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It is proposed to improve the study of particle optimization and its application in order to solve the problem of ine�ciency and
lack of local optimization skills in the use of particle herd optimization. Firstly, the basic principle, mathematical description,
algorithm parameters, and �ow of the original (Particle Swarm Optimization, PSO) algorithm are introduced, and then the
standard PSO algorithm is introduced; thirdly, over the last 10 years, four types of improvements have been proposed through the
study of improved particle algorithms. �e improved algorithm is applied to the extreme value optimization problem of
multivariable function. �e simulation results show that the basic (Cloud Particle Swarm Optimization, CPSO) algorithm within
500 generations has not reached convergence for 8 times, 6 times, 4 times, and 5 times, respectively. In the case of convergence, the
average number of steps is much higher than ICPSO, and the improved algorithm converges completely. In terms of time
performance, the convergence time of ICPSO is much better than that of CPSO algorithm. �erefore, the improved particle
optimization algorithm ensures the e�ectiveness of the improvement measures, such as small optimization algebra, fast merging
speed, high e�ciency, and good population diversity.

1. Introduction

An optimization problem involves �nding a set of parameter
values under certain constraints so that some measure of
optimization is met, even if some performance indexes of the
system reach the minimum or maximum. It is an ancient
subject based on mathematics. It widely exists in agriculture,
chemical industry, national defense, �nance, transportation,
electric power, communication, and many other �elds [1].
�e application of optimization technology in the above
�elds has brought great economic and social bene�ts. Long-
term practice shows that under the same conditions, the
treatment of optimization technology has signi�cant e�ects
on the reduction of system energy consumption, the im-
provement of e�ciency, and the rational utilization of re-
sources, and this advantage is more obvious with the
increase of the scale of treatment objects. �e emergence of
bionic algorithm provides a powerful tool for a large number

of problems that cannot be well optimized by traditional
optimization algorithms. Bionic algorithm is an algorithm
model based on human and biological behavior or material
movement form [2]. Since this kind of algorithm was put
forward, because of its universality in solving the optimi-
zation problem, it does not need some information of the
objective function or even the explicit expression of the
optimized object. It only needs to know the input and output
of the optimized problem so as to avoid the computational
complexity and di�cult operability of the algorithm based
on the properties of the optimized function. Currently,
bionic algorithms include genetic algorithms, arti�cial im-
munity algorithms, ant colony optimization algorithms,
particle herd optimization algorithms, community location
algorithms, and more [3, 4].

Particle swarm optimization (PSO) is a new type of bionic
optimization algorithm that is similar to the genetic algorithm
and is a repetitive optimization algorithm (see Figure 1). It
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initiates a set of random solutions and repeatedly searches for
the optimal solution. However, this is different from the
evolutionary idea in the genetic algorithm that “the best
survives, the best survives.” Compared to other bionic al-
gorithms, such as genetic algorithms, particle herd algorithms
are simpler to understand, have fewer parameters that can be
adjusted, and are easier to implement. Convergence analysis
of particle herd optimization algorithms is the basis of PSO
algorithms. Currently, most improved particle herd optimi-
zation algorithms lack convergence models and convergence
analysis. Second, the particle optimization algorithm is easy to
get into the local optimization problem; that is, there is a
problem of incomplete integration [5]. Particle optimization
when solving the problem of optimizing high-dimensional or
ultra-high-dimensional complex functions, particle swarm
optimization often has the problem of premature conver-
gence; that is, limited by the particle update mechanism, the
particles have gathered to a point and stagnated when the
population has not found the optimal solution.(erefore, it is
urgent to find an effective mechanism to make the algorithm
escape from local minima and overcome the problem of
premature convergence. (ird, it is necessary to expand the
theory of discrete particle optimization and its application, as
the results of discrete particle optimization studies lag far
behind continuous particle optimization. Fourth, the ex-
pansion of research on the application of particle herd al-
gorithms, how to use particle herd algorithms, and the
integration of other algorithms to solve practical problems are
the research topics of domestic and foreign scientists [6].

2. Literature Review

Numerous scientists are devoted to the study of optimization
problems, and as a result, optimization theories and algo-
rithms are developing rapidly. Currently, traditional opti-
mization methods include Newton’s method, simplex
method, and conjugate gradient method, trust region
method, pattern search method, Rosenbrock method, and
Powell method. When facing some large-scale problems,
these methods need to traverse the whole search space and
produce a combination explosion of search, which makes
them “helpless” in the face of these problems; that is, the
calculation speed, convergence, and initial sensitivity are far
from meeting the requirements. (erefore, efficient opti-
mization algorithm has become one of the research objec-
tives of scientists [7]. Sun et al.’s model has been proposed to
convert uncertainty between the definition of qualitative
knowledge, the concept of quality, and its numerical rep-
resentation, and it has been used in many fields, such as
intelligent management and fuzzy evaluation. Because the
cloud model has the characteristics of uncertainty, uncer-
tainty, stability, and change in the expression of knowledge,
it reflects the basic principles of species evolution in nature.
(erefore, the field of evolutionary computing has also
begun to focus on cloud design [8]. Song’s algorithm for
high-dimensional functions and nonlinear distribution
particle optimization has been proposed to overcome the
poor performance of particle optimization. (e algorithm
performs scattering operations on particles in a nonlinear

increment so that a large number of unnecessary scattering
operations can be avoided at the beginning of the algorithm
iteration, and the probability of scattering operations at the
end is high iteration, thus ensuring the efficiency of the
algorithm’s operation. (is can effectively improve the al-
gorithm’s global search capability [9]. Zeng et al. proposed a
cloud genetic algorithm by using cloud generator to replace
the traditional crossover and mutation operators in genetic
algorithm, which has achieved good results in function
optimization [10]. Kumari et al. combining genetic algo-
rithms with cloud models offers a cloud-based evolutionary
algorithm that effectively solves the problem of genetic al-
gorithms and easily facilitates local optimization and early
convergence [11]. Omidinasab and Goodarzimehr proposed
an adaptive cloud particle swarm optimization algorithm
using particle fitness and different inertia weight evolution
strategies, which effectively solved the problems of local
optimization and too fast convergence speed of the algo-
rithm [12]. Zhu et al. suggest that the current condition and
space of a particle in an entire population should be ex-
plored, evaluated by the fitness value of the particle, and its
speed adjusted by the fitness value so that the particle itself
can be active locally and globally search [13].

Based on this study, this paper proposes to improve the
study of particle herd algorithms and their applications. By
means of solution space transformation, the local optimi-
zation and global optimization are combined, a simple cloud
operator is used to study the evolution of particles and to
perform mutations to accelerate the integration speed of the
algorithm. From the simulation results, it can be seen that the
improvement measures improve the accuracy of the pop-
ulation diversity, search capabilities, and algorithm integrity.

3. Research Methods

3.1. Particle Herd Algorithm. Particle herd optimization
(PSO) is a new type of bionic optimization algorithm based
on modeling the behavior of birds of prey according to
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Figure 1: An improved particle swarm optimization algorithm.
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certain assumptions. (e discovery of the algorithm is based
on the modeling of simplified social models. It originated
from complex adaptive system. CAS particle swarm opti-
mization algorithm is developed based on the following four
characteristics of CAS: firstly, the subject is active and active.
Secondly, the subject interacts with the environment and
other subjects, which is the main driving force for the de-
velopment and change of the system. Moreover, the influ-
ence of environment is macro, the influence between
subjects is micro, and macro and micro should be organi-
cally combined. Finally, the whole system may also be af-
fected by some random factors [14].

3.1.1. Standard Particle Swarm Optimization Algorithm.
In order to better explore the solution space, Shi introduced
the concept of inertia weight based on the original particle
herd algorithm and gradually developed the standard par-
ticle herd algorithm currently in use. (e speed-position
update mode is as follows:
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(e standard particle herd algorithm described in this
section is a linearly tuned particle herd algorithm. Its for-
mula is

ω � ωmax − ωmin( 
Gen − iter

Gen
  + ωmin, (3)

where ωmax indicates the value of the maximum mass of
inertia, ωmin indicates the minimum value of the mass of
inertia, Gen represents the maximum number of iterations,
and iter represents the current number of iterations. A
particle herd algorithm involves inertial motion of a particle
along its own velocity and thinking about the behavior of the
particle itself. At the same time, it also participates in group
information sharing and mutual cooperation so as to find
the best position in the particle swarm. (e interaction and
restriction of these three parts determine the optimization
performance of the algorithm [15, 16]. For its movement
process, see Figure 2.

3.1.2. Discrete Particle Swarm Optimization. To solve the
problem of optimizing a separate combinator with a PSO
algorithm, two completely different technical routes were

developed: one based on the classical continuous particle
herd algorithm, and for a specific problem, a discrete policy
space for continuous particle motion, space, and appropriate
adjustments is made. (e PSO algorithm to be solved still
retains the speed-position update algorithm of the classical
particle herd algorithm in the calculation. His representa-
tive, Eberhart, proposed a discrete binary version of the PSO
based on the first particle herd algorithm. (e model they
proposed is to limit the historical and global optimization of
each dimension of the particle and the particle itself to 1 or 0,
but the speed is not limited. When updating the position
with speed, set an off value. When the speed is higher than
the off value, the position of particles is taken as 1; otherwise,
it is taken as 0. (e speed and position update equations are
expressed as follows:
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where S(vid) is the sigmoid function and r and is the
random number between [0, 1]. (e velocity component vid

determines the probability that the position component xid

takes 1 or 0. (e greater the vid, the greater the probability
that xid takes 1.

Another approach is to solve the discrete optimization
problem based on the basic information update mechanism
of the PSO algorithm, as well as to redefine the basic idea of
the classical particle optimization algorithm, the unique
representation of the particle herd, and the operation al-
gorithm within the algorithm, for example, the discrete
binary PSO algorithm proposed by Farzane in Clerc’s
Traveler Trading Policy (TSP) and the 0–1 planning policy.
(e difference between the two methods lies in the fol-
lowing: the former maps the actual discrete problem to the
particle continuous motion space and then calculates and
solves it in the continuous space. (e latter is to map PSO
algorithm to discrete space and calculate and solve it in
discrete space [17, 18].

3.2. Improved Particle Swarm Optimization (ICPSO)

3.2.1. Cloud Design. (e cloud model is a mathematical
model that transforms deterministic knowledge into
qualitative and quantitative forms and mainly reflects the
ambiguity and randomness of knowledge about things
and people in the objective world and provides a com-
bination of qualitative and quantitative processing of
things.

xi

Pi
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Xk+1

Figure 2: (e schematic diagram of the update process.
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Definition 1 (clouds and cloud drops). Let U be a numerical
world represented by numerical values, and C be a quali-
tative concept over U. If the numerical value of x ∈U is a
random embodiment of the concept of quality C, then C µ
(x) ∈ [0, 1] of the degree of certainty is a random number that
tends to be constant: μ: ∪ ⟶ [0, 1], x ∈∪ , x⟶ μ(x).
(e distribution of x in the U universe is then called a cloud,
which is denoted by a C (X) cloud, and each x is called a
cloud drop. (e cloud model and its numerical properties
are shown in Figure 3, and Ex� 20, En� 3, He� 0.1.

Definition 2. One-dimensional simple cloud operator
ArForward (C (Ex, En, He)) is a mapping of π that converts
the general properties of quality concepts into digital rep-
resentations. C⟶Π. (e following conditions are met:

Θ� ti|Norm(En,He), i � 1, · · · ,N .

X � xi|xi, ti ∈Θ, i � 1, · · · ,N .

 � xi,yi( |xi ∈X, ti ∈Θ, yi � exp − xi − Ex( 
2/ 2t

2
i   .

(8)

In, Norm(μ, δ) is a normal random variable with ex-
pected value µ and variance δ, and N is the number of cloud
droplets. Using a simple cloud operator, it is possible to
convert a concept into a set of cloud droplets numerically
represented by C (Ex, En, He) realizing the transformation
from conceptual space to numerical space. (e one-di-
mensional simple cloud operator can be extended to the n-
dimensional simple cloud operator.

3.2.2. Basic Particle Swarm Optimization (CPSO). Let the
size of the particle swarm be N, the fitness value of the
particle Xi in the tth iteration is fi, and the average fitness
value of the particle is equations (8)∼(10):
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Equations (9) and (10) are speed update formula and
position update formula, respectively. (e fitness value
better than favg is averaged to get favg′ , the fitness value less
than favg is averaged to get favg″ , and the fitness value of the
optimal particle is fmin. If fi is better than favg′ , the fitness
value of particles is small and close to the optimal solution.
Small inertia weight is adopted, and the evolution strategy
adopts “social model” to speed up the speed of global
convergence. If fi is inferior to favg″ , the fitness value of
particles is large and far from the optimal solution. Large
inertia weight is adopted, and the evolution strategy adopts
“cognitive model” so that these particles with poor per-
formance can accelerate the convergence speed. If fi is
better than favg″ and inferior to favg′ , the fitness value of

particles is moderate, the inertia weight adopts cloud
adaptive inertia weight, and the evolution strategy adopts
“complete model” [19].

Definition 3 (evolutionary model). (e process that each
particle generates a new generation of particles through the
normal cloud generator according to its individual extreme
value is called evolutionary model.

Definition 4 (mutation). Given the thresholds N and K in
advance, when the global extreme value has not evolved for
N consecutive generations or the amplitude of the evolution
process is less than k, it is considered that the particles fall
into the local optimum, and all particles are mutated
through the normal cloud generator according to the global
extreme value.

3.2.3. ICPSO Algorithm. Aiming at the problems of the
above basic CPSO, this paper puts forward the following two
improvement methods.

(1) With the help of group substitution and spatial
transformation, the global search and local search are
combined.
Most of the running time of the basic CPSO algo-
rithm is consumed in the updating of the population.
In addition, the limitation of slow evolution often
appears in the later stage of evolution. For this, group
substitution and space transformation are intro-
duced.(e particle swarm optimization algorithm of
group substitution mainly searches the solution
space through several particle swarm optimization
using different search methods. One particle swarm
is the main search group and the other is the aux-
iliary search group. Under some conditions in the
search process, some auxiliary search group particles
and main search group particles are replaced to
maintain the diversity of main search group particles
so that the main search group can avoid stagnation
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Figure 3: Cloud model and its digital features.
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or premature due to lack of diversity so as to ensure
that the main search group can search the global
optimal value point. In order to calculate the ad-
vantages and disadvantages of the current position of
cloud particles, it is necessary to transform the so-
lution space and map the two positions occupied by
each particle from the unit space I � [−1, 1]n to the
solution space of the optimization problem. Note
that the ith cloud operator on particle Pj is [αj

i β
j
i ]

T;
then, the corresponding solution space variables are
as follows:

X
j

k �
1
2

bi 1 + αj
i  + ai 1 − αj

i  , (12)

X
j

iδ �
1
2

bi 1 + βj
i  + ai 1 − βj

i  . (13)

(en, if the optimal value obtained is greater than
the modern optimal solution, the spatial transfor-
mation of the solution is optimized. After each it-
eration, the improved algorithm performs local
search near the contemporary optimal solution and
improves the ability to search algorithms, and the
basic CPSO algorithm improves errors that do not
change over several generations [20].

(2) According to a simple cloud operator, particle
mutations are used to improve the algorithmic
search method. Nonmodern optimal solutions focus
on phenomena that are common in the evolutionary
process of the CPSO basic algorithm, and the greater
the evolution, the greater the deviation from the
optimal solution, and the following improvement
measures are taken: calculate the initial value of the
current position and velocity of each particle, and
then calculate whether the fitness of each particle has
reached the mutation threshold N, and if so, perform
a mutation operation on each particle according to
Definition 4; otherwise, the particle renewal is per-
formed according to equations (9) and (10).

3.2.4. Algorithm Flow of ICPSO. (e ICPSO algorithm flow
using the above two improvement measures is as follows:

(1) Initialize the population. (at is, initialize the po-
sition of each particle, individual extreme value
PBEST, local extreme value GBEST, and so on.

(2) Calculate the fitness value for each particle and
update Pbest and Gbest.

(3) Judge whether themutation threshold n is reached. If
it is reached, the mutation operation is carried out
according to Definition 4. Let the local best (mini-
mum) of all particles be Gbest and make ex�Gbest,
en� 2gbest, he� en/10 in normal cloud computing a
(C (ex, en, he)). According to Definition 2, the
normal cloud generator completes the mutation
operation of all particles and fails to reach the
mutation threshold (4).

(4) Evolve each particle. Let the individual minimum of
particle I be Pbest, let ex�Pbest, en� 2pbest, he� en/
10 in normal cloud computing a (C (ex, en, he)),
generate a new particle J according to the normal
cloud generator in Definition 2, and let I� J to
complete the evolution operation.

(5) If the iteration limit is reached, the Gbest output will
end; otherwise, go to (2).

3.3. Analysis of Influence of Parameter Selection on Algorithm
Performance. In the mutation operation, select the global
extreme value Gbest as ex. Because at this time, the algo-
rithmmay have fallen into local optimization, and according
to the sociological principle, there are often better indi-
viduals around the current excellent individuals, so there is
more chance to find the optimal solution around them. en
represents the horizontal width of the cloud. (e larger the
en, the larger the horizontal width and the larger the particle
search range. (e scope of the search should be expanded in
the first stage of evolution, the search accuracy should be
improved in the next stage of evolution, and en should be
reduced dynamically.(e global extreme (small) value Gbest
of particle evolution gradually approaches the actual ex-
treme value from large to small. In this paper, en� 2gbest is
taken to realize the dynamic mediation of en to a certain
extent [21].

It is proportional to the degree of distribution of the
cloud droplets. (e larger it is, the greater the degree of
distribution, and the more the cloud droplets spread. If it is
too large, the algorithm loses its stability, and if it is too large,
the algorithm loses its stability. (e smallness and ran-
domness will be lost to a certain extent. he� en/10 is taken to
mediate the stability of the algorithm.

If the parameter K is too large, the mutation will be too
high, which will affect the efficiency of the algorithm, and if it
is too low, reduce the accuracy of the solution. Also, because
the particle herd algorithm has a rapid fusion rate in the first
stage of evolution, the fusion rate in the next stage is
gradually slowed down, it is difficult to set a completely

Table 1: Solutions of sphere function under different N values.

Dimension N� 2 N� 5 N� 10 N� 20
5 8.674e− 154 1.540e− 133 4.165e− 118 4.555e− 110
10 2.868e− 118 1.126e− 114 4.01e− 106 5.200e− 100
30 1.081e− 056 3.777e− 060 1.655e− 057 3.058e− 050
50 4.100e− 038 3.027e− 040 3.010e− 037 1.080e− 030
100 5.016e− 018 6.865e− 020 4.270e− 020 6.071e− 015
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reasonable fixed value for parameter k. In this paper, let
k�Gbest/2 so that the value of K decreases dynamically with
the global optimal value Gbest so as to realize adaptive
adjustment. To select the change threshold N, consider the
SpHere function as an example to test the effect of different
N values on the resolution accuracy of the ICPSO algorithm.
(e experimental parameters were set as follows: the pop-
ulation size was 100, the initial value range was [−5, 5], the
maximum iterative algebra was 1000, and the SpHere
function was 5, 10, 30, 50, 100. Take 2 for N, respectively.
Run 5, 10, and 20 50 times to get the mean, and the quantity
is K�Gbest/2. For the test results, see Table 1.

As can be seen from Table 1, the smaller the threshold n
of low-dimensional function with dimension less than 10,
the higher the accuracy of the solution, but the more time-
consuming. (e smaller the threshold n of 10∼100-di-
mensional function, the more time-consuming, but the
accuracy of the solution is not necessarily high. (ere is an
inflection point in the solution accuracy at 5 out of n. It can
be seen that the selection of n value has a certain correlation
with the dimension of the function [22].

4. Result Discussion

Check the effectiveness of the improvement measures, the
following typical function extreme value optimization
problem is introduced.

(1) RA-Rastrigin function is shown in formula (13):

f1(x, y) � x
2

+ y
2

− cos 18 x − cos 18 y, (14)

where x, y ∈ [−1,1], the optimization objective is to
find the minimum value of the function, the global
minimum point of f1 is (0,0), the global minimum
value is −2, and there are about 50 local minimum
points in the feasible region. (e variation of Ras-
trigin function optimization results with dimension
is shown in Figure 4.

(2) (e generalized raster function is shown in equation
(14):

f2(x) � 
30

i�1
x
2
i − 10 cos 2πxi(  + 10 . (15)

Here, xi ∈ [−5.12, 5.12], the optimization objective is
to find the minimum of the function, the global
minimum of f2 is 0, and there are about 45 local
minimum points in the feasible region.

(3) Br-Branin function is shown in equation (15):

f3(x, y) � x −
5.1
4π2y

2
+
5
π

y − 6 
2

+ 10 1 −
1
8π

 cos y + 10,

(16)

where X ∈ [0,15]; y∈[−5,10].(e optimization ob-
jective is to find the minimum of the function, the
global minimum of F3 is 0.3979, and the three global
minimum points are (−3.031, 1.164), (3.031, 1.164),
and (9.3425, 2.425).

(4) (e six-hump camel-back function is as follows (16):

f4(x, y) � 4x
2

− 2.1x
4

+
1
3
x
6

+ xy − 4y
2

+ 4y
4
. (17)

Here, x, y ∈ [−5, 5], the optimization objective is to find the
minimum of the function, the global minimum of F4 is
−1.0205, and the two global minimum points are (0.0884,
−0.7014) and (−0.0884, 0.7014). (e above functions are
optimized 50 times with basic CPSO and ICPSO,
respectively. For comparison, the initial values of the two
algorithms are the same. (en, count the maximum/mini-
mum steps, convergence times, and average steps of each
algorithm. (e simulation results are shown in
Figure 5∼ Figure 8 and Table 2.

Figures 5–8 show the comparison curve of CPSO and
ICPSO optimization. From the figures, it can be seen that the
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calculation accuracy of ICPSO is significantly improved and
the iteration algebra is reduced. In Figure 5, CPSO does not
converge, which verifies the problem of poor optimization

ability. After step 10 of ICPSO, it begins to converge stably
and gradually approaches the global optimal value −2. In
Figures 6 and 7, the curve after CPSO optimization drops
relatively slowly, and the speed gradually approaches 0 due
to the algorithm itself, and the speed update correspondingly
becomes slower and slower. At this time, the particles will
gather at several points and cannot conduct larger-scale local
search, making the optimization trapped in local conver-
gence. As can be seen from Figure 8, the optimization goal
was achieved in step 46, and ICPSO reduced the number of
particle iterations and improved the optimization accuracy
by transforming the solution space and mutating the normal
cloud operator and achieves the optimization goal in step 10
and step 7, respectively. In Figure 8, it can be seen from the
optimization curves of CPSO and ICPSO that although the
curve change is not very obvious, it is obvious from the
number of optimization steps that ICPSO reaches the op-
timization goal in step 9 and CPSO reaches the optimization
goal in step 23. Table 2 shows the performance simulation
results of ICPSO combined with two improvement measures
and basic CPSO, in which the average number of steps is the
average value under convergence. It can be seen from Table 2
that the basic CPSO algorithm within 500 generations has
not reached convergence for 8 times, 6 times, 4 times, and 5
times, respectively. In the case of convergence, the average

Table 2: Performance comparison between PSO and ICPSO algorithms.

Function Algorithm Max/min steps Average steps Convergence

RA-Rastrigin CPSO 500/28 63 41
ICPSO 28/6 21 49

Generalized Rastrigin CPSO 500/34 72 43
ICPSO 34/9 24 49

BR-Branin CPSO 500/37 67 45
ICPSO 37/8 20 79

Six-hump camel-back CPSO 500/27 74 45
ICPSO 30/6 18 49
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number of steps is much higher than ICPSO, and all the
improved algorithms converge. In terms of time perfor-
mance, the convergence time of ICPSO is much better than
that of CPSO algorithm. Comparing the simulation results,
the ICPSO algorithm is better than the CPSO algorithm,
indicating that the improved method is effective.

5. Conclusion

Particle herd optimization is a global research hotspot. Its
research includes the analysis of algorithm mechanism, the
improvement of algorithm performance and the expansion
of algorithm application. CPSO algorithm is based on cloud
digital feature coding to better describe the dynamic be-
havior of cloud particles. Focusing on key CPSO current
issues, this paper proposes two improvement measures to
improve algorithm search capabilities, population diversity,
and algorithm integration speed and accuracy. Experiments
have shown that the improved method is effective. (e
successful combination of cloud model, cloud particle
swarm optimization, and mutation idea makes a new ex-
ploration and attempt for the research of solving the optimal
value. Although some of these issues have been addressed in
this paper and some step-by-step results have been achieved,
there is still a need for further discussion and in-depth
research on some of the issues encountered during the study:
Create as many types of problems as possible, or develop
algorithms that are more appropriate to the specific situa-
tion? (ere is currently no unified design standard. In this
regard, it is necessary to develop a flexible algorithm that can
use the properties of the particle herd optimization algo-
rithm for different problems and combine it with the spe-
cifics of the problem, and it needs to be adapted.
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