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At present, there is a phenomenon of network data packet loss in the trajectory tracking control system, which will degrade or even
destabilize the system’s performance. �erefore, this work �rst explains the theory of the deep long-short term memory (LSTM)
neural network model, the kinematic model of mobile robots, and the trajectory tracking error model. �e reasons for data packet
loss in the control system are analyzed. Second, a prediction model based on the LSTM network is designed according to the
theory mentioned above. Finally, the training e�ect of the LSTMmodel and the robot trajectory tracking e�ect based on the model
are tested by setting up simulation experiments. �e research results are as follows: (1)�e pose test error of the mobile robot will
eventually tend to zero through the simulation curve generated by the pose parameters (x, y, θ) of the mobile robot. (2) �e
trajectory tracking error of the deep LSTM neural network prediction and compensation method with the packet loss rate of 5% is
less than that with the packet loss rate of 10%. (3) �e linear velocity υ of the mobile robot based on the prediction model of the
LSTM network varies greatly but is always in the interval (−2, 2). Its angular velocity ω initially �uctuates greatly but gradually
tends to zero after about 13 s. (4) When the prediction model tracks the trajectory of the robot, the horizontal position x, the
vertical position y, and the angle θ coincide with the reference trajectory. �e exploration is conducted to provide a reference for
the research on data packet loss in the networked mobile robot trajectory tracking system.

1. Introduction

1.1. Research Background and Motivations. Mobile robots
can be divided into wheeled, bipedal, crawler, and crawling
types according to di�erent moving methods, and wheeled
mobile robots are the most widely used [1]. �e wheeled
mobile robot is a typical nonholonomic mechanical system
with nonlinear, underactuated, and drift-free characteristics,
which brings great challenges to the research on its motion
control. In particular, the trajectory tracking problem of
mobile robots has become one of the key technologies [2]. Its
trajectory tracking error system is usually a nonlinear strong
coupling system, which does not meet the necessary con-
ditions of Brockett. Mobile robots inevitably come into
contact with the external environment during the movement
process, and there are problems such as model uncertainty
and external disturbances [3]. In addition, some scholars
have proposed solutions to the problem of data packet loss in
the networked mobile robot trajectory tracking system. For

example, the virtual polling algorithm implemented at the
application layer improves the network performance by
reducing the degree of data con�ict. However, this method
does not consider the situation that the wireless channel will
produce packet loss. Using the method of setting the
transmission protocol to reduce the error caused by the
unreliable wireless channel e�ectively suppresses the in-
�uence of the wireless channel, but does not compensate for
the data packet loss caused by medium access [4]. Besides,
there is a method to modify the controller output to improve
the control performance by setting a gain schedule according
to the current network conditions. Although it considers the
in�uence of the wireless channel andmedium access control,
its statistical estimation algorithm for network data packet
loss needs to be improved [5]. In general, most researchers
are committed to optimizing existing network communi-
cation protocols, reducing the occurrence of network data
packet loss and developing new network protocols to solve
the impact of data packet loss on the performance of
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networked mobile robots [6]. Although these two methods
can improve the system performance, the changes or in-
novations for network protocols have an enormous work-
load and high work difficulty. It is effective to analyze the
impact of data packet loss in the existing network com-
munication on the performance of the control system,
improve and optimize the controller and propose a good
algorithm to predict and compensate for data packet loss [7].

1.2. Research Objectives. According to the content, the
specific framework is given as shown in Figure 1.

&is paper aims to use the LSTM neural network model
to achieve high-precision prediction and control of mobile
robot trajectories, thereby reducing some of the problems
existing in mobile robots. &is paper provides a reference
value for further research on motion trajectory control.

2. Literature Review

&e research on mobile robots began in the late 1960s, and
Tianfu Innovation Institute was the first to begin research on
mobile robots. At present, mobile robots have developed
into an important branch of robotics [8]. In the aerospace
field, there are lunar rovers and Mars rovers. &e emergence
of various reconnaissance robots and patrol cars in the
military field, sweeping robots in the field of daily life, and
hotel food delivery robots fully demonstrate the broad de-
velopment prospects and application value of mobile robots
[9]. &e working conditions of the mobile robot have strong
uncertainty according to the working field compared with
the robot fixed in a position. Meanwhile, the mobile robot
has the characteristics of unstructured, so its performance
requirements are high. It needs to have the walking function,
perception of the outside world, and some specific functions
set by humans [10]. Researchers should conduct in-depth
research on environmental perception, dynamic program-
ming, and sensory information fusion [11].

Regarding the trajectory prediction research of mobile
robots, Islam et al. combined differential flatness charac-
teristics and integral sliding mode control and considered
the dynamic characteristics of wheel actuators, which could
realize trajectory tracking control of single-wheel mobile
robots [12]. Barzegar-Kalashani et al. used a complete sliding
mode controller for the first time in the research on tra-
jectory tracking control of a two-wheeled mobile robot,
which could effectively reduce the influence of uncertain
factors and achieve a good tracking effect [13]. Yang et al.
combined a neural network with a sliding mode control
algorithm to ensure the stability of neural network adap-
tation, and they obtained appropriate equivalent control
when the parameters of the robot model were unknown.
&is method could ensure that the output tracking error
converged to zero [14]. Liang et al. designed an adaptive
trajectory tracking control algorithm based on the kinematic
error model of mobile robots according to the shortcomings
of traditional trajectory tracking control laws. &ey verified
that the algorithm could track the reference trajectory at a
fast speed and has an excellent tracking control effect
through experiments [15].

It is found that although the research on the trajectory
tracking control of networked mobile robots with data
packet loss has been developed, there are still many defi-
ciencies by sorting out the literature. On the one hand, in the
process of trajectory tracking control of mobile robots, the
two sub-problems of motion planning and tracking control
are usually solved separately. &is results in that the external
constraints are not considered when the reference trajectory
of the mobile robot is given. &e robot cannot reach the
given input at some sampling moments, so it cannot achieve
effective trajectory tracking. On the other hand, most of the
current methods for improving the tracking performance of
networked mobile robots are the development or optimi-
zation of network communication protocols with a heavy
workload and high difficulty. It is urgent to propose an
effective packet loss prediction compensation algorithm.&e
innovation lies in proposing a new prediction model and
setting simulation experiments based on the original re-
search on robot trajectory control. &e new model is based
on a long short-term memory (LSTM) neural network,
which is optimized and integrated into robot trajectory
prediction control. &is work has a reference value in the
research of robot trajectory prediction control.

3. Research Methodology

3.1. LSTM Neural Network Model

3.1.1. �e Concept of the LSTMModel. With the continuous
development of deep learning, the types of network archi-
tectures are also increasing, which are mainly divided into
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two categories: deep discriminative models and deep gen-
erative models [16]. &is work uses deep learning for net-
work data packet loss prediction compensation, so the deep
LSTM neural network in the deep discriminant model is
adopted. &e LSTM unit is a variant of the most widely used
recurrent neural network (RNN). It inherits the charac-
teristics of most of the RNN models and solves the problem
that RNN is difficult to train due to long-term dependencies
[17]. LSTM units realistically represent or simulate the
cognitive processes of human behavior, logical development,
and neural organization. It is suitable for handling problems
that are highly related to time series, such as machine
translation, dialogue generation, encoding, and decoding
[18]. &e LSTM unit structure is shown in Figure 2.

Figure 2 shows the overall research framework. For
LSTM, the model cell adds a cell state to store the long-term
state, so it can effectively solve the long-term dependency
problem. &e key to the LSTM unit is how to effectively
control the cell state.&ree gates are added: input gate, forget
gate, and output gate. &e essence of the gate is a fully
connected layer, the input is a vector, and the output is a real
vector between zero and one. &e elements in the gate’s
output vector are in turn multiplied by the vector to be
controlled. When the output of the gate equals zero, its
product with any vector is zero. At this point, no infor-
mation can pass through. When the output of the gate is
equal to one, its product with any vector is unchanged. At
this point, any information can pass [19]. LSTM cells control
the cell state through input gates and forget gates. &e input
gate determines how much of the current input is stored in
the cell. &e forget gate determines how much of the cell
state at the previous moment is retained in the current cell
state. &e output gate determines how many cell states are
passed to the current output of the network [20].

3.1.2. Features of the LSTMModel. In the process of training
the network model using the gradient descent method, the
traditional RNN’s weight update strategy is the correct di-
rection based on the weight at the end of the output se-
quence. &e weight changes only depend on the sequence
input at the most recent moments, and the input data from a
long time ago has little effect. Besides, the network has poor
long-term memory function, and the training results are
inclined to new input information [21].

During the training process of the LSTM model, the
stochastic gradient descent method is used to optimize the
network parameters. &is is the standard optimization
method recently adopted to train deep neural networks, and
it is easy to implement [22]. At each iteration, the objective
function is run on a subset of the training set, which is called
the mini-batch. &e gradient of the mini-batch objective
function is obtained by back-propagating the neural network
parameters. &e step size is determined by the average value
of the past step size and the current gradient, and the weight
of the past step size is determined by the momentum
hyperparameter. &e parameters (weights and biases) are
updated according to the new step size and scaled by the
learning rate. &e new mini-batch is randomly determined

from the training set and used for the next iteration. &e
learning rate is decreased during optimization [23].

3.2. Mathematical Model of the Mobile Robot

3.2.1. Kinematics Model of the Mobile Robot. &e kinematic
model of a mobile robot directly reflects the relationship
between its pose state and control input, and it is the most
intuitive mathematical model [24]. &e research object is a
typical two-wheel differential mobile robot. &is kind of
mobile robot is composed of a balance wheel and two driving
wheels, and the mobile robot realizes the rotation of the car
body through the differential speed of the two driving
wheels. &e balance wheel only has a supporting function
and cannot provide power for the mobile robot. Its specific
structure is displayed in Figure 3.

According to the analysis of the collected literature, the
balance wheel does not provide power, so the balance wheel
can be ignored when the kinematic model equation of
the mobile robot is derived. Besides, its number will
not affect the kinematic equation form. &e kinematic
model of the two-wheel differential mobile robot can be
expressed as
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 , (1)

(x, y) is the center position coordinate of the mobile robot. θ
is the direction angle, and it is also the angle between the
forward direction and the x-axis. υ and ω are control input
signals in the kinematic model, and their physical meanings
are the linear and angular velocities of the mobile robot [25].
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Figure 2: Schematic diagram of the LSTM unit structure.
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3.2.2. Trajectory Tracking Error Model of the Mobile Robot.
&e mobile robot task trajectory tracking error model
established here is demonstrated in Figure 4.

In Figure 4, point A (xa, ya) is the center position of the
target mobile robot. θa is the direction angle. &ey together
constitute the pose state vector of the target mobile robot
[xa, ya, θa]T. Point B (xb, yb) is the center position of the
reference mobile robot. θb is the direction angle. &e pose
state vector is [xb, yb, θb]T. At this time, the pose error
between the target robot and the reference robot can be
expressed as
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&en, equation (3) can be acquired as

xe � xb − xa( cos θ + yb − ya( sin θ,

ye � − xb − xa( sin θ + yb − ya( cos θ,

θe � θb − θa( .

⎧⎪⎪⎨

⎪⎪⎩
(3)

&e trajectory tracking error model of the mobile robot
can be obtained by derivation of (3).
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&e trajectory tracking control problem of the mobile
robot can be transformed into the stabilization problem of
the trajectory tracking errormodel shown in (4) based on the
new pose error state vector [xe, ye, θe]

T. All the items in the
trajectory tracking error vector [xe, ye, θe]

T tend to be zero
by designing appropriate υ and ω control laws. When the
system reaches [xe, ye, θe] � [0, 0, 0], xb � xa, yb � ya, and
θb � θa, the mobile robot trajectory tracking control task is
completed [26].

3.3. Packet Loss Characteristics of the Network Control System

3.3.1. Reasons for packet loss. In a network control system,
each network node is frequently exchanging information.
During network transmission, data collision or competition
between nodes may occur, which will result in data loss
during transmission. &e network protocol has a retrans-
mission mechanism to solve the problem of packet loss, but
packet retransmission timeout may also occur when the
system load is too heavy and there are many nodes in the
network for data exchange. Packet loss can still happen.
However, the phenomenon of packet loss sometimes occurs
in the practical application of network control systems,
which will reduce the system performance. Different net-
work control systems will set a range of packet loss
thresholds. Once the packet loss rate exceeds the threshold,
the system will oscillate erratically, resulting in packet loss
during network transmission [27]. &ere are three main
reasons for packet loss.

A network node in the system has a communication
failure. When the processor of a node in the network fails,
the buffer where the data packet is located will be emptied,
resulting in packet loss.

&e packet transmission task in the system is too fre-
quent. When the system communicates frequently, data
conflicts inevitably occur. At this time, each node in the
network competes for the right to use the network band-
width, and the loss of data packets will occur. Although there
is a retransmission mechanism, the destination node usually
directly discards the packets that have not been transmitted
beyond the retransmission time threshold.

&ere is channel interference in the network. &e ex-
ternal environmental factors that the actual system is ex-
posed to affect the transmission quality of the data packets in
the channel. Channel interference in the network may cause
disorder or loss of physical signals, resulting in distortion of
data packets after reaching the destination node. At this
time, valid data cannot be recovered through corresponding
algorithms, and data packets are lost [28].
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Figure 3: Schematic diagram of a two-wheel differential mobile
robot.
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3.3.2. Description and Analysis of Network Packet Loss
Characteristics. At present, the following three methods are
mainly used to describe the data packet loss characteristics of
the network control system. &e first is statistical methods.
For example, the probability distribution and the packet loss
rate of data packets are assumed by using random system
theory and switching system theory. &e second is the theory
of variable-delay systems. &e total number of data packet
losses between two sampling times needs to be given. &e
third is the theory of switched systems or predictive control
theory. &e sampling moment of packet loss in the system is
regarded as the disconnection of the network transmission
channel. A switching system with dynamic switches is used to
represent the network control system structure of packet loss
[29].

In the network control system, serial communication is used
for information transmission among the controller, the con-
trolled object, and the sensor. Each node device in the system
shares the network channel bandwidth. In the case of frequent
system communication, errors occur in the process of data
packet transmission or reception due to the competition of each
node for the right to use the network bandwidth.When the data
packet does not reach the receiver within the specified time, it is
called packet loss [30]. When data loss occurs in the system, the
system information transmission channel is temporarily dis-
connected. Valid information at some sampling moments is not
transmitted to the receiver in time. &is will directly affect the
structure and parameters of the system, causing system per-
formance degradation. For the problem of data packet loss,
although most network control systems have robustness, it is
only limited to the number of data packet losses within the
allowable threshold range. If this threshold is exceeded, it will
seriously affect the control performance of the system and even
make the system unstable [31]. &erefore, Figure 5 shows the
structure obtained by simplifying the network control system
with packet loss.

&e switch can be opened and closed, and its state indicates
whether there is a packet loss. When the switch is closed (S2, S4),
the data packet at the sampling moment can be transmitted
smoothly.When the switch is off (S1, S3), the data packet is lost at
the sampling moment. At this time, the transmission size at the
previous moment is regarded as the packet loss data at this
moment or the data at this moment is directly set to zero, which
are called the keep-input strategy and the zero-input strategy,
respectively. &e keep-input strategy is widely used, and its
mathematical expression is as follows.

When the switch is located at S1 and S3, there i
u(k) � u(k − 1),

x(k) � x(k − 1).
 (5)

When the switch is located at S1 and S4, there is
u(k) � u(k − 1),

x(k) � x(k).
 (6)

When the switch is located at S2 and S3, there is
u(k) � u(k),

x(k) � x(k − 1).
 (7)

When the switch is located at S2 and S4, there is
u(k) � u(k),

x(k) � x(k),
 (8)

x(k) represents the input value, and u(k) represents the
output value. Besides, a new variablez(k) is defined as

z(k) �

x(k)

x(k)

u(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

&e network control system model with data packet loss
can be expressed as

z(k + 1) � Φsz(k). (10)

However, only adopting the keep-input strategy and the
zero-input strategy to compensate for the data packet loss of
the network control system cannot solve the problem of
system performance degradation or even system instability
caused by data packet loss. Reasonable methods need to be
proposed to compensate for the negative impact of packet
loss. Some scholars have proposed the method of predictive
control to realize the prediction of missing data, and they use
the predicted value obtained by this method to replace the
lost control input value. &e main problem with the pre-
dictive control method is the need to define extended vectors
to assist in the design of the closed-loop system controller.
&e introduction of the extended vector increases the
conservatism of the entire closed-loop control system, so it
remains to find a good predictive compensation method to
overcome this adverse effect.

3.4. Trajectory Tracking Control of the Networked Mobile
Robot

3.4.1. Problem Description. &e model structure of the
networked mobile robot control system with the data packet
loss problem studied here is shown in Figure 6.
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Figure 5: Simplified structure of the network control system.
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In this model, only the impact of packet loss on the
system performance is considered during network trans-
mission, and the sensor and controller are assumed to be
time-driven and event-driven, respectively.

3.4.2. System Model. Based on the above analysis of the
system packet loss characteristics and causes, the following
assumptions are made to ensure the enforceability of the
packet loss prediction and compensation method proposed
here.

In the control loop, the sensor sends data packets to the
controller with a constant sampling period. In practical in-
dustrial design and implementation, a time-driven approach
is usually used to ensure a constant sampling period [32–37].

&e sensors, controllers, and controlled objects in the
control loop are time-synchronized through time-stamping
technology to deal with the problem of possible out-of-order
data packets [38–42].

In each sampling period, the deep neural network makes
predictions for a single data packet obtained by the sensor
and sends this data packet to the controller [43–48].

Based on the above assumptions, the structure of the
networked mobile robot trajectory tracking control system
under the deep neural network model reported here is
revealed in Figure 7.

In Figure 7, r(k) represents the reference pose of the
mobile robot obtained by the partial point-taking method.
x(k) represents the actual motion pose of the mobile robot
measured by the sensor. e(k) represents the deviation be-
tween the actual pose and the reference pose of the mobile
robot.&is deviation serves as an input to the controller. u(k)
is the control amount of the mobile robot, including the
linear velocity υ and the angular velocity ω. W(k) is the
interference noise of the external environment. If no data
packet loss occurs at the current sampling time, S1 and S2 are

closed, and S3 is disconnected. If data packet loss occurs at
the current sampling time, S1 and S2 are disconnected, and S3
is closed [49–54].

3.5. Prediction Model Based on the LSTM Network.
According to the above LSTM model, the mathematical
model of the mobile robot, and the analysis of the data
packet loss characteristics, the predictionmodel based on the
LSTM network proposed here is shown in Figure 8.

&e mathematical description of the LSTM unit is as
follows:

ft � σ Wfxt + Ufht−1 + bf , (11)

it � σ Wixt + Uiht−1 + bi( , (12)

ot � σ Woxt + Uoht−1 + bo( , (13)

ct � ft ⊙ ct−1 + it ⊙ tan h Wcxt + Ucht−1 + bc( , (14)

ht � ot ⊙ tan h ct( . (15)

In Equations (11)–(15), xt is the input vector at time t, ft,
it, ot, ct, and ht represent forget gate, input gate, output gate,
cell state, and hidden layer output, respectively.Wf,Wi,Wo,
and Wc are input weights. Uf, Ui, Uo, and Uc are cycle
weights. bf, bi, bo, and bc are biased values. σ and tanh are the
Sigmoid and tanh activation functions, respectively. ⊙
represents the dot multiplication operation.

4. Experimental Design and
Performance Evaluation

4.1. Datasets Collection. &is work will use the deep LSTM
neural network toolbox is used to calculate the unmodeled
parameters of the model, and 1100 groups of data with two
inputs and three outputs are randomly generated. &e first
1000 groups are used to train the neural network, and the last
100 groups are used to test the modeling error. &e whole
dataset comes from the output of the deep LSTM neural
network toolbox.

4.2. Experimental Environment. To verify the prediction
model of robot trajectory tracking error based on the LSTM
neural network without different packet loss rates, this paper
builds and simulates the model by using the toolbox in
MatLab application.

4.3. Parameters Setting. In the process of modeling, the
training goal of the model is set to 0.001, and other pa-
rameters are the default values.

4.4. Performance Evaluation

4.4.1. LSTM Network Model Training Effect. &e prediction
model based on the LSTM network is trained by setting up
simulation experiments. Figure 9 reveals the results.

Controlled object

Actuator Sensor

Zero order holder Sampler 

Network

Controller

Figure 6: Network control system model with packet loss.
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&emeaning of the upper coordinate axis in Figure 9 refers
to the serial number of the training samples collected in the
experiment. In Figure 9, three lines with different colors rep-
resent the pose parameters (x, y, θ) of the mobile robot. &e
simulation curves generated by these three variables show that
the pose test error of the mobile robot will eventually tend to
zero. &erefore, it can be determined that the trained LSTM
neural network can approximate the mobile robot model in-
finitely. &e accuracy and efficiency are also high, which lays a
solid foundation for the trajectory tracking controller to have a
good tracking performance.

4.4.2. Robot Trajectory Tracking Control Effect Based on the
LSTM Model. (1) Robot Trajectory Tracking Error Under
Different Packet Loss Rates. &e trajectory tracking error
results of the prediction model based on the LSTM model
under different packet loss rates are shown in Figure 10.

Figure 10 indicates that the trajectory tracking error of the
deep LSTM neural network prediction compensation method
when the packet loss rate is 5% is smaller than that of the deep
LSTM neural network prediction compensation method when
the packet loss rate is 10%. Generally, this method can complete
the corresponding trajectory tracking task.

(2) Predictive Control Effect Of the Robot Based on the
LSTM Network. Figure 11 shows the result of the change of
control amount when the robot based on the LSTM network
moves through the simulation experiment.

Figure 11 reveals that the linear velocity υ of the mobile
robot based on the prediction model of the LSTM network
varies greatly but is always in the interval (−2, 2).&e angular
velocity ω initially fluctuates greatly but gradually tends to
zero after about 13 s. In conclusion, the control increment
changes of the mobile robot under this model are stable. &e
prediction effect of the model is further verified.
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Figure 7: Structure of the mobile robot trajectory tracking control system based on the deep neural network.
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Figure 8: Mobile robot trajectory prediction model based on the LSTM network.
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(3) Robot Linear Trajectory Tracking Effect Based on the
LSTM Network. Figure 12 shows the effect of robot linear
trajectory tracking based on the LSTM network through
simulation experiments.

Figure 12 shows that each variable of the predicted
trajectory has good prediction accuracy when the prediction
model is used to track the robot’s moving trajectory. It
suggests that the lateral position x, longitudinal position y,
and angle θ predicted by the LSTM model basically coincide
with the reference trajectory provided. &e above analysis
shows that the model has a good prediction effect on the
trajectory of the robot, and the effect of the prediction model
is finally verified.

5. Discussion

On the one hand, the results show that the LSTM model is
different from other network models. &e training time of
the model is less because of the particularity of its structure,
so it has higher accuracy, which provides a reliable basis for
the high-precision prediction of the robot trajectory. In
addition, the model can simulate and predict the motion
trajectory of the robot with high precision by reducing the
packet loss rate in the network control system. On the other
hand, based on the previous research on mobile robot
control, this work uses the deep learning algorithm to design
its control model.&e selected deep learning algorithm is the
LSTM algorithm, which has a good performance for
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Figure 10: Trajectory tracking error results under different packet
loss rates.
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Figure 11: Control increment changes for mobile robots.
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Figure 9: Prediction model training results based on the LSTM network.
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predictive control.&erefore, this algorithm is selected as the
theoretical support to complete the prediction of mobile
robot trajectory. &e basis is the existing problem of tra-
jectory predictive control of mobile robots.

6. Conclusion

6.1. Research Contribution. &is paper presents a robot
trajectory prediction model based on an LSTM neural
network combined with the mathematical model of mobile
robots and the phenomenon of data packet loss.&e research
object is the existing problems of trajectory prediction
control of mobile robots. &e author presents a robot tra-
jectory prediction model based on the LSTM neural network
combined with the mathematical model of mobile robots
and the phenomenon of data packet loss. After the model is
tested by setting up simulation experiments, the following

conclusions are drawn. First, the trained LSTM neural
network can approximate the mobile robot model infinitely,
not only with high accuracy but also with high efficiency.
Second, in the case of different packet loss rates, the model
can still complete the corresponding curve tracking task
well. &ird, the control increment changes of the mobile
robot under this prediction model are stable. Fourth, when
the prediction model tracks the movement trajectory of the
robot, the specific variables in it are coincident with the
reference trajectory.

6.2. Future Works and Research Limitations. &e deficiency
lies in that, on the one hand, only the straight-line form is
selected for the reference trajectory when testing the model,
which does not reflect the model testing effect under other
reference trajectory forms. &e purpose is to design a
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Figure 12: Mobile robot trajectory tracking status. (a) &e lateral displacement tracking the state of the mobile robot; (b) the longitudinal
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trajectory prediction model by combining neural network
technology and the kinematic model to improve the accu-
racy and quality of trajectory prediction. On the other hand,
the effect of the LSTM prediction model proposed here has
only been reflected in the simulation experiment, but it has
not been applied to the mobile robot, and its effectiveness
needs to be further studied. Subsequently, the reference
trajectory in the form of the sine curve will be set to further
verify the effect of the model. Additionally, it will be in-
troduced into a specific mobile robot example to further
verify the effect of the model.
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