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Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way.
Traditional methods of SZ detection are based on handcrafted feature extractionmethods (manual process), which are tedious and
unsophisticated, and also limited in their ability to balance e�ciency and accuracy. To solve this issue, this study designed a deep
learning-based feature extraction scheme involving the GoogLeNet model called “SchizoGoogLeNet” that can e�ciently and
automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals
with improved performance.  e proposed framework involves multiple stages of EEG data processing. First, this study employs
the average �ltering method to remove noise and artifacts from the raw EEG signals to improve the signal-to-noise ratio. After
that, a GoogLeNet model is designed to discover signi�cant hidden features from denoised signals to identify schizophrenic
patients from HC subjects. Finally, the obtained deep feature set is evaluated by the GoogleNet classi�er and also some renowned
machine learning classi�ers to �nd a sustainable classi�cationmethod for the obtained deep feature set. Experimental results show
that the proposed deep feature extraction model with a support vector machine performs the best, producing a 99.02% correct
classi�cation rate for SZ, with an overall accuracy of 98.84%. Furthermore, our proposed model outperforms other existing
methods.  e proposed design is able to accurately discriminate SZ from HC, and it will be useful for developing a diagnostic tool
for SZ detection.

1. Introduction

Schizophrenia (SZ) is a devastating mental disorder and a
progressive neurological disease that causes a signi�cant
impact on the quality of life of patients and their families,
social environments, and healthcare systems [1].  is
disorder a�ects a person’s perception of reality, social
interactions, thought processes, and cognitive ability.
Symptoms of SZ include hallucinations (hearing voices or
seeing things that are not there), delusions (�xed, false
beliefs), and thought disorders (unusual ways of thinking),
as well as reduced expressions of emotions, reduced
motivations to accomplish goals, di�culty in social rela-
tionships, motor impairments, and cognitive impairments

[2, 3]. SZ a�ects every 1 in 100 Australians and approx-
imately 21 million people worldwide [4, 5]. It is associated
with increased morbidity and mortality, and is the cause of
disability and health costs worldwide [6]. SZ is treatable,
but its treatment involves long-term medications, causing
an extreme burden on healthcare systems and families. If
the patients are not treated, SZ symptoms may be per-
sistent which makes them disabled after a period of time. If
early detection is possible, then patients can get timely
treatments that can help those a�ected individuals and
their families improve their lives [7]. Hence, there is a
growing demand to develop an e�cient and automatic
diagnostic technique for the early detection of SZ patients
from healthy control (HC) people.
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Traditionally, the diagnosis of SZ is mainly performed
through solely interviews and observations of patient be-
havior by a trained psychiatrist [8]. 'is diagnosis is a
manual process that is time-consuming, burdensome, and
subject to human errors and bias. Instead of this, recently,
some imaging techniques, such as magnetic resonance
imaging, computed tomography, positron emission to-
mography, and electroencephalography (EEG) have been
introduced to diagnose SZ. Among these imaging tech-
niques, currently, EEG has emerged as the reference stan-
dard for diagnosing SZ due to its high temporal resolution,
noninvasiveness, and relatively low financial cost compared
to other tests [2, 9]. EEG signals describe the electrical
activity of the human brain recorded from the scalp via a set
of electrodes. EEG recording generates a huge volume of
data. Generally, this massive amount of data is analysed by
visual inspection, which is time-consuming, error-prone,
and reduces decision-making reliability. 'us, a computer-
aided automatic data analysis system is required to make an
accurate and reliable decision for the diagnosis of SZ.

1.1. Related Works. In recent years, many researchers have
attempted to identify SZ from EEG data [10–18], but no
efficient and reliable system has been developed yet for the
reliable detection of SZ patients. Much research has been
performed based on traditional handcrafted feature extraction
methods, but they were inadequate in their ability to generate
suitable performance for real-time applications. For example,
Sabeti et al. [10] used autoregressive (AR) model coefficients,
band power, and fractal dimension-based features for iden-
tifying SZ subjects. 'ese features were fed to linear dis-
criminant analysis (LDA), multiLDA, and adaptive boosting
(AdaBoost) classifiers. An empirical mode decomposition
(EMD) technique was introduced in [2] for the diagnosis of
SZ from EEG signals to handle the behavior of nonstationary
and nonlinear EEG signals. In [11], Ramos et al. employed
power spectral density-based features in the maximum
likelihood theory for classifying SZ and HC subjects.

Kaplan et al. [12] used spectral features, and the obtained
features were classified using the “Kora-N” algorithm. A fast
Fourier transformation (FFT)-based feature extraction
process was reported by Buettner et al. in [13]. Finally, those
features were used as input to a random forest (RF) clas-
sification method for identifying SZ and non-SZ. Approx-
imate entropy, Shannon entropy, Kolmogorov complexity,
and Lempel-Ziv complexity methods were proposed by Akar
et al. in [14] for extracting features from EEG signals for
identifying SZ. In their another work, Akar et al. [15]
computed features using wavelet transformation (WT) and
Welch power spectral density (PSD) methods for the de-
tection of schizophrenia from EEG data. In [16], Li et al. used
functional EEG networks to extract the inherent spatial
pattern of the network (SPN) feature for brain states. 'e
combined SPN features of the rest and task networks were
used as the input to LDA and the support vector machine
(SVM) to recognize SZ.

Only a few studies have been performed on deep
learning for the detection of SZ using EEG data. In deep

learning, both the feature extraction and classification
processes are conducted automatically, while traditional
techniques require features to be extracted manually. Phang
et al. [17] proposed a deep convolutional neural network
(CNN) framework for the classification of SZ. In that model,
the authors integrated the features from various domains
and dimensions using different fusion strategies, and the
model achieved 93.06% accuracy. An eleven-layered CNN
model was introduced by Oh et al. in [18] to analyse the EEG
signals for the diagnosis of schizophrenia. 'e model gen-
erated a classification accuracy of 81.26% for subject-based
testing.

1.2.Motivations. Most of the existing research studies for SZ
detection employ handcrafted feature extraction methods
(e.g., WT, FFT, EMD, PSD, and entropy) before classifi-
cation [10–16]. 'ese feature extraction methods are
manually chosen based on researchers’ expertise. 'e ob-
tained performances of those methods are not satisfactory.
'e handcrafted feature extraction methods cannot form
intellectual high levels of representations of EEG signals to
discover deep concealed characteristics from data that can
achieve better performance. 'is manual feature extraction
process is time-consuming, labor-intensive, and has bias.
Furthermore, if sizes of data are large, the method may not
run properly and sometimes underperform.

As mentioned before, very few studies used deep
learning methods for the detection of schizophrenia from
EEG [17, 18]. 'e significant characteristic of deep learning
is that the model can automatically extract effective features,
which has certain advantages for large-scale data. 'e de-
veloped deep learning-based SZ detection methods are still
limited in their ability to balance efficiency and accuracy.
Hence, this study is motivated to introduce a new deep
learning-based feature extraction scheme for automatic and
efficient identification of SZ patients using EEG.

1.3.Objectives of0is Study. 'e key objective of this study is
to introduce a deep learning-based feature extraction
scheme involving the GoogLeNet model called “Schizo-
GoogLeNet” for automatically and efficiently distinguishing
schizophrenic patients from HC subjects using EEG data
with improved performance. 'e reason for considering the
GoogLeNet model in this study is that the GoogLeNet ar-
chitecture has the ability to produce better performance than
other deep learning models as it is designed to be a pow-
erhouse with increased computational efficiency.'is model
trains faster than other network methods (e.g., AlexNet and
VGGNet) and has fewer parameters and lower computa-
tional complexity than other models [19, 20]. Also, it has a
relatively lower error rate than other deep learning methods.

To our knowledge, for the first time, GoogLeNet was
introduced in SZ detection using EEG signals in this study.
Our proposed “SchizoGoogLeNet” framework consists of
several steps. First, this study employs an average filtering
method to remove noise and artifacts from the raw EEG
signals. Second, significant hidden features are extracted
from EEG signals to identify schizophrenia patients from
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HC subjects. Finally, a sustainable classification method for
the obtained deep GoogLeNet features is explored. At this
stage, deep learning and machine learning methods are
tested for the obtained deep feature set. 'e performance of
the proposed framework was tested using a publicly available
EEG dataset.

1.4. Our Contributions. 'emain contributions of this work
are summarized as follows: (1) For the first time, we in-
troduce a GoogLeNet-based deep feature extraction scheme
for automatic detection of SZ using EEG signals; (2) we
investigate the impact of balance and unbalanced datasets on
the proposed SZ detection model; (3) we discover a sus-
tainable classifier for the obtained GoogLeNet deep feature
set in a deep learning and machine learning environment;
(4) we explore the performances of the deep feature set with
a GoogLeNet classifier and several machine learning
methods; (5) we achieve improved performances for our
proposed model compared to those of the existing methods.

'e rest of this paper is arranged as follows: 'e pro-
posed methodology is described in Section 2. 'is section
also provides the description of the data that is used in this
study. Section 3 provides the experimental setup and the
results with their corresponding discussions, followed by the
conclusion in Section 4.

2. Proposed Methodology

'is study proposes a GoogLeNet-based deep feature ex-
traction scheme, “SchizoGoogLeNet,” for detecting SZ from
EEG data automatically. Figure 1 graphically presents the
general architecture of the proposed strategy. 'e proposed
scheme involves four stages, such as data acquisition, re-
moving noise and artifacts using average filtering, discov-
ering deep features using GoogLeNet, and exploring
sustainable classifiers for the obtained features. A detailed
description of these steps is provided below.

2.1. Data Acquisition. 'is study used EEG data collected
from 81 subjects, including 49 schizophrenia patients and 32
normal control persons, from the Kaggle data source. 'ese
data consist of EEG recordings of 14 female and 67 male
subjects. 'e average age is 39 years, and the average edu-
cation level is 14.5 years. 'e EEG data were recorded from
64 scalp sites and 8 external sites using a BioSemi active two
system (http://www.biosemi.com). 'e data were continu-
ously digitized at 1024Hz and referenced offline to averaged
earlobe electrodes. 'e details of the dataset can be seen
online at https://www.kaggle.com/broach/button-tone-sz
[21]. 'e description of the data is also available in [22].

2.2. Removing Noise and Artifacts Using Average Filtering.
'is section aims to introduce a technique for reducing noise
and artifacts of EEG signals and improving the signal-to-
noise-ratio (SNR) as the signal data are very noisy and often
affected by artifacts. Due to noise, EEG signals have a low
SNR that may lead to incorrect conclusions. 'e noise-

removing processes improve the data quality to create an
appropriate model. In this study, we employ an average filter
(AF) technique for removing noise and artifacts from EEG
signals [23]. 'e reason for using this filtering is that it is
simple, intuitive, and easy to implement for smoothing the
signals and for dropping the amount of intensity variations
that can reduce undesirable information from the signals.

In this study, we reduced noise smoothing of each signal
(Sg) by the AF technique with a kernel size of KS = 12, and
then, we sampled the smoothed signal considering an in-
terval length IL =KS = 12 which is denoted as Sg. We se-
lected the values of KS and IL using a trial and error
procedure to make the final matrix with a size of around 200.
After the filtering, the raw signal data become the input
matrix in the feature extraction stage of the GoogLeNet
model (discussed in the next step). Figure 2 shows an ex-
ample of the pattern of a raw EEG signal and a filtered EEG
signal. It is apparent from Figure 2 that the shape of the
filtered signal is the same as that of the raw signal. As can be
seen in Figure 2, the number of data points has been reduced
while still keeping the shape of the original curve of the EEG
signal.

Sg(t) �
1

KS


t+KS/2

i�t−KS/2
Sg(i). (1)

Sg(t) � 
L

i�0
δ(i − t · IL) · Sg(i). (2)

2.3. Discovering Deep Features Using GoogLeNet.
Technically, a feature represents a distinguishing property, a
recognizable measurement, and a functional component
obtained from a segment of a pattern [24]. Extracted features
convey the most important information for the classification
stage. Sometimes, traditional handcrafted features cannot
convey meaningful information about the SZ detection due
to manual choice of methods and also cannot handle big
sizes of data. 'is section’s goal is to discover the significant
feature set from EEG signals using the deep learning method
that empowers efficiently the recognition of SZ from HC
subjects. For this purpose, this study introduces the deep
GoogLeNet-based architecture to extract representative
features for identifying SZ from the denoised EEG signals
automatically. To our knowledge, for the first time, Goo-
gLeNet is employed in this study for the detection of SZ from
EEG signals. GoogLeNet is a convolutional neural network
(CNN)-based architecture designed by researchers at
Google. It was the winner of ImageNet 2014, where it proved
to be a powerful model.

'e main objective of the GoogLeNet architecture is to
achieve high accuracy with a reduced computational cost
[19, 20]. 'e GoogLeNet model is constructed based on the
inception architecture that introduced the new concept of
the inception block in CNN, whereby it incorporates
multiscale convolutional transformations using split,
transform, and merge ideas [20]. A general strategy of the
inception block is illustrated in Figure 3. 'e inception
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module is different from other deep learning architectures
where there is a fixed convolution size for each layer. In the
inception module, 1× 1, 3× 3, and 5× 5 convolutions and
3× 3 max pooling perform in a parallel way at the input, and
the output of these is stacked together to generate the final
output. In the GoogLeNet model, conventional convolu-
tional layers are replaced with small blocks. 'ese blocks
condense filters of different sizes (e.g., 1× 1, 3× 3, and 5× 5)
to capture spatial information at different scales, including
both fine and coarse grain levels [19, 20]. As shown in
Figure 3, multiple convolutions, with 1× 1 filters, 3× 3 fil-
ters, and 5× 5 filters, and 3× 3 max-pooling layers are
organised in the GoogLeNet model.

'e GoogLeNet model regulates the computations by
adding a bottleneck layer of 1× 1 convolutional filters before
employing large-size kernels. 1× 1 convolution is used to
decrease the number of parameters (weights and biases) of
the architecture. Furthermore, it uses sparse connections
(not all the output feature maps are connected to all the
input feature maps) to overcome the problem of redundant
information and reduced costs by omitting feature maps that
are not relevant [20]. Additionally, connection density is
reduced by using global average pooling at the last layer

instead of using a fully connected layer. 'ese parameter
tunings cause a significant decrease in the number of pa-
rameters [25].

In this study, we designed the structure of the Goo-
gLeNet model for implementation of the SZ EEG database
as illustrated in Table 1. 'is table presents layer-by-layer
architectural details of the GoogLeNet model. “#1 × 1
#3 × 3 #5 × 5” refers to various convolution filters used
within the inception module. “#3 × 3 reduce” and “#5 × 5
reduce” symbolize the number of 1× 1 filters in the re-
duction layer used before related convolution layers. 'e
number of 1× 1 filters in the projection layer after the built-
in maximum pooling is shown in the “pool projection”
column (denoted as “Pool proj”). “Max pool” stands for the
maximum number of pooling layers. 'e purpose of these
max-pooling layers is to downsample the input as it is fed
forward through the network. All the convolution, reduc-
tion, and projection layers inside this architecture use rec-
tified linear units (ReLUs) as their activation functions. 'is
architecture is 22 layers deep without pooling (or 27 layers
when we count pooling) [19, 20].

2.4. Exploring Sustainable Classification Method for Identi-
fying Schizophrenia. 'is section’s aim is to discover a
sustainable classifier for the obtained deep feature set to
classify SZ and HC subjects and improve its performance.
Unlike other deep learning models, GoogLeNet does not use
fully connected (fc) layers for the final result of classification.
Instead, the last convolutional map is subjected to channel-
wise global average pooling, and the average activation
values of each of the channels are used as the feature vector
of the input image.
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Figure 3: General architecture of the inception block.
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Figure 1: 'e overall architecture of the proposed “SchizoGoogLeNet” framework for automatic identification of SZ from EEG signals.
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As can be seen in Table 1, the last four layers of our
proposed architecture are as follows: a dropout layer set with
a probability of 40% dropout, a fully connected (fc) layer, a
softmax layer, and a classification output layer. 'e softmax
layer is a final layer of the model that uses the softmax
function, and an activation function is used to derive the
probability distribution of a set of numbers within an input
vector. 'e output of a softmax activation function is a
vector in which its set of values represents the probability of
a class or an event occurrence.'e classification output layer
is set to have the same size as the number of classes in the
new dataset, which was two (e.g., SZ and HC) in our case.
Before training GoogLeNet, training parameters were set
after empirical evaluation. In our experiments, two pa-
rameters were used to access the performance of the net-
works: maximum epochs and batch size.

To determine an appropriate classifier for the obtained
deep GoogLeNet feature set, this study also tested four
machine learning classification methods: SVM, k-nearest
neighbour (KNN), decision tree (DT), and linear discrim-
inant analysis (LDA) for identifying SZ from HC subjects.
'e reason for the choice of these classifiers in this study is
due to their popularity, simplicity, and effectiveness in
implementation. 'ey are also very powerful and fast
learning algorithms that examine all their training inputs for
classification. 'e description of these methods is available
in [26–30].

2.5. Performance Evaluation Parameters. To fairly assess the
performance of the proposed models, we computed all
standard measurement parameters including the accuracy,
sensitivity, specificity, positive predictive value, false alarm
rate, F1-score, and the receiver operating characteristic
curve (ROC) in this study. 'e descriptions of the men-
tioned measurements are available in [28, 31–35].

3. Experiments and Results

3.1. Experimental Setting. In this study, we performed all the
experiments in MATLAB (2018b) on a PC with a six-core
Intel i7 processor and 32GB of memory. 'e server was
equipped with an NVIDIA RTX 2060 GPU with 6GB of
memory. We run the GoogLeNet model in the MATLAB
deep learning toolbox for our proposed design. As stated
before, the dataset includes a total of 81 subjects, where 32
cases are normal control (with 3108 trials; 3072 samples per
trial; 70 channels) and 49 cases are schizophrenia patients
(with 4608 trials; 3072 samples per trial; 70 channels). In this
study, we used all 70 channels’ data for the proposed design.
Here, we provide an example how we processed the raw EEG
signal data of each subject and transformed the processed
dataset for implementation in the experiments in this study.
For example, for Subject 1, we had a dataset: 887808× 70
(samples x channels), and we converted this dataset to a
matrix sized 70× 3072× 289 (channels x window length-
× epoch) using the transpose process. Here, we obtained
epoch� 289 dividing samples by window length (887808/
3072). After the average filtering, the raw signal data matrix
70× 3072× 289 was moved to a reduced matrix size of
70× 256× 289. Afterward, the 70× 256× 289 matrix was
resized to 224× 224× 3× 289 to be compatible with the deep
GoogLeNet input size for subject 1.

Following a similar process, for a total of 81 subjects, the
whole dataset was transformed into an image matrix with a
size of 224× 224× 3× 23201 (height×weight× 3 symbolize
color layer× image samples).'e sizes of data for SZ and HC
are 224× 224× 3×13975 and 224× 224× 3× 9226, respec-
tively, which shows that the sample points of SZ and the HC
groups are not equal. 'us, we divided the dataset into two
groups: balanced and unbalanced datasets to test the effect of
equal and unequal sizes of sample points in SZ and HC
categories. A balanced dataset is one that has the same

Table 1: Model architecture of GoogLeNet used in this study.

Layer Patch size/stride Depth #1× 1 #3× 3 reduce #3× 3 #5× 5 reduce #5× 5 Pool proj Output size
Conv1 7× 7/2 1 112×112× 64
Max pool1 3× 3/2 0 56× 56× 64
Conv2 3× 3/1 2 64 192 56× 56×192
Max pool2 3× 3/2 0 28× 28×192
Inception-3a 2 64 96 128 16 32 32 28× 28× 256
Inception-3b 2 128 128 192 32 96 64 28× 28× 480
Max pool3 3× 3/2 0 14×14× 480
Inception-4a 2 192 96 208 16 48 64 14×14× 512
Inception-4b 2 160 112 224 24 64 64 14×14× 512
Inception-4c 2 128 128 256 24 64 64 14×14× 512
Inception-4d 2 112 144 288 32 64 64 14×14× 528
Inception-4e 2 256 160 320 32 128 128 14×14× 832
Max pool4 3× 3/2 0 7× 7× 832
Inception-5a 2 256 160 320 32 128 128 7× 7× 832
Inception-5b 2 384 192 384 48 128 128 7× 7×1024
Average pool5 7× 7/1 0 1× 1× 1024
Dropout (40%) 0 1× 1× 1024
Fc 1 1× 1× 2
Softmax 0 1× 1× 2
Classification output 1× 1× 2
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number of observations for each class in a classification
dataset. An unbalanced dataset has the different number of
observations for each class. Both SZ and HC categories in
this study’s balanced dataset have the same number of
sample points; however, both categories in the unbalanced
dataset have an unequal number of sample points. As seen in
Table 2, the balanced dataset consists of 9226 sample points
in each category of SZ and HC (including training, vali-
dation, and testing data), and total sample points for both
categories are 18,452.

In the unbalanced dataset, the SZ category has 13,975
sample points and the HC category has 9,226 sample points
(including training, validation, and testing data). 'e total
sample point size for the unbalanced data is 23,201. Please
note that the unbalanced dataset is the original dataset
after data preprocessing. 'us, the balanced data size is
224 × 224 × 3 ×18452 (height x weight x 3 symbolize color
layer x image samples), and the unbalanced data size is
224 × 224 × 3 × 23201 (height ×weight × 3 symbolize color
layer × image samples). 'en, both datasets are divided
into three parts: training, validation, and testing with a
ratio of 70%, 10%, and 20%, respectively. 'e sizes of
different parts of data are given in Table 2. In this study,
the training dataset was used for the learning process in
the proposed model, and the validation dataset was
regarded as a part of the training set to tune the model.
'e validation set was used for tuning the parameters of
the model and also for avoiding overfitting. Generally, the
validation dataset helps provide an unbiased evaluation of
the model’s fitness. 'e testing dataset was used for the
performance evaluation.

3.2. Feature Extraction Process and Hyperparameter Setting.
'is section presents the process of how the features are
extracted using the GoogLeNet model for the balanced and
unbalanced datasets. Figure 4 shows the feature extraction
process in the GoogLeNet model for the balanced dataset
and unbalanced dataset. As seen in Figure 4, the proposed
GoogLeNet model yields a deep feature set with a size of
18452× 2 for the balanced dataset and 23201× 2 for the
unbalanced dataset. It means that two deep features are
generated, including 18,452 sample points for the balanced
dataset and 23,201 for the unbalanced dataset. In both
datasets, two deep features are called deep feature1 and deep
feature 2.

Figures 5 and 6 present the patterns of the distribution of
the obtained two deep features (deep feature 1 and deep
feature 2) for the balanced and unbalanced datasets through
boxplots, respectively. As can be seen in both figures, the
shape of the distribution in both schizophrenia and control
groups are symmetrical and there are some outliers in each
diagram. In both figures, it is observed that there is a sig-
nificant difference between the central value of schizo-
phrenia and control groups in both feature sets. 'e boxplot
figures clearly demonstrate that there is a clear and signif-
icant difference in the values of the feature set in two groups
that help in the efficient classification of schizophrenia and
control.

To find the best model, the hyperparameters (e.g., the
number of hidden units, the number of epochs, and the
batch size) of the GoogLeNet model are optimized (tuned)
by the training process. We run the data through the op-
erations of the model, compare the resulting prediction with
the actual value for each data instance, evaluate the accuracy,
and adjust until we find the best values. We performed an
extensive number of experiments to find appropriate values
for different parameters. 'e configuration of hyper-
parameters of the proposed model is provided in Table 1.
'e table illustrates the layer-by-layer structural details of
the proposed “SchizoGoogLeNet” model.

In this study, the SVM classifier with a linear kernel was
used as an optimal kernel function after testing all the
kernels (e.g., linear, polynomial, and radial basis kernels)
because this kernel produced a better performance com-
pared to others. 'e KNN classifier used the default distance
metric “Euclidean distance” for the distance measure and
K� 1 in the model after several experimental evaluations.
For DT and LDA classifiers, the parameter values are
considered which have been used in MATLAB default pa-
rameter settings as there are no specific guidelines for setting
the values of the parameters for these classifiers.

3.3. Results and Discussion. 'is section provides the ex-
perimental results that are achieved using 10-fold cross-
validation through MATLAB. For both balanced and un-
balanced datasets, we used the obtained deep feature set as
an input to the softmax classifier of GoogLeNet (deep
learning (DL) classifier) and also four popular machine
learning (ML) classifiers (SVM, KNN, DT, and LDA),
separately, to find an optimal classifier. Tables 3 and 4
present the overall performance results for our proposed
approaches in terms of the sensitivity (SEN), specificity
(SPE), accuracy (ACC), positive predictive value (PPV), and
F1-score for the balanced and unbalanced datasets,
respectively.

As can be seen in Table 3, for the balanced dataset, the
SVM classifier achieves the highest performances such as
ACC (98.30%), SPE (98.27%), PPV (98.27%), and F1-score
(98.30%), and the LDA classifier produces the highest
sensitivity value (98.53%). 'e lowest performances (e.g.,
ACC (94.28%), SEN (92.15%), SPC (96.42%), PPV (96.26%),
and F1-score (94.16%)) are obtained by the GoogLeNet
classifier (DL classifier). For the unbalanced dataset, Table 4
reports that among the reported classifiers, the highest
classification performances are attained by the SVM clas-
sifiers, which are 98.84% of ACC, 99.02% of SEN, 98.58% of
SPE, 99.06% of PPV, and 99.04% of F1-score. On the other
hand, the lowest performance (e.g., ACC (95.09%), SEN
(93.81%), SPC (97.02%), (PPV 97.95%), and F1-score
(95.83%)) are obtained by the GoogLeNet classifier like the
balanced dataset.

In order to further assess, we also computed the false
alarm rate (FAR) of the proposed classification models for
the balanced and unbalanced datasets as shown in Figure 7.
'is figure also demonstrates that the SVM classifier pro-
duces better performance (a lower FAR indicates better
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performance) with the obtained feature set than the Goo-
gLeNet classifier (a higher FAR indicates lower perfor-
mance). From Tables 3 and 4 and Figure 7, it is clearly
apparent that the obtained feature set yields higher per-
formance with ML classifiers than the DL classifier (e.g.,
GoogLeNet) for both balanced and unbalanced datasets. In
both datasets, the SVM classifier is superior for the obtained
deep feature set compared to other reported classifiers, and
the GoogLeNet classifier with the same feature set achieved
the worst performance.

Figure 8 and also Figure 7 show a comparison of the
performances (in terms of ACC, SEN, SPE, and FAR) be-
tween the balanced and unbalanced datasets. 'e figures
demonstrate that the performances of all classifiers are
higher for the unbalanced dataset than those for the bal-
anced dataset. 'e overall accuracy is increased by 3.75% for
the unbalanced data and 4.02% for the balanced data for the
ML-based classifier compared to the DL scheme. 'e

unbalanced dataset’s improved performance may be due to
the fact that it is the original dataset, which includes all of the
subjects’ data points. On the other hand, the balanced
dataset was produced from the unbalanced dataset by
eliminating some subjects. 'e performance was lower for
the balanced dataset because some subjects’ data points had
been eliminated. From the results, it can be considered that
the obtained deep feature set with an SVM classifier is
exceptional for the identification of SZ EEG signals from
HC.

Figures 9(a) and 9(b) display an illustration of training
and validation accuracy patterns for the deep GoogLeNet
model in different iterations of the balanced and unbalanced
datasets, respectively. For both datasets, the training accu-
racy and validation accuracy increase with the increase in the
iteration numbers. It is notable that the accuracy of the
training set does not deviate substantially from that of the
validation set as observed in Figures 9(a) and 9(b). In the
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Figure 4: Feature extraction process in the proposed “SchizoGoogLeNet” model for the balanced and unbalanced dataset.

Table 2: 'e sizes of different parts of data.

Data Category Training data Validation data Testing data

Balanced
HC 224× 224× 3× 6458 224× 224× 3× 922 224× 224× 3×1846
SZ 224× 224× 3× 6458 224× 224× 3× 922 224× 224× 3×1846
Total 224× 224× 3×12916 224× 224× 3×1844 224× 224× 3× 3692

Unbalanced
HC 224× 224× 3× 6458 224× 224× 3× 922 224× 224× 3×1846
SZ 224× 224× 3× 9782 224× 224× 3×1397 224× 224× 3× 2796
Total 224× 224× 3×16240 224× 224× 3× 2319 224× 224× 3× 4642

SZ� schizophrenia; HC� healthy control.
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Figure 5: Distribution of two deep features for the balanced dataset.
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Figure 6: Distribution of two deep features for the unbalanced dataset.

Table 3: Overall performances of the proposed methods for the balanced dataset.

Classifier Sensitivity (%) Specificity (%) Accuracy (%) Positive predictive value (%) F1-score (%)
GoogLeNet 92.15 96.42 94.28 96.26 94.16
SVM 98.33 98.27 98.30 98.27 98.30
KNN 97.29 97.27 97.28 97.27 97.28
DT 97.51 97.21 97.36 97.22 97.36
LDA 98.53 98.07 98.29 98.08 98.30
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GoogLeNet SVM KNN DT LDA
Balanced dataset 0.0358 0.0173 0.0273 0.0279 0.0193

Unbalanced dataset 0.0298 0.0142 0.024 0.0238 0.0182
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Figure 7: False alarm rate (FAR) for all of the reported classifiers for the balanced and unbalanced datasets.
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Figure 8: Comparison of performances between the balanced and the unbalanced datasets.
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Figure 9: (a) Patterns of the training and validation accuracy of the GoogLeNet-based model for the balanced dataset. (b). Patterns of the
training and validation accuracy of GoogLeNet-based model for the unbalanced dataset.

Table 4: Overall performances of the proposed methods for the unbalanced dataset.

Classifier Sensitivity (%) Specificity (%) Accuracy (%) Positive predictive value (%) F1 score (%)
GoogLeNet 93.81 97.02 95.09 97.95 95.83
SVM 99.02 98.58 98.84 99.06 99.04
KNN 98.30 97.60 98.02 98.42 98.36
DT 98.55 97.62 98.18 98.43 98.49
LDA 99.13 98.18 98.75 98.80 98.97
Bold values represent highest performance.
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training stage, the learning rate was set at 0.0001 and the
batch number was one sample each time. 'e number of
filters and kernel size was determined via the brute force
technique.

'e loss information of the training set and validation set
with respect to different iterations is displayed in
Figures 10(a) and 10(b) for the balanced dataset and un-
balanced dataset, respectively. For both datasets, it is ob-
served that the training loss and the validation loss decrease
with the increase in the iteration numbers. 'e performance
of the training set does not significantly diverge from that of
the validation set, as shown in Figures 10(a) and 10(b).

To further assess the effectiveness of the GoogLeNet-
based model, the ROC curves are drawn for different SZ
detection models, where the input data were the deep feature
set shown in Figures 11(a) and 11(b) for the balanced and
unbalanced datasets, respectively. 'e corresponding per-
formance measurements in every condition are shown in
Table 5. Table 5 reports the area values under the ROC curve
(AUC) for the reported classifiers. 'e AUC is the value of
the area under the ROC curve that belongs to a value be-
tween 0 and 1 (a larger area indicates a better performance of
the classifier). As can be seen in Table 5, the highest AUC is
obtained by the SVM classifier, which is 0.9984 (close to 1)
for the unbalanced dataset and 0.9973 for the balanced
dataset. 'e KNN model produces the lowest AUC for both
the balanced (0.9728) and the unbalanced (0.9795) datasets.
Like the previous results, the results also indicate that the
SVM classifier with the obtained deep feature set works
better than other reported classifiers.

3.4. Comparative Analysis Report for Our Proposed Method
with Existing State-of-the-ArtMethods. A comparison of the
prior EEG-based techniques used for SZ detection with our
proposed model has been provided in Table 6. Until now, we
found seven articles [2, 28, 35–39] in the literature for the

same database that we have used in this study. Table 6 shows
the performance comparison of the proposed method with
these published methods [2, 28, 35–39]. Kahre et al. [35]
reported a method based on empirical wavelet transfor-
mation and SVM for the detection of SZ from EEG signals.
'eir method achieved an ACC of 88.70%, SEN of 91.13%,
and SPE of 89.29. In [2], Siuly et al. introduced empirical
mode decomposition (EMD)-based features with an en-
semble bagged tree (EBT) for the detection of SZ using EEG
signals. 'e ACC, SEN, and SPE scores of their method were
89.59%, 89.76%, and 89.32%, respectively. Guo et al. [38]
reported a random forest (RF)-based machine learning al-
gorithm for identifying schizophrenia patients from healthy
control subjects using EEG signal data. In the designed plan,
the author considered a number of features such as gender,
age, education, and event-related potential (ERP) and the
combination of the features.

RF yielded an accuracy of 81.1%. Khare et al. [36] in-
troduced an automatic approach based on flexible tunable Q
wavelet transform (F-TQWT) and a flexible least square
support vector machine (F-LSSVM) classifier for the de-
tection of SZ from EEG signals. 'e authors used the “Fisher
score” method for the selection of the most discriminant
channels. 'eir proposed method generated 91.39% accu-
racy, 92.65% sensitivity, and 93.22% specificity. In [37], Guo
et al. proposed a scheme based on convolutional neural
networks (CNNs) to characterize the difference in the dis-
tributed structure of data for identifying SZ from EEG.'eir
method achieved an accuracy of 92%. Khare et al. [38]
designed a model involving a robust variational mode de-
composition (RVMD) and an optimized extreme learning
machine (OELM) algorithm. 'e experiment results reveal
that the third mode’s chaotic features are responsible for
generating the best performance (overall ACC of 92.30%). In
[39], a time-frequency analysis-based convolutional neural
network (CNN)model was proposed for identifying SZ from
EEG signals by Khare and Bajaj. 'e authors used
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Figure 10: (a) Patterns of the training and validation loss information of the GoogLeNet-based model for the balanced dataset. (b). Patterns
of the training and validation loss information of the GoogLeNet-based model for the unbalanced dataset.
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continuous wavelet transform, short-time Fourier trans-
form, and smoothed pseudo Wigner–Ville distribution
(SPWVD) techniques to obtain scalogram, spectrogram, and
SPWVD-based time-frequency representation (TFR) plots
for SZ detection. 'eir method achieved an overall accuracy
of 93.36% using the SPWVD-based TFR and CNN model.

It is apparent from Table 6 that our proposed model
yielded the highest performance scores with an accuracy of

98.84%, sensitivity of 99.02%, and specificity of 98.58%,
compared to performance scores of the other existing
methods. 'e achieved accuracy improvement of our pro-
posed model is 17.74% better than the accuracy score of
Zhang [28] and 10.14% better than the accuracy score of
Khare et al. [35]. In the end, it can be concluded based on the
experimental results that deep GoogleNet features of EEG
signals with an SVM classifier could serve as an applicable
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Figure 11: (a) 'e ROC curve for different classification models with the obtained deep feature set for the balanced dataset. (b) 'e ROC
curve for different classification models with the obtained deep feature set for the unbalanced dataset.

Table 5: AUC values for the proposed SZ detection models.

Models Balanced dataset Unbalanced dataset
Area under curve (AUC) values Area under curve (AUC) values

GoogLeNet 0.9884 0.9923
SVM 0.9973 0.9984
KNN 0.9728 0.9795
DT 0.9815 0.9874
LDA 0.9973 0.9984

Table 6: 'e comparison of the proposed method with other methods for the same database.

Authors Methods ACC (%) SEN (%) SPE (%)
Khare et al. [35] Empirical wavelet transformation with SVM 88.70 91.13 89.29
Siuly et al. [2] EMD-based features with EBT 89.59 89.76 89.32
Guo et al. [38] ERP features with RF 81.10 NA NA
Khare and Bajaj [37] F-TQWT-based scheme 91.39 92.65 93.22
Guo et al. [38] Electrical marker with CNN 92.00 NA NA
Khare et al. [38] RVMD-based OELM method 92.93 97.15 91.06
Khare and Bajaj [39] SPWVD-based TFR and CNN model 93.36 94.25 92.03
Proposed method GoogLeNet-based deep features with an SVM model 98.84 99.02 98.58
∗NA� not available.
Bold values represent the highest performance.
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measurement to correctly discriminate between schizo-
phrenics and HC subjects. [40].

4. Concluding Remarks

In this study, a GoogLeNet-based feature extraction scheme,
called “SchizoGoogLeNet” is developed to efficiently identify
SZ patients from HC subjects using EEG signal data. 'e
proposed GoogLeNet model automatically extracted im-
portant hidden features which are advantageous for large-
scale data. 'e obtained deep feature set was verified by the
GoogLeNet classifier (DL classifier) and also four popular
ML classifiers (e.g., SVM, KNN, DT, and LDA), separately.
'e performance of the proposed framework was evaluated
on the benchmark SZ EEG database from Kaggle through
extensive experimental evaluation. To check the effect of
equal and unequal sample points in SZ and HC groups, we
divided the dataset into two groups: balanced (the same
number of sample points in SZ and HC) and unbalanced
dataset (unequal sample points in SZ and HC) (original
dataset). 'e experimental results show that the unbalanced
set produces better performance compared to the balanced
dataset. Among the reported classifiers, the SVM classifier
with the obtained deep feature set yielded the highest
performance (e.g., ACC 98.84%, SEN 99.02%, SPE 98.58%,
PPV 99.06%, and F1-score 99.04%), while the lowest per-
formances were obtained by the GoogLeNet classifier (e.g.,
ACC 95.09%, SEN 93.81%, SPC 97.02%, PPV 97.95%, and
F1-score 95.83%). Moreover, our proposed model outper-
forms the existing methods. 'e findings of this study in-
dicate that the obtained deep GoogLeNet features perform
better with the SVM classifier in the SZ detection than the
DL classifier (GoogLeNet classifier).

'is study has some limitations, such as the fact that the
study only considers two-class classification problems (SZ
versus HC), while we intend to expand the application of the
suggested approach to multiclass scenarios soon. Another
flaw is that this study used a small SZ-based EEG dataset (81
total subjects: 49 schizophrenia (SZ) patients and 32 healthy
control (HC) people). In the near future, we will broaden our
method’s application to include huge clinical datasets.
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