responses of system (50) with ϕ � 0.9, τ1 � 0.25< τ10 � 0.312709.
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Figure 2: Phase diagrams of system (50) with ϕ � 0.9, τ1 � 0.25< τ10 � 0.312709.
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D
0.95

x1(t) � −x1(t) + f x2 t − τ1( ( ,

D
0.95

x2(t) � −x2(t) + f x3 t − τ1( ( ,

D
0.95

x3(t) � −x3(t) + f x4 t − τ1( ( ,

D
0.95

x4(t) � −x4(t) + ω1f x1 t − τ2( (  + ω2f x2 t − τ2( (  + ω3f x3 t − τ2( ( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

Taking ω1 � 1,ω2 � ω3 � −1.5,ϕ � 0.95, action function
f(·) � tanh(·), then f(0) � tanh(0) � 0, f′(0) � 1, and we
first also set τ1 � 0.8, in the next step, we apply a complex
calculation, and it obtains a ω20 � 1.02089 and

τ20 � 0.329454.(us,(eorem 2 yields that the zero solution
(0, 0, 0, 0) of the system (51) is locally asymptotically stable
when τ2 � 0.22< τ20, which is simulated in Figures 6 and 7
which describes the impact of fractional order on τ20. In
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Figure 3: Time responses of system (50) with ϕ � 0.9, τ1 � 0.36> τ10 � 0.312709.
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Figure 4: Phase diagrams of system (50) with ϕ � 0.9, τ1 � 0.36> τ10 � 0.312709.
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addition, the zero equilibrium point of the system (51) is
unstable, and Hopf bifurcation occurs when τ2 � 0.38> τ20,
as shown in Figures 8 and 9. Moreover, the bifurcation
diagrams are plotted in Figure 10, which illustrates the
theoretical results.

Remark 3. In fact, in order to better reflect the influence of
different time delays at the bifurcation point of the systems
(50) and (51), the corresponding bifurcation point τ10 and
τ20 and τ∗10 and τ

∗
20 can be determined by changing the order

of ϕ. (is means that systems (50) and (51) involving
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Figure 5: Bifurcation diagram of system (50) with ϕ � 0.9, τ1 � 0.36> τ10 � 0.312709.
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Figure 6: Time responses of system (51) with ϕ � 0.95, τ1 � 0.22< τ20 � 0.329454.
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Figure 8: Time responses of system (51) with ϕ � 0.95, τ1 � 0.38> τ20 � 0.329454.
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Figure 7: Phase diagrams of system (51) with ϕ � 0.95, τ1 � 0.22< τ20 � 0.329454.
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different two delays are prone to earlier Hopf bifurcation for
some fixed fractional order ϕ.

6. Conclusion

(is paper examines theHopf bifurcation problemof fractional
recurrent neural networks with four neurons and two delays.
Using time delay as the bifurcation parameter, several criteria

are destabilized in order to ensure the Hopf bifurcation for the
fractional four-neuron of recurrent neural networks. Based on
our analysis, different communication time delays and order
effects have quantitatively changed the dynamic behavior of the
system (6). (ese results can contribute to our understanding
of delayed fractional recurrent neural networks as a continu-
ation of the previous work. (e results of the simulations are
illustrated by two numerical examples.

-0.1

-0.05

0

0.05

0.1

-0.1

0

0.1

0.2 0.25 0.3 0.35 0.4
-0.2

-0.1

0

0.1

0.2

-0.2

0

0.2

T2

0.2 0.25 0.3 0.35 0.4
T2

0.2 0.25 0.3 0.35 0.4
T2

0.2 0.25 0.3 0.35 0.4
T2

x 1
 (t

)
x 3

 (t
)

x 2
 (t

)
x 4

 (t
)

Figure 10: Bifurcation diagrams of system (51) with ϕ � 0.95, τ1 � 0.38> τ20 � 0.329454.
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Appendix

A

A1 � 6ω2ϕ cos (πϕ) + 4ω3ϕ cos
3πϕ
2

  + ω4ϕ cos (2πϕ) + 4ωϕ cos
πϕ
2

  + 1,

B1 � 6ω2ϕ sin (πϕ) + 4ω3ϕ sin
3πϕ
2

  + ω4ϕ sin (2πϕ) + 4ωϕ sin
πϕ
2

 ,

A2 � −m3m6ω
2ϕ sin (πϕ)sin ωτ2(  − m3m6ω

2ϕ cos (πϕ)cos ωτ2( 

− 2m3m6ω
ϕ sin

πϕ
2

  sin ωτ2(  − 2m3m6ω
ϕ cos

πϕ
2

  cos ωτ2(  − m3m6 cos ωτ2( ,

B2 � −m3m6ω
2ϕ sin (πϕ)cos ωτ2(  + m3m6ω

2ϕ cos (πϕ)sin ωτ2( 

− 2m3m6ω
ϕ sin

πϕ
2

  cos ωτ2(  + 2m3m6ω
ϕ cos

πϕ
2

  sin ωτ2(  + m3m6 sin ωτ2( ,

A3 � −m2m3m5ω
ϕ sin

πϕ
2

  sin ωτ2(  − m2m3m5ω
ϕ cos

πϕ
2

  cos ωτ2(  − m2m3m5 cos ωτ2( ,

B3 � −m2m3m5ω
ϕ sin

πϕ
2

  cos ωτ2(  + m2m3m5ω
ϕ cos

πϕ
2

  sin ωτ2(  + m2m3m5 sin ωτ2( ,

A4 � −m1m2m3m4 cos ωτ2( ,

B4 � m1m2m3m4 sin ωτ2( ,

F11 � −B
2
4 A1B4 + A4B1(  A

4
1 − A

2
1 A

2
3 + 2A

2
4 − 2B

2
1 + B

2
3 + 2B

2
4  + 2A1 A2A3A4(

+ A2B3B4 + A3B2B4 − A4B2B3 − A
2
2 A

2
4 + B

2
4  + 2A2B1 A4B3 − A3B4( 

− A
2
3B

2
1 + 2A3A4B1B2 + A

4
4 − 2A

2
4B

2
1 − A

2
4B

2
2 + 2A

2
4B

2
4 + B

4
1 − B

2
1B

2
3

− 2B
2
1B

2
4 + 2B1B2B3B4 − B

2
2B

2
4 +B

4
4,

F12 � B4 − A
2
4 + B

2
4  A2B1 + A3B4(  − A1B4 + A4B1(  A2A4 + B2B4(   A

2
1 B1 − B3( 

+A1 A2B4 − A4B2(  + B1 A2A4 − A
2
4 + B

2
1 − B1B3 + B2B4 − B

2
4  − B4 −A

2
1A2

+A1 A3A4 + B3B4(  − B1 A2B1 + A3B4 − A4B3(  B4 A
2
1 + B

2
1 − B1B3

+B4 B2 − B4(  − A3 A1B4 + A4B1(  + A1A4B3 + A
2
4 B2 − B4( ,

F21 � A
4
1 − A

2
1 A

2
3 + 2A

2
4 − 2B

2
1 + B

2
3 + 2B

2
4  + 2A1 A2A3A4 + A2B3B4 + A3B2B4(

− A4B2B3 − A
2
2 A

2
4 + B

2
4  + 2A2B1 A4B3 − A3B4(  − A

2
3B

2
1 + 2A3A4B1B2

+ A
4
4 − 2A

2
4B

2
1 − A

2
4B

2
2 + 2A

2
4B

2
4 + B

4
1 − B

2
1B

2
3 − 2B

2
1B

2
4 + 2B1B2B3B4 − B

2
2B

2
4 + B

4
4,

F22 � A
3
1 −B2(  + A

2
1 A2 B1 + B3(  + A3 B4 − B2(  − A4B3(  + A1 A

2
2 −B4(  + 2A2A4B2

+ A
2
3B4 − 2A3A4B3 + A

2
4B2 − B

2
1B2 + B

2
2B4 + B2B

2
4 − B

2
3B4 − A

2
2A4B1

+ A2 A
2
4 B3 − B1(  + B

3
1 + B

2
1B3 − B1B4 2B2 + B4(  + B3B

2
4  + A

2
3A4B1

− A3A
2
4B2 − A3A

2
4B4 − A3B

2
1B2 + A3B

2
1B4 + 2A3B1B3B4 − A3B2B

2
4 − A3B

3
4

+ A
3
4B3 − A4B

2
1B3 + A4B1B

2
2 − A4B1B

2
3 + A4B3B

2
4.

(A.1)
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B

a1 � 6ω2ϕ cos (πϕ) + 4ω3ϕ cos
3πϕ
2

  + ω4ϕ cos (2πϕ) + 4ωϕ cos
πϕ
2

  + 1,

b1 � 6ω2ϕ sin (πϕ) + 4ω3ϕ sin
3πϕ
2

  + ω4ϕ sin (2πϕ) + 4ωϕ sin
πϕ
2

 ,

a2 � −m2m3 m1m4 cos 3ωτ1(  + m5ωϕ sin
πϕ
2

  sin 2ωτ1(  

− m2m3m5 ωϕ cos
πϕ
2

  cos 2ωτ1(  + cos 2ωτ1(  

− m3m6 ω2ϕ sin (πϕ)sin ωτ1(  + ω2ϕ cos (πϕ)cos ωτ1( 

+2ωϕ sin
πϕ
2

  sin ωτ1(  + 2ωϕ cos
πϕ
2

  cos ωτ1(  + cos ωτ1( ,

b2 � m2m3 m1m4 sin 3ωτ1(  + m5ωϕ sin
πϕ
2

  cos 2ωτ1(   + m2m3m5 ωϕ cos
πϕ
2

 

×sin 2ωτ1(  + sin 2ωτ1(  − m3m6 ω2ϕ sin (πϕ)cos ωτ1(  − ω2ϕ cos (πϕ)sin ωτ1( 

+2ωϕ sin
πϕ
2

  cos ωτ1(  − 2ωϕ cos
πϕ
2

  sin ωτ1(  − sin ωτ1( .

(B.1)
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