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One of the key roles of Botanists is to be able to recognize �owers. �is role has become highly challenging given that the number
of discovered �ower types are nearing half a million. To support Botanists, Information Technology o�ers promising solutions.
Speci�cally, machine learning techniques are intrinsically appealing due to being precise enough as required. To this aim, two
observations on �ower leaves are relevant and leverage �ower identi�cation: one, �ower plants exhibit unique features in their
leaves thus allow distinction of their co-located �owers; two, leaves have a much longer life than �owers thus preserve identity
properties longer. �is paper proposes the use of machine learning-based identi�cation of rose types by leveraging the features
from their leaves. For this purpose, the performance of Naive Bayes, Generalized Linear Model, Multilayer Perceptron, Decision
Tree, Random Forest, Gradient Boosted Trees, and Support Vector Machine has been analyzed.�is study optimizes the RFmodel
by investigating and tuning its various parameters such as the number of trees, the depth of trees, and splitting criteria. �e best
results are achieved with gain ratio because it takes more distinct values to avoid the problems associated with Information Gain.
Optimizing the number of trees and the depth of trees of RF yield better accuracy than other models. Extensive experiments are
performed to analyze the results of ensemble algorithms by using the voting method for each instance. Results suggest that the
performance of ensemble classi�ers is superior to that of individual models.

1. Introduction

Pakistan has an agriculture-based economy in which the
horticulture profession is common. For agriculture im-
plants, most traditional resources are used and the pop-
ulation is massively growing due to which national
production requirements are hardly met. �e cost-bene�t
ratio in the agriculture industry is suboptimal and requires
the adoption of new technologies and automated processes.
To this end, one interesting area of automation is image
processing for e�ective usage in horticulture. Machine
learning in image processing has met great success to solve
real-world problems such as detection and classi�cation of

cancerous tissues, face recognition, crop/plant classi�cation,
and image-based searching [1].

Plant classi�cation has been a very important research
area for many decades. So far about 250,000 kinds of
�owering plants have been identi�ed and classi�ed [2].
Researchers have been trying to make the classi�cation of
fruit, vegetable, and �owering plants an easy process with
lesser manual involvement. Amongst �owering plants, rose
plants have universal appeal due to their matchless beauty.
�ey have economic value due to demand around the globe
as being used to prepare medicines, cosmetics, perfumes,
oils, etc. [3]. �e Netherlands is home to the largest rose
farms in the world [4]. It is increasingly becoming relevant
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and significant to keep track of not only existing rose species
but also to identify new ones.

Rose plants vary in their morphological characteristics,
which may affect their leaves, flowers or even the entire plants
[5]. Rose leaves contain key knowledge and survive longer than
the roses. Identifying rose plants or in general flowering plants
through their leaves is a troublesome task for plant scientists if
done manually. It requires appropriate training, time, and
manpower to perform this task, especially if done at a larger
scale. Given that roses have about 150 species that vary in
colours, sizes, and fragrance, their manual identification is still
tedious and time-consuming. ,ere is a need for an efficient
approach, adopting which this task can be performed on large
scale using the available automation technologies. ,us, the
main objective of this work is to identify rose types auto-
matically. With the high availability of smart mobile phones,
the idea is to develop an expert application that can classify
roses, thus effectively eliminating the involvement of plant
scientists.,is application can use the built-in phone camera to
capture rose leave images for roses classification [5]. To this
end, our preliminary work is based on the k-nearest neighbour
(k-NN) algorithm [6]. Random forest (RF) is one of the widely
used machine learning models for classification tasks that uses
“wisdom of the crowd” to make the final prediction. RF is a
good choice when it comes to the problem of high dimensional
and imbalanced data [7, 8]. ,e accuracy is better than other
machine learning models as it uses the mean or average of
many decision trees for the final decision. Currently, it is being
employed inmany domains like health care, prediction for time
series data and agriculture, etc. [9, 10].

In general, this study makes the following contributions:

(i) A methodology is designed to perform automatic
rose classification using rose leaves. For this pur-
pose, the image processing approach is followed.
Two sets of features are tested for this task including
histogram and texture features. Four subsets of
features are evaluated through extensive
experiments.

(ii) ,e performance of Naive Bayes (NB), Generalized
Linear Model (GLM), Deep Learning (DL) Multi-
nomial Model, Decision Tree (DT), RF, Gradient
Boosted Trees (GBT), and Support Vector Machine
(SVM) is analyzed in detail. For experiments, a new
dataset of rose leaves is collected.

(iii) Ensemble classifiers are tested for the classification
task using various combinations of selected ma-
chine learning models with four subsets of features
to analyze the classification accuracy.

(iv) ,is study especially focuses on the performance of
RF which shows better results than other models for
rose plant classification. Due to good results of RF,
its performance is further improved by analysing
the influence of various selection criteria such as
Information Gain, Gini Index, etc.

,e rest of the paper is organized as follows. Section 2
discusses research papers from the literature which are
closely related to the current study. Section 3 gives an

overview of the machine learning algorithms adopted for the
current research, the description of the dataset used for the
experiment, as well as, the proposed approach. Results are
discussed in Section 4. In the end, the conclusion is given in
Section 5.

2. Literature Review

Classification of plants carries multiple purposes such as to
name plants, extract useful information, study features that
impact yield of fruits/vegetables and quality, and predict
their price. Some representative classification approaches are
presented next.

2.1. Machine Learning Models. Machine learning offers re-
liable algorithms for predictability [11, 12]. For predicting
prices of various varieties of fruits, they have been classified
using a hybrid method based on texture, histogram and
colour features [13].,e proposed algorithm FSCABC–FNN
obtained 89.1% classification accuracy. Tomatoes have been
graded for readiness using colour traits in [14]. Principal
components analysis and SVM are used for feature ex-
traction and linear discriminant for categorization. Results
show 90.80% accuracy. Quality assessment and disease
detection of sunflowers using texture and colour traits
obtained from leaves has been studied using multi-class
SVM, k-NN, Multinomial Logistic Regression, and NB in
[15]. Another work suggests the importance of structural
cues for flower identification [16]. ,e feature vector is built
and input to the proposed method.,e accuracy is increased
from 76.9% to 82.6%. A performance comparison for
classification of plants using computer vision is presented in
a survey [17]. Plant organs, information on different features
namely vein structure, colour, shape, margin, and texture are
studied. Texture features in combination with leaf traits are
found to be the best for identification.

,e authors build a vision-based leaf identification
system in [18].,e study uses different features including the
shape, inner structure, colour, surface For this purpose.
Similarly, [19] designs a mobile-based leaf identification
system that first determines the leaf and non-leaf samples
and then classifies the leaves. Curvature-based shape features
are used in this regard. Experimental results show the ef-
ficiency and robustness of the proposed system. Rose plant
classification is carried out in [6] that deploys k-NN based
approach to this end. Using a different number of neigh-
bours for k-NN, experiments are performed with histogram
and texture features. ,e obtained accuracy for histogram
and texture features are 65.00% and 45.50%, respectively.
Similarly, [20] endeavours to classify eight types of flowers
using scale-invariant feature transform (SIFT) features.
SVM and RF are applied for the classification of the features
from segmented images. Rather a short dataset containing
215 images is used for classification where high accuracy is
achieved when flowers of dissimilar shapes are classified.,e
authors use pre-trained VGG16 architecture to rose flower
disease classification in [21]. Early and late fusion techniques
are applied combining VGG16 and SVM where the early
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fusion models show better results with 88.33% accuracy. ,e
study [22] provides a comprehensive review of machine
learning models that are recently adopted for species clas-
sification. ,e study especially covers the vision-based ap-
proaches applied for flower classification and discusses the
famous pre-trained models.

An AI-based guava disease prediction system is pre-
sented in [23] that utilizes the high-quality images of guava
leaves. ,e efficiency of several machine learning classifiers
is evaluated like k-NN, complex tree, boosted tree, bagged
tree, and SVM. Additionally, the use of histogram and
textual features prove to show higher accuracy.

2.2. Use of Deep Learning Models. Predictability through
deep learning promises improvement over machine learning
algorithms, as demonstrated in various dynamic problem
areas such as cloud computing [24]. In the context of this
work, the quality and defects of the Jasmine flower have been
identified with an 83% efficiency using texture, colour, and
shape traits [25]. Plants have been identified using leaf
features with images taken directly from plants [26]. ,e
used method is based on a convolutional neural network
(CNN) and features based on a deconvolutional network. It
is found that shape features are inadequate for identification
due to less discriminatory information contained in the
leaves. On the contrary, venation structure and leaf shape
features give better results. Similarly, species classified using
deep learning is found a promising approach [27]. A non-
scalable manual approach is proposed in which visual
characteristics have been selected from flower images and
generalized to predict new unknown flowers [28]. ,e
proposed method proved to be more effective than tradi-
tional approaches. ,ere have been efforts to understand
roses in detail and to recognize their variety [29].,e work is
based on Fourier Transformation that considers descriptor
angles of roses to recognize their shapes like round, irregular
round, or star. ,e obtained efficiency is higher than other
contemporary methods. Similarly, a system of neural net-
work-based classification has investigated blooming flowers
[30]. A detailed analysis of different machine learning
classifiers like NB, DT, simple k-Means, MLP, SVM, and RF
using the WEKA tool is presented in [31]. ,e main ob-
jective is to find the best classification algorithm to enhance
the accuracy of classification with reduced processing time.
Many evaluation parameters are used for analysing results
such as mean absolute error, root means squared error, TP-
rate, TN-rate, FP-rate, FN-rate, precision, and recall. Results
indicate NB is the best choice for improving traditional
classification problems. SVM gives the best average
accuracy.

Plant classification using a CNN is performed in [32]
which used the BJFU100 dataset containing 100 species of
iris plant. Images are added to the dataset using a mobile
device application to collect more images. ,e residual
network is introduced which removes the vanishing gradient
and degradation problems. ,e proposed network is 26
layers in-depth and allows the input flow to deeper layers
without losing information. ,e parameters of RestNet26

are well trained that they can learn the discriminative fea-
tures and avoid under fitting. ,e proposed approach can
achieve an accuracy of 91.78% which is better than the
existing RestNet with 18, 34, and 50 layers. Another deep
learning approach called a Fully Convolutional Network
(FCN) is proposed in [33] for plant classification. It performs
automatic segmentation of flowers from the background. It
used the VGG-16 model for initialization. FCN has several
convolutional layers and 3 deconvolutional layers. FCN is
trained until the validation accuracy starts decreasing and
training is restarted from the last learned model. ,e ob-
jective is to let the model learn local features in the first two
blocks. By this process they collected the segmented flower
images and kept only those that had high discriminative
region, other images are discarded. A CNN is proposed to be
trained on FCN. Evaluation metrics are proposed for
measuring the accuracies of the segmentation, detection, and
classification methods. Results show the accuracy of 99.0%,
98.5%, and 97.1% on Zou-Nagy, Oxford 17, and Oxford 102,
respectively.

Along the same lines, [34] presents the use of multiple
deep learning models and combines auto encoders and CNN
for plant leave classification. ,e auto encoder and CNN are
used for feature extraction which is later used to train an
SVM for classification which yields better results than tra-
ditional machine learning models. ,e authors utilize low-
quality images in [35] with deep learning models to improve
the performance for plant disease prediction. ,e study
utilizes Chebyshev orthogonal functions and probability
distribution functions regarding the colour histograms.
Experiments performed using the MobileNetV2 show better
performance over traditional methods. Similarly, a mask
residual CNN (RCNN) based approach is presented in [36]
recognizing to detect diseases from apple leaves. Experi-
ments using the Plant Village dataset yield a 96.6% accuracy
using the ensemble subspace discriminant analysis. In a
similar fashion, a residual NN (RNN) is used by authors in
[37] for detecting cassava mosaic disease. A modified deep
RNN is designed for disease detection with a balanced
dataset using block processing. With a balanced dataset high
accuracy is reported with deep RNN showing 9.25% better
performance than a traditional CNN.

2.3. Use of Selective Features for Classification. A flower
classification technique is introduced in [38] which uses
selective discriminative features for 103 class datasets. Im-
ages are downloaded from the web which varies in scale,
resolution, clutter, lighting, quality, etc. An automatic seg-
mentation scheme introduced by Nilsback and Zisserman is
used. Colour, histogram of gradient (HOG) features are used
using SIFT for the foreground region. SVM is used as a
classifier where each kernel represents each feature. Clas-
sification results are much better with combined features
within the kernel framework, which improves efficiency.
Study [39] described different perspectives of image ac-
quisition and its impact on classification accuracy. ,ree
image factors are considered: perspectives, illumination, and
background. CNN is used for feature extraction and SVM
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for classification. Total 27 datasets are formed using nine
image types (backlight on/off, plain background/natural
background, top view, and back view of the leaf ) and three
pre-processing strategies are used pre-processed, cropped,
and segmented. ,e highest accuracy of 91% on cropped
backlight images and 55% lowest accuracy is achieved on
non-pre-processed images. It is found that cropping is more
effective than segmenting, backside images do not con-
tribute to achieving higher accuracy but need more human
efforts in image acquisition. ,e non-destructive way is to
take topside images and crop them from leave boundaries of
herbaceous leaves. If the destructive way is permissible
plucking the leaf using backlight yields higher accuracy.
Spatio-temporal features have also been utilized with deep
learning models for prediction and classification as in [40]
for crow flows prediction. Similarly, the Spatio-temporal
features are used with hybrid deep learning models in [41].
An attention-based network is designed in [42] that makes
use of Spatio-temporal features for traffic flow prediction.

,e authors developed an image capturing scheme in [43]
for obtaining the best perspectives that contribute to the
classification accuracy of flowering plants. ,e images of a
single plant are taken considering five different perspectives:
entire plant, flower frontal, flower lateral, leaf top, and leaf back.
A large dataset comprising 101 species of plant families is
assembled. Images are taken during the flowering season. A
CNN is trained on the collected dataset shows that CNNs can
learn the discriminative features directly from raw pixels.
Transfer learning is used for training while the performance is
evaluated using a simple sum rule that combines the scores of
different perspectives. An accuracy of 77.4% is achieved for the
entire plant, 88.2% for flower frontal, and the best results are
achieved by fusing all five perspectives giving an accuracy of
97.1%. It is concluded that the species that are difficult to
recognize even by humans can be recognized by multi-organ
identification. Because of the lack of a universal perspective for
all species, different organ views of the plant are beneficial for
identifying the important perspectives of plants.

3. Methodology

In this section, we discuss the proposed methodology. ,e
steps followed in the proposed methodology are shown in
Figure 1 and briefly described in the preceding sections.

3.1. Data Collection. Machine learning algorithms learn on
the available data or evidence. Mistakes in data collection are
easily propagated to the training phase and affect the per-
formance of classifiers.,us, we have collected data carefully
using a 23MP camera capturing orange, red, pink, and white
rose leaves (please see Figure 2). Images are taken in a
controlled environment keeping the light condition the
same for all images. Each image comes from a different
plant. ,e images are captured in a controlled environment
where the lighting conditions are almost similar for all the
captures. ,e dataset consists of 10 classes. ,e resolution of
the captured image is 1080×1920 pixels. ,e data is split
into 0.6 to 0.4 ratios for training and testing, respectively.

3.2. Data PreProcessing. We convert colour images to grey
level images andmark two regions of interest (ROIs) on each
of them using the CVIP tool [44]. ,us, dataset of size 200 is
formed. Conversion into grey level aims at reducing the
unnecessary information from the images and computa-
tional processing. Pre-processing allows feature enhance-
ment and should be carried out carefully to avoid losing vital
information that can lead to wrong identification.

3.3. Feature Extraction. Feature selection has a direct impact
on the classification process. Feature space can easily grow
enormously, hence extracting a minimal set of features is
desirable though it is computationally intensive. Too much
extraction of features may easily compromise generalization
of results. Figures 3 and 4 show the examples of natural and
artificial textures.

Table 1 shows the histogram and texture features used in
this study. Each feature is defined next.

3.3.1. Mean. Histogram mean describes the average level of
intensity of the image or texture being examined [45].
Mathematically it is given as,

μ � 
G−1

i�0
i × p(i), (1)

where p(i) is the fraction of samples in class i and G is the
number of grey levels used [6].

3.3.2. Skew. Skewness provides the data with distribution,
whether or not the resulting distribution is symmetric,
positively skewed, or negatively skewed [31]. It is given as
[6],

μ3 � σ− 3


G−1

i�0
(i − μ)

3
× p(i). (2)

3.3.3. Energy. Energy feature measures the contrast between
a pixel and its surrounding pixels [32]. It gives a large value if
the image is homogeneous. Homogeneous means there are a
large number of pixels that have similar intensity values. If
this feature gives a positive 1, it means the image is constant.
It is given as,


G−1

i�0


G−1

j�0
[p(i, j)]

2
, (3)

where i, j are the spatial coordinates of the function p(i, j)

[6].

3.3.4. Entropy. It varies inversely with the energy, while it is
defined as the number of bits needed to code the data [46]. It
is given as,


i


j

p(i, j) × log(p(i, j)), (4)
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Data Collection

Leave capture

Vision camera
24 MP

Controlled lights

Orange, pink, red 
& white

Data Pre-
processing

Color
transformation

Region of interest

Feature Extraction

Mean

Skew

Energy

Entropy

Inertia

Correlation

Classification

Machine learning
(RF, SVM, KNN, 

NB, DT)

Deep learning
(CNN, LSTM, 

RestNet)

Figure 1: Steps followed in the proposedmethodology. Starting with data collection, study follows data processing before feature extraction.
In the end, classi�cation is performed.

(a) (b) (c) (d)

Figure 2: Leaves of di�erent colored roses, (a) Orange rose, (b) Pink rose, (c) Red rose, and (d) White rose. �e leave images are from the
dataset collected for experiments in this study.

Figure 3: Examples of arti�cial textures.

Figure 4: Examples of natural textures.
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where i and j are the fractions of examples in class i and j,
respectively [6].

3.3.5. Inertia. Inertia is an image moment and shows a
weighted average in terms of intensity of image pixels. It is
calculated using



G−1

i�0


G−1

j�0
(i − j)

2
× p(i, j), (5)

where i, j are the spatial coordinates of the function p(i, j) [6].

3.3.6. Correlation. It is the relationship between two values.
,e coefficient of correlation lies between 1 and −1. A value
near 1 means there is a positive correlation between nearest
pixel values, while a value closer to -1 means there is a
negative correlation between them [32, 46]. It is given as


G−1

i�0


G−1

j�0

i × j × p(i, j) − μx × μy

σx × σy

, (6)

where μx and μy are the means and σx and σy are the
standard deviations of px and py, the partial probability
functions [6].

3.3.7. Inverse Difference. It is the local homogeneity that is
high when the local grey level is uniform [46, 47]. It is given
as



G−1

i�0


G−1

j�0

p(i, j)

1 +(i − j)
2 , (7)

where p(i, j) is the probability that a pixel with value i will be
found adjacent to a pixel of value j [6].

Selection of histogram and texture features is based on
their success rate in similar classification problems
[48–51]. ,e contribution of histogram due to its
brightness and contrast aspects is proven [30]. For clas-
sification through leaves texture feature has a vital role.
Texture not only considers leaf venation structure but also
gives the directional characteristics of pixels selected from
the leaf. It is independent of leaf colours and shape.
Texture analysis is made from a group of pixels. It is
considered more dominant a feature than the shape
feature [5, 17].

CVIP is a famous library used for simple to complex
image processing tasks like image reading, transforming,
and region of interest (ROI) capturing [52]. It also provides
automated tools to control the quality of images and image

enhancement. It is used with a graphical user interface (GUI)
based software tools like LabView where numerical and
statistical analysis can also be performed.

3.4. Deep Learning Models. In addition to machine learning
models, this study implements deep learning models for rose
plant classification.

3.4.1. Convolutional Neural Network. CNN is a widely used
deep learning model for image processing tasks [1]. Good
results can be obtained by CNN as it can efficiently handle
data complexity and pre-processing. It includes a con-
volutional layer to learn complex features from the input
data while max-pooling is used as the pooling layer in this
study.,e convolution layer is used with rectified linear unit
(ReLU) activation while the kernel size is 3× 3. Max-pooling
is used with 2× 2. It is followed by a flatten layer and 0.2
dropout layer to reduce the probability of model over fitting.
A dense layer is used with 512 neurons.

3.4.2. Long Short-Term Memory Network. ,is study also
uses the LSTMmodel for rose plant classification. LSTM has
four gates, each for a different task. LSTM has a feedback
mechanism and produces good results for classification tasks
[53]. LSTM is used for an embedding layer with dimensions
of 5000 and 100. It is followed by a dropout layer with a 0.5
dropout rate.,en an LSTM layer is added with 100 units. In
the end, a dense layer is added with a “softmax” activation
layer to get the output for the desired number of classes.

3.4.3. RestNet. ,e RestNet also called residual network is a
pre-trained model and is among the commonly used pre-
trainedmodels for tasks related to image processing. RestNet
aims at providing high accuracy for complex image pro-
cessing tasks [54]. It has different layers where each layer has
a different structure with respect to convolutional size and
filters. Possessing a deep structure, RestNet can learn better
by going deeper during the training phase and ultimately
provides better results than traditional deep learning models
[55].

4. Results and Discussion

We used CVIP tool to extract features and RapidMiner [56]
for classification. Small result subsets of texture and histo-
gram related features are listed in Tables 2 and 3, respec-
tively. ,e rest of the results are not listed for brevity.

4.1. Formation of Feature Sets. In this work, results were
obtained by using seven different classifiers as described
above. We made four feature sets by using the auto model of
the RapidMiner tool.,ese feature sets are made by selecting
the features from the set of Histogram and Texture features
which are extracted from the images of rose leaves. Results
obtained by all classifiers on these feature sets are different
for a different set of features. Different sets of features are
described below.

Table 1: ,e list of features used for different classifier.

Histogram features Texture features
Mean Energy
Standard deviation Inertia
Skew Correlation
Energy Inverse difference
Entropy Entropy

6 Computational Intelligence and Neuroscience



4.1.1. Feature Set 1. All extracted features of histogram and
texture are used to make feature set 1 (FS1). Histogram mean,
histogram standard deviation, histogram energy, histogram
skew, histogram entropy, texture energy average, texture en-
ergy range, inertia average, inertia range, correlation average,
correlation range, inverse difference range, inverse difference
average, and texture entropy average.

4.1.2. Feature Set 2. Features having a high correlation with
the label column are selected from both histogram and
texture features to make feature set 2 (FS2). Histogram
mean, histogram standard deviation, histogram energy,
histogram entropy, texture energy average, texture energy
range, inertia average, inertia range, inverse difference range,
and texture entropy average.

4.1.3. Feature Set 3. Feature set 3 (FS3) contains only his-
togram features with a high correlation to the label column.
Histogram mean, histogram standard deviation, histogram
energy, and histogram entropy.

4.1.4. Feature Set 4. Set of all texture features with high
correlation to labels are used to make feature set 4 (FS4).
Texture energy average, texture energy range, inertia aver-
age, inertia range, inverse difference range, and texture
entropy average.

4.2. Error Metrics. To correctly evaluate the performance of
classifiers confusion matrices are used which have four
different values. True positive (TP) show the number of
those instances that are classified correctly, true negative
(TN) represent instances that are true but classified incor-
rectly, false negative (FN) represent those instances that are
false and classified as false while false positive (FP) repre-
sents the number of instances that are false but classified as
true. Based on these values precision and recall can be
evaluated [13].

Recall: ,is term represents the probability that how
many positive classes are recalled by our classifier. ,e
term is defined by

Recall �
TP

TP + FN
. (8)

Precision:,is term represents the probability that how
many true positives were found by our classifier. ,e
term is defined by

Precision �
TP

TP + FP
. (9)

In the end, the classification error is used which rep-
resents the percentage of incorrect class predictions.

4.3. k-Nearest Neighbour. In our previous work we used
CVIP for k-NN to obtain results on histogram and texture
features, the obtained accuracy is 65% and 45.50%, re-
spectively [6]. We formed two feature sets including his-
togram features and texture features. Figure 5 shows the
result of k-NN on different values of k.

4.4. Parameter Settings of Machine Learning Models. We
tuned some general parameter settings of machine learning
models in RapidMiner and the rest of the parameters are
used by their default values. ,e split operator in the process
model makes partitions of data as training set and testing set.
It takes 60% examples for training and 40% for testing.
Another parameter is sampling types which are automatic,
linear, shuffled and stratified. For nominal data types, we
used stratified sampling.

,e parameter settings of NB have the Laplace correction
parameter which avoids the conditional probability set to
zero and also avoids misleading results. It is a kind of
Boolean operator with a default value that is true.

GLM has a few parameter settings: family, solver, the
maximum number of threads, and regularization.,e family
parameter has different types including Gaussian, Binomial,

Table 2: Few sample results of histogram features.

Labels ROI Mean Standard
deviation Skew Energy Entropy

Orange
1 29.488 3.531 0.464 0.084 3.790
2 28.568 4.100 0.222 0.068 4.023
3 32.147 7.296 0.160 0.040 4.837

Red
1 31.249 2.079 0.053 0.140 3.075
2 22.422 0.999 0.341 0.295 2.013
3 28.989 2.355 0.246 0.121 3.237

White
1 38.696 3.034 1.587 0.133 3.334
2 54.209 2.494 0.262 0.116 3.347
3 64.674 3.340 0.397 0.086 3.757

Pink
1 78.337 2.419 0.444 0.121 3.271
2 73.467 2.579 0.903 0.123 3.288
3 63.028 2.686 0.273 0.106 3.451

Table 3: Few sample results of texture features.

Labels ROI Energy Inertia Correlation Inverse
difference Entropy

Orange
1 0.0103 4.295 0.248 0.532 0.543
2 0.002 14.519 0.306 0.434 0.400
3 0.001 8.940 0.241 0.493 0.244

Red
1 0.041 0.894 0.238 0.432 0.351
2 0.009 2.934 0.268 0.509 0.271
3 0.013 1.657 0.234 0.516 0.299

White
1 0.002 7.570 0.223 0.499 0.266
2 0.001 16.115 0.248 0.425 0.175
3 0.002 7.304 0.211 0.496 0.307

Pink
1 0.001 14.272 0.230 0.429 0.115
2 0.001 8.712 0.364 0.468 0.124
3 0.001 35.020 0.491 0.340 0.317
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Poisson, Gamma, Multinomial, Tweedie, and Auto.
Gaussian is used for numeric data (real or integer), Binomial
for binomial data, Multinomial for polynomial data more
than two classes, Poisson is used for numeric and non-
negative data, Gamma is applied for continuous, numeric,
and positive data, Tweedie is used for numeric, continuous
and non-negative and Auto option selects multinomial for
polynomial, binomial for binomial and Gaussian for nu-
meric data. Solver parameter includes IRLSM, L_BFGS,
Coordinate_Descent_Naive and Coordinate_Descent.
IRLSM is useful for the problems which have a small pre-
dictor size, L_BFGS better works on the dataset with many
columns, Coordinate_Descent_Naive and Coor-
dinate_Descent are the updated versions of IRLSM. �e
maximum number of threads is used to make the model
reproducible and its default value is 4. Regularization uses
the lambda and alpha parameters for controlling the reg-
ularization and distribution respectively. Standardize is used
for numeric columns to have zero mean and unit variance. A
complete list of all parameters used for the machine learning
models is provided in Table 4.

Parameters for DL multinomial model are activation
function, hidden layer sizes, epochs, adaptive learning and
standardization. �e activation function is used by neurons
in the hidden layers to normalize the output. �e activation
function is of types Tanh, Recti�er, Maxout and ExpRec-
ti�er. �e hidden layer size parameter is used to change the
size of hidden layers. Epochs are used for iterating the
dataset. Adaptive learning is used to avoid the slow con-
vergence by combining learning rate and momentum
training. For this purpose, it uses epsilon and rho. Stan-
dardize is used for regularization, it has di�erent parameters;
L1, L2, max w2, loss function, and distribution function.�e
loss function is of types Automatic, Quadratic, Cross-
Entropy, Huber, Absolute, and Quantile. �e distribution
parameter has sub-parameters of type Auto, Bernoulli,
Gaussian, Poisson, Gamma, Tweedie, Quantile, and Laplace.

DT parameters include criterion, maximal depth,
pruning, and pre-pruning. Criterion includes Gain Ratio
Information Gain, Gini Index, Accuracy, and Least Square.
Maximal depth is used for varying the size of the tree
according to example set. If the pruning parameter is
checked it will replace some branches with leaves according
to the con�dence parameter and pre-pruning speci�es the
stopping criteria for the generation of the tree. Random

Forest parameters are the same as DT except for the addi-
tional parameter number of trees. GBT parameters are the
number of trees, maximum number of threads, maximal
depth, learning rate, sample rate, and distribution. �e
distribution parameter has the same types that were de�ned
for Deep Learning.

SVM parameters include SVM type, kernel type, gamma,
C, cache size, epsilon, shrinking, and con�dence with multi-
class. SVM type is used to select the type of SVM which are
C_SVC, nu_SVC, one_class, epsilon_SVR, and nu_SVR,
�rst two types are used for classi�cation tasks, epsilon-SVR
and nu-SVR are used for regression, and distribution esti-
mation one-class SVM is used. Kernel type parameter in-
cludes linear, poly, RBF, sigmoid, and pre-computed. RBF
kernel is the default type; it maps the samples into high
dimensional space using a nonlinear function. Gamma is
used with poly, sigmoid, and RBF kernels and play im-
portant role in changing the accuracy of the model. C
speci�es the cost parameter and it is used with SVM types
C_SVC, epsilon_SVR, and nu_SVR. Epsilon is used for
termination criteria.

Tables 5–8 show precision, recall, classi�cation error and
accuracy of all classi�ers on feature sets FS1, FS2, FS3 and
FS4.

In Figure 6 it is shown that precision, recall, and accuracy
of NB and DTare lower than other classi�ers. �e higher the
accuracy, the lower will be the classi�cation error. SVM
obtained the highest accuracy of 72% on FS1 as compared to
other classi�ers.

Accuracy depends on both values of precision and recall.
Figure 7 shows the comparison of all classi�ers. Here RF, DL,
and SVM achieved equal accuracies on FS2. DT showed
improvement on this data set by obtaining an accuracy of
60% which was 48% for FS1.

Classi�cation results by all classi�ers are depicted in
Table 7 on FS3. �is feature set only contains histogram
features that have a high correlation with the labeled col-
umn. NB showed improvement on FS3 compared to FS1,
FS2, and FS4. Figure 8 shows that the precision, recall, and
accuracy of all classi�ers are the same on FS3.

Classi�cation results on FS4 are less than other feature
sets. All classi�ers achieved low accuracy on FS4 because this
feature set only contains the texture features with a high
correlation to the label column. Texture features alone are
not good features for classi�cation tasks when there is a
small dataset because it works on patterns.

Precision, recall, classi�cation, and accuracy on FS4 are
shown in Figure 9. It is shown that the accuracy lies between
34% and 45% which is very low than other feature sets.

Table 9 shows the accuracy of all classi�ers on four
feature sets. SVM gave the highest accuracy of 72% on FS1
and lowest accuracy of 34% on FS4.

4.5. Ensemble Learning. Ensemble learning is the technique
of integrating multiple learners to solve the same problem. It
builds multiple sets of hypotheses from training data and
uses them together. �e generalization ability of the en-
semble is greater than the individual learners. It provides a
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Figure 5: Performance of k-NN on texture and histogram features.
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more robust solution where the dataset does not contain
equal distribution. ,e first step is to generate base learners
either in a parallel manner or sequential and the second step

is to combine all base learners for producing multiple
combinations, majority voting and weighted averaging are
the popular combination schemes for classification and

Table 4: ,e parameters used for the machine learning models.

Machine learning models Tuning parameters Values used
NB Laplace correction Yes

GLM

Family (Gaussian, binomial, Poisson, gamma, tweedie, auto) Auto
Solver (IRLSM, L_BFGS, Coordinate_Descent, C_D_Naive) Auto

No. of threads 1
Regularization Lambda, alpha

DL

Activation function (tanh, rectifier, maxout, ExpRectifier) Rectifier
Hidden layer size 50

Epochs 10
Adaptive learning Epsilon, rho

Standardize Loss function,
distribution function

DT

Criteria (Gain_Ratio, Information_Gain, gini index, accuracy, Least_Square) Gain_Ratio
Maximal depth 7

Pruning Yes
Prepruning Yes

RF
No. of trees 100

Maximal depth 7
Criterion Gain_Ratio

GBT

No. of trees 60
No. of threads 1
Maximal depth 4
Learning rate 0.1
Sample rate 1.0
Distribution Auto

SVM

SVM type (C_SVC, nu_SVC, one_class, epsilon_SVR, nu_SVR) Rectifier
Kernel type rbf

C 1000.0
Cache size 80
Epsilon 0.001

Table 5: Precision, recall, and classification error on FS1.

Classifiers Precision (%) Recall (%) Classification
Error (%) Accuracy (%)

NB 54 40 60 40
GLM 67 64 35 65
DL 71 68 31 69
DT 49 46 52 48
RF 60 60 38 62
GBT 66 67 32 68
SVM 71 71 28 72

Table 6: Precision, recall, and classification error on FS2.

Classifiers Precision (%) Recall (%) Classification error (%) Accuracy (%)
NB 49 41 58 42
GLM 60 59 40 60
DL 74 69 31 69
DT 62 59 40 60
RF 68 67 31 69
GBT 62 62 36 64
SVM 67 67 32 68
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regression respectively. �e accuracy of the ensemble
methods can be estimated by cross-validation, hold-out test,
etc. For the construction of a useful ensemble method, it
needs to consider multiple measures, e.g., subsampling the
training examples, manipulating the features, manipulating
the output and random integration of algorithms. Bagging,
boosting, and voting are the common techniques for
combining the algorithms [57].

In our study, we used the voting method to combine the
algorithms. First, we carried out experiments for each algo-
rithm, and then their results were combined for each instance
of the test data. �e instance with the highest votes of a class
label has given that label. We used NB, GLM, DT, DL, RF,
GBT, and SVM for producing ensemble results. We made
eleven combination sets by integrating algorithms. �e �rst
set contains all seven algorithms, the second set �ve algo-
rithms (GLM, DL, RF, GBT and SVM) that achieved higher

Table 7: Precision, recall, and classi�cation error on FS3.

Classi�ers Precision (%) Recall (%) Classi�cation error (%) Accuracy (%)
NB 63 45 55 45
GLM 59 64 35 65
DL 75 66 34 66
DT 64 55 44 56
RF 69 67 32 68
GBT 70 68 31 69
SVM 70 64 34 66

Table 8: Precision, recall, and classi�cation error on FS4.

Classi�ers Precision (%) Recall (%) Classi�cation error (%) Accuracy (%)
NB 35 38 60 40
GLM 45 40 58 42
DL 38 44 55 45
DT 28 40 59 41
RF 34 41 57 43
GBT 38 43 55 45
SVM 35 34 66 34
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Figure 6: Results of Machine Learning classi�ers when trained
using the FS1.
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Figure 7: Results of Machine Learning classi�ers when trained on
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Figure 8: Results of Machine Learning classi�ers when trained
with FS3.
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accuracies and the third set nine random combinations of
three algorithms from the second set. Results of these en-
semble algorithms on our four feature sets are given in
Table 10.

�e results shown in Table 10 are obtained by integrating
the output of each algorithm with the output of other al-
gorithms of each instance by voting mechanism. �e ac-
curacy obtained by ensemble algorithms is better than
individual algorithm accuracy, only SVM accuracy is higher
than the ensemble algorithms accuracy.

4.6. Performance Optimization of Random Forest. We car-
ried out performance optimization of RF results towards the
improvement of accuracy. To this end, various combinations
of the number of trees and the depth of trees are tested. �e
number of trees is varied from 2 to 102 with a di�erence of 10
and the depth of trees from 1 to 100 with the same di�erence.
It is worth mentioning that Rapidminer uses Gain Ratio as an
attribute selection criterion for RF as a general approach,
though it does not explicitly disclose the value used for the
Gain Ratio. We handle this situation concretely for our case
by testing the impact of explicit values of the Gain Ratio.
Additionally, we also tested two other attribute selection
criteria, Information Gain and Gini Index.

Results obtained by optimized RF with Gain Ratio
achieved higher accuracy than Information Gain and Gini
Index. Results obtained by tuning the number of trees and
depth of trees with Gini Index, Information Gain, and Gain
Ratio as attribute selection criteria are given in Tables 11–23.

4.6.1. Information Gain. Table 11 shows the optimized re-
sults of RF by varying the number of trees and depth of trees
with selecting the Information Gain as an attribute selection
criterion.�ere is no change in results by tuning the number
of trees and depth of trees.

Table 12 shows no change in results with Information
Gain also on FS2 by tuning the parameters of RF.

Results depicted in Tables 13 and 14 show that using
Information Gain as attribute selection criterion with tuning
the parameters of RF does not have any impact on accuracy.
Results show consistent value by varying the number of trees
and their depth. But accuracy for di�erent feature sets is
di�erent.

4.6.2. Gini Index. Tables 15–18 shows the results of RF by
varying its parameters with Gini Index as attribute selection
criterion. Results obtained by Gini Index are similar to
results obtained by Information Gain by giving the single
constant value with no di�erence in classi�cation accuracy.

4.6.3. Gain Ratio. Tables 19–22 show the accuracy achieved
by varying the number of trees and its depth with Gain Ratio.
Results obtained with the Gain Ratio are better than In-
formation Gain and Gini Index. Gain Ratio gives the highest
accuracy of 75.6% with 12 trees and 11 depth on FS1.

In Figure 10 it is shown that the maximum accuracy was
achieved with 12 trees and 11 depth. After increasing the
number of trees and depth from 12 to 11 respectively, ac-
curacy is decreased instead of increasing. But this accuracy is
greater by 13% than auto model results of RF on FS1.

Maximum accuracy obtained on FS2 is 78% with Gain
Ratio. �ese results are greater than the results of the auto
model of RapidMiner tool which was 69% on FS2. Results
are given in Table 20.

Figure 11 shows the result of optimized RF on FS2. �e
highest accuracy is achieved with 22 trees and 11 depth.
Accuracy is decreasing beyond 32 trees and 11 depth.

Results on FS3 are shown in Table 21. �e maximum
accuracy achieved on FS3 is 70.73%. Results of optimized RF
are 2% greater than the auto model of RF on FS3. �e result
of optimized RF on FS3 is shown in Figure 12.

Table 22 shows the results on FS4. Accuracy on FS4 is
51.7% which is less than other feature sets but greater than
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Figure 9: Results of Machine Learning classi�ers when trained
with FS4.

Table 9: Summary of classi�ers accuracy (%) using di�erent feature
sets.

Feature sets NB GLM DL DT RF GBT SVM
FS1 40 60 69 48 62 64 72
FS2 42 65 69 60 69 68 68
FS3 45 65 66 56 68 69 66
FS4 40 42 45 41 43 45 34

Table 10: Summary of ensemble classi�ers accuracy (%) on dif-
ferent feature set.

Ensemble models
Accuracy (%)

FS1 FS2 FS3 FS4
NB+GLM+DT+DL+RF+GBT+ SVM 66 60 63 39
GLM+DL+RF+GBT+ SVM 70 67 67 35
GLM+DL+RF 65 65 66 43
GLM+DL+GBT 62 60 68 45
GLM+DL+ SVM 65 65 65 40
GLM+RF+GBT 66 66 68 40
GLM+RF+ SVM 66 67 67 36
GLM+GBT+ SVM 68 63 67 35
DL+RF+GBT 66 67 67 41
DL+RF+ SVM 67 69 66 39
RF +GBT+ SVM 67 65 66 39
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auto model accuracy. ,e result of optimized RF on FS4 is
shown in Figure 13. Comparison using Information Gain,
Gini Index, and Gain Ratio as an attribute selection criterion
is depicted in Table 23 and it is shown that Gain Ratio
obtained higher accuracy than others.

4.7. Performance of Deep Learning Models. Besides using
machine learningmodels and optimizing the performance of
RF, this study conducted experiments using deep learning
models. Table 24 shows the results of deep learning models,
which indicate that the performance of deep learningmodels

Table 11: Accuracy (%) results obtained by Information Gain on
FS1.

No. of trees
Depth of trees

1 21 41 61 81 100
2 68.29 68.29 68.29 68.29 68.29 68.29
22 68.29 68.29 68.29 68.29 68.29 68.29
42 68.29 68.29 68.29 68.29 68.29 68.29
62 68.29 68.29 68.29 68.29 68.29 68.29
82 68.29 68.29 68.29 68.29 68.29 68.29
102 68.29 68.29 68.29 68.29 68.29 68.29

Table 12: Accuracy (%) results obtained by Information Gain on
FS2.

No. of trees
Depth of trees

1 21 41 61 81 100
2 70.73 70.73 70.73 70.73 70.73 70.73
22 70.73 70.73 70.73 70.73 70.73 70.73
42 70.73 70.73 70.73 70.73 70.73 70.73
62 70.73 70.73 70.73 70.73 70.73 70.73
82 70.73 70.73 70.73 70.73 70.73 70.73
102 70.73 70.73 70.73 70.73 70.73 70.73

Table 13: Accuracy (%) results obtained by Information Gain on
FS3.

No. of trees
Depth of trees

1 21 41 61 81 100
2 73.17 73.17 73.17 73.17 73.17 73.17
22 73.17 73.17 73.17 73.17 73.17 73.17
42 73.17 73.17 73.17 73.17 73.17 73.17
62 73.17 73.17 73.17 73.17 73.17 73.17
82 73.17 73.17 73.17 73.17 73.17 73.17
102 73.17 73.17 73.17 73.17 73.17 73.17

Table 14: Accuracy (%) results obtained by Information Gain on
FS4.

No. of trees
Depth of trees

1 21 41 61 81 100
2 46.34 46.34 46.34 46.34 46.34 46.34
22 46.34 46.34 46.34 46.34 46.34 46.34
42 46.34 46.34 46.34 46.34 46.34 46.34
62 46.34 46.34 46.34 46.34 46.34 46.34
82 46.34 46.34 46.34 46.34 46.34 46.34
102 46.34 46.34 46.34 46.34 46.34 46.34

Table 15: Accuracy (%) results obtained by Gini Index on FS1.

No. of trees
Depth of trees

1 21 41 61 81 100
2 68.29 68.29 68.29 68.29 68.29 68.29
22 68.29 68.29 68.29 68.29 68.29 68.29
42 68.29 68.29 68.29 68.29 68.29 68.29
62 68.29 68.29 68.29 68.29 68.29 68.29
82 68.29 68.29 68.29 68.29 68.29 68.29
102 68.29 68.29 68.29 68.29 68.29 68.29

Table 16: Accuracy (%) results obtained by Gini Index on FS2.

No. of trees
Depth of trees

1 21 41 61 81 100
2 78.05 78.05 78.05 78.05 78.05 78.05
22 78.05 78.05 78.05 78.05 78.05 78.05
42 78.05 78.05 78.05 78.05 78.05 78.05
62 78.05 78.05 78.05 78.05 78.05 78.05
82 78.05 78.05 78.05 78.05 78.05 78.05
102 78.05 78.05 78.05 78.05 78.05 78.05

Table 17: Accuracy (%) results obtained by Gini Index on FS3.

No. of trees
Depth of trees

1 21 41 61 81 100
2 73.17 73.17 73.17 73.17 73.17 73.17
22 73.17 73.17 73.17 73.17 73.17 73.17
42 73.17 73.17 73.17 73.17 73.17 73.17
62 73.17 73.17 73.17 73.17 73.17 73.17
82 73.17 73.17 73.17 73.17 73.17 73.17
102 73.17 73.17 73.17 73.17 73.17 73.17

Table 18: Accuracy (%) results obtained by Gini Index on FS4.

No. of trees
Depth of trees

1 21 41 61 81 100
2 46.34 46.34 46.34 46.34 46.34 46.34
22 46.34 46.34 46.34 46.34 46.34 46.34
42 46.34 46.34 46.34 46.34 46.34 46.34
62 46.34 46.34 46.34 46.34 46.34 46.34
82 46.34 46.34 46.34 46.34 46.34 46.34
102 46.34 46.34 46.34 46.34 46.34 46.34

Table 19: Accuracy (%) results obtained by Gain Ratio on FS1.

No. of trees
Depth of trees

1 11 21 31 41 51
2 24.4 63.4 56.1 56.1 56.1 56.1
12 24.4 75.6 68.3 68.3 68.3 68.3
22 26.8 75.6 73.2 73.2 73.2 73.2
32 26.8 75.6 73.2 70.7 70.7 70.7
42 26.8 75.6 73.2 70.7 70.7 70.7
52 26.8 75.6 73.2 70.7 70.7 70.7
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is poor as compared to results obtained with FS2 using RF
classi�er. Apparently, the small size of the data is not large
enough for the deep learning models to learn the complex
relationships. Similarly, for proper training, RestNet could
not �nd a large feature set and its performance is lower than
expected. Deep learning models are data-intensive and do
not perform well when the data size is small [58].

4.8. Results Using k-Fold Cross-Validation. To con�rm the
performance of the used machine learning models and RF
model especially, k-fold cross-validation is performed as
well. Table 25 shows the results of 10-fold cross-validation
for all the models used in this study. Results show that RF
provides the highest accuracy of 0.78 followed by LSTM for

Table 20: Accuracy (%) results obtained by Gain Ratio on FS2.

No. of trees
Depth of trees

1 11 21 31 41 51
2 24.4 68.3 68.3 68.3 68.3 68.3
12 24.4 75.6 68.3 68.3 68.3 68.3
22 26.8 78 70.7 70.7 70.7 70.7
32 26.8 78 70.7 68.3 68.3 68.3
42 26.8 73.2 73.2 73.2 73.2 73.2
52 26.8 73.2 70.7 73.2 73.2 73.2

Table 21: Accuracy (%) results obtained by Gain Ratio on FS3.

No. of trees
Depth of trees

1 11 21 31 41 51
2 24.4 58.5 65.9 65.9 65.9 65.9
12 24.4 68.3 65.9 68.3 68.3 68.3
22 26.8 70.7 65.9 65.9 65.9 65.9
32 26.8 68.3 68.3 68.3 68.3 68.3
42 26.8 70.73 70.73 70.73 70.73 70.73
52 26.8 70.73 70.73 70.73 70.73 70.73

Table 22: Accuracy (%) results obtained by Gain Ratio on FS4.

No. of trees
Depth of trees

1 11 21 31 41 51
2 24.4 41.5 46.3 48.8 48.8 48.8
12 24.4 51.2 41.5 48.8 48.8 48.8
22 26.8 51.2 43.9 48.8 48.8 48.8
32 26.8 53.7 36.6 41.5 41.5 41.5
42 26.8 53.7 36.6 41.5 41.5 41.5
52 26.8 53.7 36.6 41.5 41.5 41.5

Table 23: Best results obtained by Gain ratio, Information gain and
Gini Index (%) using di�erent feature sets.

Feature sets Gain ratio (%) Information gain (%) Gini index
(%)

1 75.60 68.29 68.29
2 78 70.73 78.05
3 75.61 73.17 73.17
4 53.70 46.34 46.34

2

42

82

1 21 41 61 81 100 No
. o

f t
re

es

Depth of trees

A
cc

ur
ac

y 
(%

)

80

60

40

20

0

Figure 10: Impact of di�erent number of trees and depth on
accuracy of FS1 choosing Gain Ratio as attribute selection criteria.
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Figure 12: Impact of di�erent number of trees and depth on
accuracy of FS3 choosing Gain Ratio as attribute selection criteria.
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accuracy of FS2 choosing Gain Ratio as attribute selection criteria.
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Figure 13: Impact of di�erent no. of trees and depth on accuracy of
FS4 choosing Gain Ratio as attribute selection criteria.
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the rose plant classification task. RF performance is com-
pared with FS2 where its accuracy is the highest of all
models.

4.9. Results of T-Test. For corroborating the performance of
RF over other models, the statistical T-test is performed with
the following hypotheses:

(i) Null Hypothesis (H0): ,e performance of RF is not
statistically significant over other approaches.

(ii) Alternative Hypothesis (Ha): ,e performance of RF
is statistically significant over other approaches.

Accepting the H0 indicates that the performance of RF and
other models is similar with no substantial difference. On the
other hand, rejecting the H0 and accepting the Ha confirms
that the performance of other models and RF has substantial
differences and RF shows superior performance to other
models. For this study, the T-test rejects the H0 and accepts Ha
as the value of t is 4.769 with a critical value equal to 0.491.

5. Conclusion

,e current study aims to classify the rose plant leaves using
NB, GLM, DL, DT, RF, GBT, and SVM; in essence, the per-
formance of RF is extensively investigated. Several sets of
experiments have been performed with histogram features and
texture features. For analysing the efficacy of various combi-
nations of these features, four feature sets are made concerning
their correlation to the target class. Results indicate that SVM
obtains the highest accuracy of 72% on FS1. ,e FS1 contains
both texture and histogram features having a high correlation
with the target class both features contribute to classification.
Other classifiers show better performance when trained on FS2
and FS3. But the performance of all classifiers is poor on FS4
because it contains only texture features which indicate that
using texture features alone is not useful for predicting true
labels. A special emphasis is placed on ensemble models and

various combinations of selected classifiers are used in this
regard. ,e accuracy achieved by ensemble learning is higher
than individual algorithms except for SVM. Owing to its better
performance, RF is investigated in detail by varying the number
of trees, its depth, and attribute selection criterion including
Information Gain, Gini Index, and Gain ratio. ,is parameter
tuning contributes to achieving better accuracy than using a
model as the black box.,e optimization of RF proves to show
better results than the auto model. RF achieves the highest
accuracy scores of 73.17% with Information Gain, 78.05% with
Gini Index, and 78.0% with the Gain ratio for FS3, FS2, and
FS2, respectively. ,e bias of Information Gain towards
choosing the attributes with more information values leads to
poor performance than that of Gain ratio and Gini Index. In
addition, CNN, LSTM, and RestNet models are used for ex-
periments, however, their performance is not better than the
fine-tuned RF. Owing to the small size of the dataset, the
performance of the deep learning models is not investigated
extensively. We intend to enlarge the dataset size by collecting
further images and utilizing the resampling techniques as well.
We also plan to compare the performance analysis of other
classification algorithms such as neural networks, SVM, and
DT for rose classification problems. Also, it would be inter-
esting to select features methodically.
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