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-e traditional human action recognition (HAR) method is based on RGB video. Recently, with the introduction of Microsoft
Kinect and other consumer class depth cameras, HAR based on RGB-D (RGB-Depth) has drawn increasing attention from
scholars and industry. Compared with the traditional method, the HAR based on RGB-D has high accuracy and strong robustness.
In this paper, using a selective ensemble support vector machine to fuse multimodal features for human action recognition is
proposed. -e algorithm combines the improved HOG feature-based RGB modal data, the depth motion map-based local binary
pattern features (DMM-LBP), and the hybrid joint features (HJF)-based joints modal data. Concomitantly, a frame-based selective
ensemble support vector machine classification model (SESVM) is proposed, which effectively integrates the selective ensemble
strategy with the selection of SVM base classifiers, thus increasing the differences between the base classifiers. -e experimental
results have demonstrated that the proposed method is simple, fast, and efficient on public datasets in comparison with other
action recognition algorithms.

1. Introduction

Video has become the primary carrier of information
owing to the rapid popularization and development of
video acquisition equipment and broadband networks.
With the massive emergence of video data, automating
the procurement and analysis of the content has emerged
as a problem that needs an urgent solution. -e main
purpose of HAR based on vision is to process and analyze
the original image or image sequence data collected by
the sensor (camera) via computer, to learn and under-
stand the human action and behavior. HAR based on
computer vision technology has been extensively used in
several fields of human life, such as smart video sur-
veillance [1, 2], human-machine interaction [3], robotics
[3], video analytics [4], and human activity recognition
[5–9].

Most of the existing human action recognition algo-
rithms are based on the traditional RGB video data. How-
ever, human action recognition based on RGB information
encounters multiple challenges as follows: (1) Complex
background, occlusion, shadow, scale change, and different
lighting conditions will induce tremendous difficulties for
recognition, which is also the difficulty of action recognition
based on RGB. (2) -e same action will generate different
views from different perspectives. (3) -e same action
performed by different people will be significantly varied,
and two different types of action may have considerable
similarity. -ese inherent defects of RGB visual information
would limit the performance of human action recognition
based on RGB information.

Recently, RGB-D cameras, such as Kinect v1 and v2
sensor by Microsoft, have made depth images available for
human action recognition [5, 10, 11]. Each pixel in the depth
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image records the depth value of the scene, instead of light
intensity. -e introduction of depth camera expands the
ability of the computer system to perceive the 3D visual
world and makes up for the lack of dimensional information
while 3D object information is captured as 2D visual in-
formation. Compared with RGB visual information, depth
images can greatly reduce the influence of occlusion,
complex background, and other factors by providing scene
structure information. -e color and texture are invariant
under different illumination conditions. From a single
perspective, if the different behaviors have similar 2D
projections, the depth images can provide additional body
shape information to distinguish different behaviors. Fur-
thermore, Kinect also provides a powerful skeleton tracking
algorithm, which can output the position of each 3D human
joint point in real time. -e skeleton joints of human body
will not be affected by the changes of the scale and
perspective.

According to the different types of input data, HAR
technology based on RGB-D video can be roughly divided
into three categories, namely, HAR based on RGB data,
depth image data, and skeleton joints data.

1.1. Human Action Recognition Based on RGB Image Data.
-e early research on human action recognition based on
RGB image sequence has been inspired by image processing
technology, owing to the rich color and texture features of
RGB image sequences. HAR is primarily carried out by
extracting spatiotemporal interest points (STIP) in RGB
video. Kovashka and Grauman [12] have proposed a human
action recognition method based on hierarchical [13] model.
-is method combines HOG3D [14], HOG (histograms of
oriented gradients), and HOF (histograms of optical flow)
spatiotemporal domain descriptors and introduces a mul-
ticore learning model. Melfi et al. [15] have extended the
Harris corner detection operator for video behavior rec-
ognition. First, the contour of the moving object is extracted,
and then the 3D Harris points of interest are extracted from
the moving object for HAR. In [16], the points of interest of
the video frames are densely sampled in different scale
spaces of the video frames to form dense trajectories.
-ereafter, the features, namely, HOG, HOF, and MBH
(motion boundary histogram), of the trajectories are
extracted. Finally, SVM is used to classify the features.

Recently, owing to the development of machine learning
theory, we can also use deep learning to extract features from
RGB video data, besides utilizing the spatiotemporal interest
points to extract the video image features.

Gammulle et al. [17] have obtained the video frame
features through Convolutional Neural Networks (CNN)
and then used the dual stream Long Short-Term Memory
(LSTM) to train the features to realize HAR. Bilen et al. [18]
have proposed to convert a video sequence into a dynamic
image using the rank pool technology and further used CNN
model to extract the features from the dynamic image for
HAR. Arif et al. [19] have proposed the concept of motion
graph. First, the 3D CNN network is used to extract video
features, and thereafter the features of video frames are

integrated into the motion map. Subsequent to these steps,
the LSTM method is used to improve the accuracy of HAR.
Majd and Safabakhsh [20] have first obtained the CNN
features of the video frames through the CNN deep learning
network. -ereafter, the CNN features are sent to the kernel
cross correlation (KCC) filter to realize the automatic es-
timation of motion information.

Compared with the manually designed action features,
although the video features are extracted automatically
through deep learning, the accuracy of action recognition
has increased. However, due to the unclear learning
mechanism of deep learning, the stability of the extracted
features is relatively poor, and a large number of parameter
adjustment experiments need to be carried out manually.
-erefore, the method based on deep learning has some
limitations in practical application.

1.2. HAR Based on Depth Image. HAR based on depth
image data primarily uses RGB image feature extraction
method to extract the global and local features from the
spatiotemporal volume. Compared with the RGB image,
the depth image is not sensitive to illumination changes.
Furthermore, it contains rich 3D structure information.
However, the depth images also have some shortcomings.
Owing to certain specific factors, such as specific mate-
rials, reflection, and interference, Kinect cannot estimate
the depth of certain parts of the object in the scene. -is
results in the loss of part of the depth image obtained,
forming several holes. Furthermore, the depth images
obtained by Kinect lack the color features of objects, with
abundant noises. -ese factors make it difficult to obtain
robust features from depth images. Inspired by STIP
feature extraction algorithm of RGB image sequence, Xia
and Aggarwal [21] have obtained Depth Spatial Temporal
Interest Points (DSTIP) of the depth image, by the two-
dimensional Gaussian filtering and one-dimensional
Gabor filtering. Based on this point of interest, the depth
cuboid similarity features (DCSF) are extracted for HAR.
Yang and Tian [22] have proposed a feature, namely,
super normal vector, to represent the depth image se-
quence. -e feature combines the local motion infor-
mation and shape information in the depth image
sequence and achieves outstanding experimental results
on MSRDailyActivity3D and other datasets. Reza et al.
[23] have proposed a weighted depth motion map (DMM)
and then extracted the hog features from the weighted
DMM for HAR.

Since the depth image lacks the description of the image
color, texture, and other details, and the CNN neural net-
work model is primarily intended to extract the color and
texture features of the image, using CNN model to extract
the features of depth image cannot achieve satisfactory re-
sults. Furthermore, the deep learning model needs a large
amount of data for training. However, most of the depth
image datasets have a small amount of data, which cannot be
used for large-scale training using CNN and other neural
networks. Hence the research output in this field is relatively
small.
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1.3. HAR Based on Skeleton Joints Data. -e recognition of
human action based on skeleton joint features can be traced
back to the moving light display (MLD) experiment by
Johansson et al. Owing to the limitation of sensors, the early
description of the skeleton joint features results in the high
noise of joint points, which leads to a low accuracy of HAR.
Owing to the development of computer vision technology,
particularly Kinect, people can get the robust joint points in
real time. Yang and Tian [24] have proposed a bone feature
representation method, which is obtained by the position
difference of the skeleton nodes between different frames.
First, three kinds of skeleton node position differences are
extracted, which are the differences in static posture, motion,
and offset. -ereafter, the three types of skeleton difference
features are combined, and the EigenJoints features are
obtained by the PCA dimension reduction. Finally, the
action recognition is carried out by the naive Bayes classifier.
Xia et al. [25] have proposed the usage of the histograms of
3D joints feature to realize the description of a skeleton
action. -e feature is to project the data of 12 main joints of
the human body into the spherical coordinate system, then
obtain their distribution histogram in the spherical coor-
dinate system, and then use linear discriminant analysis to
reduce the dimension of the obtained features. Finally,
hidden Markov model is used to classify and express the
features.

Researchers also try to use deep learning to learn features
from human skeleton data.-emain idea of this algorithm is
to represent the human skeleton data into a suitable image
form and then extract features from the skeleton image using
CNN and other models for human action recognition.
However, the constraints of the current deep learning theory
make it very difficult to convert an appropriate skeleton
image. Zhang et al. [26] have proposed Multilayer LSTM
Networks for the skeleton feature learning and employed a
smooth fractional fusion method to fuse the bone features of
the multistream LSTM learning, which has improved the
accuracy of the human action recognition. Li et al. [27] have
proposed 3D skeleton-based action recognition using a
novel symbiotic graph neural network, which handles action
recognition and motion prediction jointly and uses graph-
based operations to capture action patterns.

Briefly, despite the HAR methods based on state-of-the-
art RGB-D having progressed tremendously, reliability of
their applications in the realistic engineering scenarios is still
modest. -is is owing to the relatively large intraclass
variations and small interclass differences of several actions,
the variations in action speed, and the extreme computa-
tional complexities. -is work fully utilizes the multimodal
information acquired through a Kinect sensor to extract the
features of human actions effectively. Moreover, an inte-
grated multilearner strategy has been adopted for the
classification to demonstrate exceptional generalizing
capabilities.

-e rest of this paper is organized as follows. Section 2
presents a novel selective ensemble-based support vector
machine (SESVM) approach to fuse the multimodal features
for HAR. Section 3 explains the extraction of multimodal
features from RGB-D images by employing different

methods. In Section 4, a selective ensemble-based SVM
classification framework is deployed for feature recognition.
-e experimental results on the G3D dataset and Cornell
Activity Dataset 60 are presented in Section 5, showing the
feasibility and performance of the proposed approach. Fi-
nally, a brief conclusion and notes on further work are given
in Section 6.

2. The Framework

-e Kinect sensors produced by Microsoft can provide both
RGB and depth information of the scene, in addition to the
skeleton joint locations of human bodies. -e depth images
captured by Kinect sensor can provide light-invariant
foreground information with depth geometry structure, and
they have the advantages of texture, color invariance, and
insensitivity to the influences from illumination, environ-
ment, and shadows. -is paper utilizes multimodal data
provided by the Kinect sensor and extracts three different
features as the descriptors of the actions. -us, an integrated
multiclassifier algorithm is adopted for the classification to
exploit the advantages of the different features.

Figure 1 shows the system configuration of the proposed
approach. It achieves efficient computation from handling
simple features while ensuring the robustness and recog-
nition capability of the features. Particularly, our framework
consists of the following steps:

(1) Acquire synchronized RGB, depth, and joint images
from the Kinect sensor

(2) Convert the input RGB image to grayscale, and then
extract the improved histogram of the oriented
gradient features

(3) Compute the depth motion map-based local binary
pattern (DMM-LBP) from the depth image, and then
extract joint-based hybrid joint features (HJFs) from
the acquired 3D skeleton image

(4) Train the selective ensemble-based support vector
machine (SESVM) using the sample sets with
combined features

(5) Implement the same extraction process to the pre-
dicting images during action recognition, enter them
into SESVM for recognition, and work out recog-
nition result

-emajor contributions of this paper are summarized as
follows:

(1) A novel selective ensemble-based support vector
machine (SESVM) method has been proposed to
describe the human action features based on mul-
timodal information. -is method is capable of
depicting human actions from the various points of
view and has been verified by experiments on public
datasets.

(2) -e improved RGB-based histogram of oriented
gradient (RGB-HOG) features is adopted in this
paper, which is invariant to geometric and optical
deformations of the images.
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(3) -e depth-based DMM-LBP features are created to
maintain the dynamic characteristics of human ac-
tions with good local invariance.

(4) -e joint-based hybrid joint feature (HJF) has been
adopted to provide the spatial structure information
about human actions.

(5) -e correlation coefficient-based classifier selection
algorithm (CCCSA) has been adopted to select
classifiers from the existing ones for constructing the
ensemble classifiers. -is is for speeding up the
prediction speed of the classifier, reducing the
storage space requirements, and further improving
the classification accuracy. By using fewer classifiers,
the prediction speed can be accelerated because the
computational overhead of prediction is reduced. In
addition, due to the small number of individual
classifiers in the selective ensemble learning system,
the storage overhead is also reduced, because only a
small number of individual models need to be saved.

3. Feature Extraction

-is section introduces the feature extraction methods for
various modalities. Particularly, Section 3.1 describes the
improved HOG features for the RGB modality, Section 3.2
introduces the DMM-LBP features for the depthmodality, and
Section 3.3 explains the HJF features for the joint modality.

3.1. RGB-HOGFeature. Dalal and Triggs have first proposed
the HOG feature to detect pedestrians in static images [28].
-ereafter, multiple researchers have presented the im-
proved HOG features [29].

HOG algorithm is a feature extraction method recently
used in the research of target recognition. However, the
HOG feature extraction algorithm can only calculate the
direction of information of a single gradient of pixels, which
is not comprehensive enough, and has certain defects in
describing the directional features of the target.

We have used the steerable filter algorithm which can
obtain multidirectional information to make up for the
deficiency of HOG algorithm. -is method expands the
single-directional information of a pixel to N multiple-di-
rectional information.

Freeman and Adelson [30] first proposed the steerable
filter, which convolutes the image by generating templates in
different directions to get the edge of the image. -e convo-
lution process increases the weight of the effective pixels and
decreases the weight of invalid pixels by a weighting operation.

-e general form of steerable filter is given as

G
α

� 􏽘
N

i�1
ki(α)Gi, (1)

where N is the number of base filters and Gi the ith fun-
damental filter. Further, ki(α) represents the coefficients of
the filter related to the direction degree α, and Gα is the filter
in α direction.

We have used the method of obtaining multidirectional
filter by the linear combination of a group of basic filters and
the derivation of two-dimensional Gaussian function. -e
corresponding expression is given as
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and the corresponding coefficient is given as

k1(a) � cos2 a,

k2(a) � −2 cos a sin a,

k3(a) � sin2 a,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where G0
1(x, y) and G2π/3

1 (x, y), respectively, represent the
second derivative of image pixels in the corresponding di-
rection, that is, the basis filter in the corresponding direction.
-e amplitude information in any direction can be calcu-
lated by the linear combination of the three expressions. -e
calculation formula after linear combination is shown as

G
α
1 � k1(a)G

0
1(x, y) + k2(a)G

π/3
1 (x, y) + k3(a)G

2π/3
1 (x, y). (5)

We have combined the steerable filter algorithm with the
traditional HOG algorithm. First, the steerable filter
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Figure 1: -e proposed system configuration.
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algorithm has been used to calculate the direction number
and amplitude information with the highest direction value,
and then the HOG algorithm is used to obtain the statistical
direction histogram features. -e algorithm flow, which
shows the specific calculation, is depicted in Figure 2.

-e implementation sequence of the HOG feature ex-
traction algorithm can be described as follows:

Step 1. Normalize the Gamma space and the color
space. To reduce the influence of illumination, the
image needs to be normalized first. -e contribution of
local surface exposure to the texture strength is rela-
tively large. -erefore, this type of compression can
effectively reduce the local variations, in the shadow
and illumination of the image. -e image is first
converted to grayscale as the color information con-
tributes little. -e Gamma compression formula is
given as

I(x, y) � I(x, y)
Gamma

, (6)

where I(x, y) is the input RGB image. Gamma usually
takes the value of 1/2.
Step 2. Let p(x, y) be the pixel of the gray image.
Construct two mutually perpendicular directional
controllable filters of p pixel (the directions of the filters
are α and β, respectively, and α + β � π/2), and record
them as F(α) and F(β), respectively. -en, the gradient
values of point p in α and β directions are given as

Gα(x, y) � F
(α) ∗ I(x, y),

Gβ(x, y) � F
(β) ∗ I(x, y).

⎧⎪⎨

⎪⎩
(7)

Step 3. Compute the gradient of the image. Compute
the gradient in the directions of the horizontal and
vertical axes that are the gradient orientation of each
pixel. -e computation of derivatives can capture the
contours, human figures, and certain texture infor-
mation from the image, besides further reducing the
influence from illumination. -e gradient of a pixel
(x, y) in the image is given as

|∇G(x, y)| �

������������������

Gα(x, y)
2

+ Gβ(x, y)
2

􏽱

,

θ(x, y) � tan− 1 Gβ(x, y)

Gα(x, y)
􏼠 􏼡,

(8)

where Gx(x, y), Gy(x, y), G(x, y), and θ(x, y) are the
horizontal gradient, the vertical gradient, the gradient
amplitude, and the gradient angle at pixel (x, y),
respectively.
Step 4. Construct a histogram of the oriented gradient
for each cell. -is provides coding for the local image
area and is capable of maintaining the invariance to
human postures and appearances in the image. We
divide the image into a number of “unit cells,” and each
cell contains 6 ∗ 6 pixels, for instance. Suppose that we
use a 9-bin histogram to collect the gradient

information of these 6 ∗ 6 pixels, i.e., to divide the
gradient orientation of the cell of 360 degrees into nine
oriented blocks. For example, if the gradient orienta-
tion of the pixel is 20–40 degrees, then the 2nd his-
togram bin count will be increased by 1. By doing so,
every pixel in the cell is projected with a weight onto the
histogram by its gradient orientation (mapped into
specific angle range). Consequently, the histogram of
the oriented gradient of the cell is obtained, which is the
9D feature vector of the cell (since there are nine bins).
Step 5. Concatenate cells into blocks and normalize the
oriented gradient histograms within each block. -e
strength of the gradient changes significantly owing to
the variations in the local illumination strength and
foreground and background contrast. Hence, the
gradient strength needs to be normalized. -e nor-
malization can further compress the illumination,
shadow, and edges. -e implementation sequence is as
follows: (1) to combine the unit cells into large and
spatially connected blocks; (2) to concatenate feather
vectors from all cells in the block to generate the HOG
feature of the block. Since there are overlapping among
the blocks, feature vector of each cell may appear in the
final feature vector multiple times. We call this nor-
malized block descriptor (vector) “the HOG
descriptor.”
Step 6. Collect the HOG features. -is last step is to
collect the HOG features from all overlapping blocks in
the testing window and combine them into the final
feature vector to be used in the classification.

xRGB−HOG
� x1, x2, . . . , xm􏼂 􏼃. (9)

3.2. DMM-LBP Feature. With the development of RGB-D
camera, several action recognition algorithms based on the
depth image have been proposed. Depth image can be used
to represent the 3D structure and shape information of
objects. -e depth image is projected onto three orthogonal
planes [31] to form a depth motion map, and then the
gradient histogram is extracted as the action feature. Spe-
cifically, using the front view, top view, and left view, the
human body is positioned in the Cartesian coordinate
system. Further, the depth data of the human body is
projected to the front view, top view, and left view, re-
spectively. Each frame action can be expressed as
V � front, top, left􏼈 􏼉, where front, top, and left represent the
human projection in the front view, top view, and left view,
respectively. For the depth data video ofN frames, the DMM
features are calculated as

DMMV � 􏽘

e

i�s

MAPi
V − MAPi−1

V

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (10)

where i is the time sequence frame. MAPi
V represents the

projection of frame i on view V, and s and e represent the
start frame and the end frame, respectively.

Several pixel values in the depth image are 0, which is not
helpful for the description of action features. Hence, the
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Table 1: SESVM.

Input:
Training set TTr � (xi, yi)􏼈 􏼉

NTr

i�1 , verification set TVal � (xi, yi)􏼈 􏼉
NVal

i�1 , base classification algorithm SVM, number of base classifiers M,
number of selected base classifiers N

Output:
Selected base classifier set SVM∗1 , SVM∗2 , . . . , SVM∗N􏼈 􏼉

Training process:
(1) Initialize the base classifier set Θ � ∅
(2) For m � 1, 2, . . . , M

(3) Based on the training set TTr � (xi, yi)􏼈 􏼉
NTr

i�1 , a new training set T
(m)
Tr is obtained by using Bootstrap random sampling method

(4) -e base classifier SVMm is trained on the training set T
(m)
Tr by using the base classification algorithm SVM and added to the set Θ

(5) End for
(6) Selecting process:
(7) Each base classifier SVMm(m � 1, 2, . . . , M) is tested on verification set TVal � (xi, yi)􏼈 􏼉

NVal
i�1 and its output Om(m � 1, 2, . . . , M) is

obtained
(8) -e selected base classifier set is obtained by using CCCSA
SVM∗1 , SVM∗2 , . . . , SVM∗N􏼈 􏼉←CCCSA(SVMm(m � 1, 2, . . . , M))

Table 2: Classifiers’ relational table of classification of the samples.

Relations SVMi correct classification (1) SVMi incorrect classification (0)

SVMj correct classification (1) N11 N10

SVMj incorrect classification (0) N01 N00

Note. NAB is the number of samples in the dataset, classified correctly (A� 1) or incorrectly (A� 0) by SVMi, and correctly (B� 1) or incorrectly (B� 0) by
SVMj.

6 Computational Intelligence and Neuroscience



Table 3: CCCSA.

Input:-e basic classifier set A � SVM1, SVM2, . . . , SVMM􏼈 􏼉, the diversity threshold λ, the verification set TVal � (xi, yi)􏼈 􏼉
NVal
i�1 , the number

of base classifiers set crad(A) and selective ensemble scale N
Process:
(1) While (crad(A)>N&&∀ρi,j(SVMi, SVMj)(i≠ j) {
(2)A(0)←A

(3)A(1)← A|SVMi ∉ A􏼈 􏼉

(4)A(2)← A|SVMj ∉ A􏽮 􏽯

(5)A(3)← A|SVMi, SVMj ∉ A􏽮 􏽯

(6) -e error rates of A(0), A(1), A(2), andA(3) on verification set TVal were calculated, with the min error rates saved
Err(0)←ERR(A(0), TVal), Err(1)←ERR(A(1), TVal),
Err(2)←ERR(A(2), TVal), Err(3)←ERR(A(3), TVal)

(7)Min − err←MIN(Err(0),Err(1),Err(2),Err(3))

(8) if (Min − err �� Err(0)) A←A(0)

(9) else if (Min − err �� Err(1)) A←A(1)

(10) else if (Min − err �� Err(2)) A←A(2)

(11) Else A←A(3)

(12) end}
(13)A∗←A;
Output: -e selected base classifier set A∗

(a) (b) (c)

Figure 4: Sample images from the G3D dataset. (a) RGB image. (b) Depth image. (c) Skeleton joint image.

(a) (b) (c)

Figure 5: Sample images from the Cornell Activity Dataset 60. (a) Depth image. (b) RGB image. (c) Skeleton joint image.
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region of interest operation should be performed for each
frame image. To further filter the pixels in DMM, the local
binary pattern (LBP) operation is performed on DMM. LBP
is an effective texture feature description operator. It was
first proposed by Ojala et al. [32]. It is used to extract texture
features. Its advantage is that it has high robustness to the
changes of illumination and rotation, and the extracted
features are the local texture features of the image.

For a given point DMMV(xc, yc) on the image
DMMV(x, y), LBP can be calculated as

DMMV − LBP xc, yc( 􏼁 � 􏽘

m

i�1
T DMMV xi, yi( 􏼁(

− DMMV xc, yc( 􏼁)2i
,

T(x) �
1, x≥ 0,

0, x≤ 0,
􏼨

(11)

where m is number of sampling points. -e coordinates of
f(xi, yi)

m
i�1 can be expressed as

xc − r sin
2πi

m
􏼒 􏼓, yc + r cos

2πi

m
􏼒 􏼓􏼒 􏼓, (12)

where r is the sampling radius of pixel f(xc, yc).
-e LBP feature extraction algorithm of depth image is

as follows:

Step 1. -e region of interest of the depth image is
extracted as the detection window.

d(x, y)←ROI(D(x, y)). (13)

Step 2. Get the projection view of the depth map in
three different directions.

MAPV V � front, top, left􏼈 􏼉←d(x, y). (14)

Step 3. -e depth motion map is calculated from the
projection view.

DMMV � 􏽘
e

i�s

MAPi
V − MAPi−1

V

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (15)
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Figure 6: -e confusion matrix based on RGB-HOG features on the G3D dataset.
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Step 4. Divide the detection window into 16∗ 16 cells.

Celli(x, y)(i � 1, 2, . . . , 16)←DMMV(x, y). (16)

Step 5. For a pixel in each Celli(x, y), the pixel value of
its adjacent eight pixels is compared with it. If the value
of the surrounding pixels is greater than the value of the
center pixel, the position of the pixel is marked as 1;
otherwise, it is 0. Accordingly, the eight points in the
3∗ 3 domain can be compared to generate 8 bit binary
number; that is, the LBP value of the center pixel of the
window can be obtained.

LBPi(x, y)←Celli(x, y)(i � 1, 2, . . . , 16). (17)

Step 6. Calculate the histogram of each cell, i.e., the
frequency of each number, and normalize the
histogram.

LBPhogi←BinCount LBPi(x, y), i � 1, 2, . . . , 16( 􏼁. (18)

Step 7. Finally, the statistical histogram of each cell is
connected into a feature vector, which is the LBP
feature vector of the whole depth image.

xDMM− LBP← LBPhog1, LBPhog2, . . . , LBPhog16􏼈 􏼉

xDMM− LBP
� x1, x2, . . . , xn􏼂 􏼃.

(19)

DMM-LBP feature extraction algorithm flow is shown in
Figure 3.

3.3. HJF Feature. RGB-D sensor can quickly obtain the
human joint position and three-dimensional skeleton
through the depth image information. -ese data contain
rich information, which brings new ideas and methods to
HAR. For example, Microsoft released Kinect v2 that pro-
vides us with the information of 20 human 3D bone points
and then extracts the features of these information points.
Further, the feature dimension will become minuscule,
which is conducive to speeding up the calculation and
improving the real time performance.

Different human actions are reflected not only in the
difference of joint position information but also in the
energy features of the joint point sequence.We have used the
joint kinetic energy features, direction change features, and
joint potential energy features as the hybrid joint features.
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Figure 7: -e confusion matrix based on DMM-LBP features on the G3D dataset.
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To calculate the kinetic energy information of the human
joint points, it is necessary to obtain the three-dimensional
coordinates of the human joint points P(x, y, z). -erefore,
according to the coordinate information changes of the two
adjacent frames, the kinetic energy of the human joint points
in each frame is calculated as

KEFi,t �
1
Δs2

k Pi,t xi,t, yi,t, zi,t􏼐 􏼑 − Pi,t−Δt xi,t−Δt, yi,t−Δt, zi,t−Δt􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
1
Δs2

k xi,t − xi,t−Δt􏼐 􏼑
2

+ yi,t − yi,t−Δt􏼐 􏼑
2

+ zi,t − zi,t−Δt􏼐 􏼑
2

􏼚 􏼛,

(20)

where KEFi,t is the kinetic energy of the ith joint in Ft frame
and k is the kinetic energy parameter. In the experiment, k

can be taken as 1. Δt is the time interval between the two
adjacent frames.

Human action is related to the information of the
current and past positions. In different action states, the
speed of movement of the joints randomly varies with time,
and the direction of change may also vary. According to the
coordinates of human 3D joint points, the direction change

vector of each joint point is calculated as the human motion
feature, given as

DCi,t � xi,t − xi,t−1, yi,t − yi,t−1, zi,t − zi,t−1􏼐 􏼑, (21)

where DCi,t represents the direction change vector of the ith
joint point in the Ft frame relative to the ith joint point in the
previous Ft−1 frame. Further, xi,t, yi,t, and zi,t represent the
spatial three-dimensional coordinates of the joint point in
the Ft frame.

We have combined the features of the joint kinetic
energy and joint direction change into a new feature, which
is defined as the hybrid joint feature, given below

xHJF← KEF1,KEF2, . . . ,KEF20,DC1,DC2, . . . ,DC20􏼈 􏼉,

xHJF
� x1, x2, . . . , xq􏽨 􏽩.

(22)

3.4. Feature Fusion. Feature fusion is an effective method to
clearly distinguish human action features. Currently, the
major feature fusion methods include the pixel-level, fea-
ture-level, and decision-level fusions. We employ the
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Figure 8: -e confusion matrix based on HJF on the G3D dataset.
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feature-level fusion in this study, which is able to retain and
fuse the effective recognizable information of the features,
besides effectively eliminating the redundant feature in-
formation and features with poor distinctiveness. Particu-
larly, RGB-HOG, DMM-LBP, and HJF features are fused
into the descriptive features of action, i.e.,

RDH � (RGB − HOG,DMM − LBP,HJF). (23)

Compared with the single action features, these com-
posite features show excellent robustness as they are a
collection of the advantages of every single feature and more
suitable for describing the human action features.

4. Recognition Method

Recently, the research on the theory and algorithm of the
ensemble learning has been a hotspot in the field of machine
learning. -e construction of an ensemble learning machine
is divided into two steps, namely, the generation step and the
merging step. -e key is to effectively generate a base
learning machine with strong generalization ability and
great differences. Alternatively, the accuracy and diversity of

the base learning machines are two important factors. In
general, the predictive effect of the ensemble learning ma-
chine is significantly better than that of the single base
learning machine. However, the predictive speed of the
ensemble learning machine is significantly slower than that
of the single base learning machine. Moreover, as the
number of the base learning machines increases, the needed
storage space increases sharply, which is a serious problem
for online learning. Zhou et al. [33] have proposed the
“selective ensemble” to eliminate the basic learners with
poor performance and, hence, to select certain ones to build
the set for better prediction effect.

We propose a selective ensemble-based SVM classifi-
cation framework for recognition. Assuming that
TTr � (xi, yi)􏼈 􏼉

NTr

i�1 is a given training set for each training
sample (xi, yi), its input variable is action feature vector
xi � (xi1, xi2, . . . , xiM) ∈ RM, output variable is action cat-
egory yi ∈ Ω � ω1,ω2, . . . ,ωc􏼈 􏼉, and c is the number of
action classes. At the same time, let TVal � (xi, yi)􏼈 􏼉

NVal
i�1

denote verification set with the capacity of NVal. Table 1
shows the selective ensemble-based SVM classification al-
gorithm (SESVM).
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Figure 9: -e confusion matrix based on this paper’s method on the G3D dataset.
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Selective ensemble learning assumes that the multiple
base learning machines have been generated, and only some
of them are selected to construct the final ensemble based on
a certain selection strategy. In the selective ensemble
learning, diversity among the base classifiers plays an im-
portant role in explaining the working mechanism of
multiclassifier systems and constructing effective ensemble
systems. Current diversity measures can be divided into two
kinds, namely, (i) the paired diversity measures for calcu-
lating the diversity between two basic classifiers and (ii) the

unpaired diversity measures targeted at all basic classifiers.
Paired diversity measures include Q statistics, correlation
coefficient, disagreement measure, and double error mea-
sure. Disagreement measure method is used in this study as
it features simple calculation, wide application, and favor-
able results in most cases. Suppose that SVMi and SVMj are
two different classifiers whose relationship is given in
Table 2.

-e measurement of correlation coefficient ρi,j can be
defined as

ρi,j SVMi, SVMj􏼐 􏼑 �
N

11
N

00
− N

10
N

01
�����������������������������������������
N

11
+ N

10
􏼐 􏼑 N

01
+ N

00
􏼐 􏼑 N

11
+ N

01
􏼐 􏼑 N

10
+ N

00
􏼐 􏼑

􏽱 . (24)

Table 3 shows the correlation coefficient-based classifier
selection algorithm (CCCSA). Accordingly, when there are
two or more values that are equal and minimal in
Err(1),Err(2),Err(3),Err(4)􏽮 􏽯, there should be a priority

ranking in A(0), A(1), A(2), A(3)􏼈 􏼉, which is A(3) >A(2) >
A(1) >A(0), e.g., A←A(3) when Err(3) and Err(2) are equal.
After obtaining the filtered base classifier set, the key
problem is the output of the combined decision-making. In
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Figure 10: -e confusion matrix based on RGB-HOG features on the CAD60.
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terms of the fusion decision output of the multiple classifier
systems, there are two methods [34], namely, class label-
based decision output method and support function fusion-
based decision output method.

We have adopted the majority voting based on the
confidence owing to the simplicity and effectiveness of the
class label fusion. Each classifier has been considered as
totally equal in the simple voting method, which however
may differ in practice. -us, the classifiers with poorer
performance have been given smaller weights while those
with better performance have been given larger weights in
majority voting based on confidence. Base classifiers set A �

SVM∗1 , SVM∗2 , . . . , SVM∗N􏼈 􏼉 have been obtained after being
screened by CCCSA. -en, the voting weight of each basic
classifier has been determined based on its precision. -e
voting weight of a basic classifier SVM∗1 depends on its error
rateεi, which is defined as

εi �
1
N

􏽘

N

i�1
I SVM∗i xi( 􏼁≠yi( 􏼁. (25)

Note that if the predicate p: SVM∗i (xi)≠yi is true,
I(p) � 1; otherwise, it is 0. -e weight of the basic classifier
SVM∗i can be defined as

wi �
1
2
ln

1 − εi

εi

􏼠 􏼡. (26)

If εi approaches 0, then wi is a large value. If εi ap-
proaches 1, then wi is a large negative value. -e classifi-
cation result of the set of N classifiers SVM∗(x) is given as

Result←argmax
y

1
N

􏽘

N

i�1
wi ∗ SVMi(x). (27)

5. Experimental Results

In this section, the experiments are conducted using the
G3D dataset and Cornell Activity Dataset 60. Both the re-
sults and analyses have been presented to show the feasibility
and performance of the proposed approach.
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Figure 11: -e confusion matrix based on DMM-LBP features on the CAD60.
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5.1. Datasets. G3D dataset [35] contains 20 categories of
human actions, each of which has been performed by 10
persons. -e 20 category actions are punch right, punch left,
kick right, kick left, defend, golf swing, tennis swing fore-
hand, tennis swing backhand, tennis serve, throw bowling
ball, aim and fire gun, walk, run, jump, climb, crouch, steer a
car, wave, flap, and clap. Cornell Activity Dataset 60
(CAD60) [36] contains 12 actions, which are performed by 4
persons in 5 different environments. -ese actions are
rinsing mouth, brushing teeth, wearing contact lens, talking
on phone, drinking water, opening container, chopping,
stirring, talking on couch, relaxing on couch, writing on
whiteboard, and working on computer. -e action in G3D
dataset and CAD60 contains image information in three
different models, namely, RGB image, depth image, and
skeleton joint image, as illustrated in Figures 4 and 5.

5.2. Experiments and Results. In this section, we validate the
feasibility and efficiency of the proposed method in two
experiments. Cross-validation has been adopted in the ex-
periments to train the classification model and to test its

performance. First, we test the recognition rate on the G3D
dataset and CAD60, based on the single feature and the
algorithm in this paper. In the second experiment, we
compare our method to alternative algorithms. -e result of
the first experiment is presented using the confusion matrix.
-e element (i, j) is the percentage of actions of class i that
are classified as actions of class j.-erefore, the classification
result is better for larger numbers of diagonal elements.

In Figures 6–8, the recognition rates using the single
feature on the G3D dataset have been illustrated with a
confusion matrix. Figure 9 is the recognition rate of the
proposed method using multimodal fusion information.
From the experimental results shown in Figures 6–9, we can
see that the recognition accuracy using combined features is
higher than that using single features. -is shows that the
representation of human action feature directly affects the
recognition effect of human action recognition methods.
Single feature is often affected by human appearance, en-
vironment, camera setting, and other factors, and the rec-
ognition effect is limited. From Figure 9, we can see that the
recognition rate of four actions (defend, tennis serve, throw
bowing ball, and clap) is 100%, and the recognition rate of
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Figure 12: -e confusion matrix based on HJF on the CAD60.
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three actions (walk, run, and jump) is low and easy to
confuse. -rough the analysis, it is found that for actions
such as walk, run, and jump, the action feature that can really
distinguish these actions is the motion frequency, which
needs to use the correlation between the information of
multiple frames and the characteristics of adjacent frames
when training the action model.

In Figures 10–12, the recognition rate using the single
modal feature on the CAD60 has been illustrated with the
confusionmatrix. Figure 13 shows the recognition rate of the
proposed method using multimodal features on the CAD60.
-rough comparison, it is obvious that the proposedmethod
achieves a good recognition rate of 91.7% on CAD60.

Table 4 shows the recognition rates using the single
modal feature andmultimodal features in terms of precision.
It can be observed that the recognition rates of the proposed
method using multimodal features are higher than the
recognition rates of those methods using the single modal
feature.

In the second experiment, we have compared the pro-
posed method to alternative ones. Table 5 shows the com-
parison between our algorithm, boosting, bagging, support
vector machine (SVM), and artificial neural networks
(ANNs). Accordingly, the integrated multilearner recogni-
tion algorithm based on multimodal features has achieved
the highest recognition rate of 92%.
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Figure 13: -e confusion matrix based on the method of this paper on the CAD60.

Table 4: Recognition rate using the single modal feature and multimodal features.

Dataset Descriptor Precision (%)

G3D

RGB-HOG 83.7
DMM-LBP 83.2

HJF 83.7
Mixed features 91.7

CAD60

RGB-HOG 85.3
DMM-LBP 86.0

HJF 88.6
Mixed features 91.8

Computational Intelligence and Neuroscience 15



Table 6 compares the average class accuracy of our
method with results reported by other researchers. Com-
pared with the existing approaches, ourmethod outperforms
the state-of-the-art approaches. Note that a precise com-
parison between the approaches is difficult, since experi-
mental set-ups, e.g., different strategy in training, slightly
differ with each approach.

6. Conclusion

-is paper presents a novel approach to HAR, which is a
challenging research topic. A Kinect sensor has been
deployed to acquire RGB-D image data, and the multimodal
features (RGB-HOG features, DMM-LBP features, and HJF
features) were extracted. -e selective ensemble-based
support vector machine (SESVM) has been adopted to fully
utilize the biasing effects from different learners. -e ex-
periments have been conducted on standard public datasets
and achieved good recognition rates. However, a large
number of tagged video training samples is required for the
classifier to achieve a good generalizing capability. -is
demands abundant manual tagging work and thus increases
the practical difficulties. -erefore, our future work will
focus on the utilization of the abundant untagged video
samples in hand, to enhance the system performance.
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