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Lung cancer is the most common malignancy and is responsible for the largest cancer-related mortality worldwide. Alzheimer’s
disease is a degenerative neurological disease that burdens healthcare worldwide. While the two diseases are distinct, several
transcriptomic studies have demonstrated they are linked. However, no concordant conclusion on how they are associated has
been drawn. Since these studies utilized conventional bioinformatics methods, such as the diferentially expressed gene (DEG)
analysis, it is naturally expected that the proportion of DEGs having either the same or inverse directions in lung cancer and
Alzheimer’s disease is substantial. Tis raises the inconsistency. Terefore, a novel bioinformatics method capable of determining
the direction of association is desirable. In this study, the moderated t-tests were frst used to identify DEGs that are shared by the
two diseases. For the shared DEGs, separate autoencoder (AE) networks were trained to extract a one-dimensional representation
(pseudogene) for each disease. Based on these pseudogenes, the association direction between lung cancer and Alzheimer’s disease
was inferred. AE networks based on 266 shared DEGs revealed a comorbidity relationship between Alzheimer’s disease and lung
cancer. Specifcally, Spearman’s correlation coefcient between the predicted values using the two AE networks for the Alz-
heimer’s disease test set was 0.825 and for the lung cancer test set was 0.316. Novel bioinformatics methods such as an AE network
may help decipher how distinct diseases are associated by providing the refned representations of dysregulated genes.

1. Introduction

Lung cancer is the most common malignancy in humans
and causes the largest cancer-related mortality worldwide
[1]. Of the two major subtypes, non-small cell lung cancer
and small cell lung cancer, the former accounts for almost
80% of cases and can be further divided into two subtypes,
lung adenocarcinoma and lung squamous cell carcinoma
[2]. Alzheimer’s disease is a degenerative neurological dis-
ease. It is the most common type of dementia, accounting for
approximately 60–80% of patients with dementia [3]. While
approved therapeutics show only mild efects on halting the
disease’s progression [4], advanced methods such as dif-
ferent frequency electromagnetic felds (EMF), which have
been suggested by a previous review [5] to be benefcial to

Alzheimer’s disease, are far away from the clinical utilization
due to discrepancies and shortages of well-designed ex-
perimental validation.

Although lung cancer and Alzheimer’s disease are dis-
tinctly diferent, studies have suggested that they are linked.
For example, several epidemiologic studies [6–8] have
demonstrated a risk reduction for Alzheimer’s disease after a
cancer diagnosis (including lung cancer) [9–11]. Moreover,
transcriptomic studies [12–14] have indicated that the genes
upregulated in Alzheimer’s disease and downregulated in
cancer, as well as the genes downregulated in Alzheimer’s
disease and upregulated in cancer were signifcantly over-
lapped. In addition, expression deregulation in opposite
directions was observed at the level of pathways in Alz-
heimer’s disease and cancer [15]. Tese observations give
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some support to the idea of an inverse correlation between
Alzheimer’s disease and cancer.

While the opposing pathological processes (for example,
uncontrolled cell proliferation in cancer versus neuronal cell
death in Alzheimer’s disease) [16] provide a partial expla-
nation for this inverse relationship, one may argue that the
competing risk of death in patients with cancer may drive
the estimation of the association coefcient towards a
negative direction [17]. Conversely, a few observational
studies suggested no association [18], or a very weak negative
association [19], or a positive association between these two
diseases [20–22].

Moreover, all relevant transcriptomic studies have ex-
plored the association between the two diseases by using
conventional bioinformatics methods, such as diferentially
expressed genes (DEGs), pathway enrichment analysis [23],
and the weighted gene coexpression network analysis [24].
Such analyses have major drawbacks. For instance, for DEG
analysis, it is naturally expected that all DEGs have identical/
inverse regulation directions. Tis makes the determination
of association direction very difcult. All recent studies
examining the relationship between Alzheimer’s disease and
lung cancer are summarized in Table 1, from which it is
obvious that no concordant conclusions have been obtained,
thereby leaving the question unsolved.

Deep learning methods [25] hold promising capacity for
dealing with high-dimensional data, and are widely applied
to analyze data of certain complex diseases. For example,
Ramana et al. [26] proposed a novel model combining deep
learning and the capsule network, which has been shown to
possess better discriminative ability when applied to lung
cancer CT image data. Moreover, Lee and Lee [27] utilized
fully connected neural networks (FNN) to predict the risk of
developing Alzheimer’s disease based on gene expression
profles. Evenmore, a deep learning method can be deployed
in a wearable device or a smartphone (the underlying
framework is built upon a deep learning method) to monitor
an individual’s health status or a patient’s symptoms, e.g.,
[28] for an early detection and intervention of certain
diseases.

Autoencoder (AE), a deep learning method, has been
widely used in the realm of omics data analysis [29], es-
pecially transcriptomic data. It consists of two parts: an
encoder and a decoder. Te encoder compresses the data
into a low-dimensional vector, which is regarded as a hidden
representation of the data. Te low-dimensional vector is
then uncompressed by the decoder to obtain reconstructed
data in a way that mimics the original data as precisely as
possible (to represent the signals in the original data) but
they have a refned dimension (thus, noise can be discarded).
Considering AE can accomplish the task of generating a
lower-dimensional representation for an individual’s gene
expression profle without any difculties and it is simpler
compared tomany other deep learningmethods, we used the
AE method to embed the DEGs into a one-dimensional
space while preserving their gene-to-gene interplay to fur-
ther explore how lung cancer and Alzheimer’s disease are
associated. Since the output of the encoder in this study is a
single vector, a unifed answer to the question of how these

two diseases are related is possible. To the best of our
knowledge, no studies have integrated both deep learning
and omics data mining to specifcally explore the relation-
ship between the two diseases.

2. Materials and Methods

2.1. Experimental Data. Raw data of the Alzheimer’s disease
cohort used in the study were downloaded from the Gene
Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/
geo/) repository (under accession numbers GSE4757, GSE
48350, and GSE5281) [30–32]. Microarray experiments for
the lung cancer cohort were those studies stored under
accession numbers GSE18842, GSE102287, GSE19804,
GSE19188, GSE103888, and GSE118370 [33–38]. Table 2
summarizes the demographic characteristics of the micro-
array data considered in this study.

Since the output of the encoder is a vector, the depth is
required to be relatively high to extract the largest amount of
useful information from the original data while allowing for
good generality. Correspondingly, we combined several
microarray datasets into an integrated dataset in both the
Alzheimer’s disease and lung cancer cohorts to enlarge the
sample size. Te inclusion criteria were the chips profled on
the Afymetrix HG-U133 Plus 2.0 platform; the sample size
was larger than 10; and the ratio of cases and controls
approximately ranged from 0.5 to 2.

2.2. Preprocessing Procedure. Te fRMA algorithm was
utilized to preprocess raw data. Compared to other pre-
process methods (e.g., GCRMA and RMA), fRMA can ef-
fectively control or eliminate batch efects and provide
summary expression values for a single array. Of note, the
ability to control or eliminate the batch efect is especially
relevant to the current study since multiple studies were
involved in both the lung cancer and Alzheimer’s disease
cohorts.Whenmultiple probe sets were matched to the same
gene, the probe set with the largest absolute log-fold change
between the diseased group and the control group was kept.
Finally, the Combat algorithm was implemented to elimi-
nate the possible remaining batch efects.

2.3. Identifcation of DEGs. Moderated t-tests (executed by
the R limma package) were conducted to identify the dif-
ferentially expressed genes, and the p values were adjusted
for multiple testing using the Benjamini–Hochberg (BH)
procedure to obtain false discovery rate values. Te cutof
values for false discovery rate and log fold change were 0.05
and 0.5, respectively.

2.4. AEModels Used to Extract a One-Dimensional Summary
Score. Te deep learning process was implemented on the
overlapped DEGs to extract a one-dimensional repre-
sentation (that is, a pseudogene to represent all identifed
overlapped DEGs). Based on the pseudogene, the asso-
ciation direction between lung cancer and Alzheimer’s
disease were inferred. Te whole dataset (including all
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respective cases in the integrated datasets) was randomly
divided into a training set and a validation set with a ratio
of 3 : 2, in which the ratio of cases to controls are roughly
equal.

Te encoder of the AE model comprised a dense network
connecting the input layer to a hidden layer with 128 nodes, a
second layer with 64 nodes, and a third hidden layer with 10
nodes.Te activation function used in the encoder network was
Rectifed Linear Unit (ReLU). Ten the third hidden layer was

connected to a bottleneck layer with one node.Te dropout rate
was set at 0.2.

Te decoder of the AE model comprised inversely or-
dered layers beginning with a fully connected layer that
connects the bottleneck layer to a 10 node-hidden layer, a
second densely connected layer with 64 nodes, a third layer
with 128 nodes, and the output layer which decodes back the
dimension of original data without any activation function
(linear transformation). Again, the dropout rate was set at

Table 2: Summary of microarray experiments used in this study.

Accession nos. Platform No. of diseased No. of controls Reference
Alzheimer’s disease cohort
GSE4757 GPL570 10 (entorhinal cortex) 10 (paired) Dunckley et al. [30]
GSE48350 GPL570 (including 4 brain regions) 80 173 Berchtold et al. [31]
GSE5281 GPL570 (6 brain regions) 87 74 Liang et al. [32]
Lung cancer cohort
GSE18842 GPL570 46 45 (paired) Sanchez-Palencia et al. [33]
GSE102287 GPL570 32 34 Mitchell et al. [34]
GSE118370 GPL570 6 6 Xu et al. [35]
GSE19188 GLP570 94 62 Hou et al. [36]
GSE19804 GLP570 60 60 Lu et al. [37]
GSE103888 GLP570 13 6 Kuo et al. [38]

Table 1: Recent studies that investigated the association between the lung cancer and Alzheimer’s disease.

Studies Data sources Study designs Statistical methods Findings
Realmuto
et al. [19] Patients in Palermo, Italy Case-control Conditional logistic regression

analysis, Mantel–Haenszel analysis
Inverse

relationship

Ou et al. [7] National Health Insurance Research
Database in Taiwan Retrospective Cox proportional hazards

regression, likelihood ratio test
Inverse

relationship
Musicco et al.
[8]

Health Authority Registry in in Northern
Italy Retrospective Student’s t-test Inverse

relationship
Freedman
et al. [18]

Medicare and National Cancer Institute’s
SEER Case-control study Logistic regression, Cox

proportional hazards regression
No

relationship

Feng et al. [21]
International Genomics of Alzheimer’s
project (IGAP) and Genetic Associations

and Mechanisms in Oncology

Genome-wide
association study

(GWAS)

LDSC package for cross-trait LD
score regression

Positive
correlation

Sánchez-Valle
et al. [23] GEO and TCGA databases

Meta-analysis based
on gene expression

data

MetaDE package for the diferential
expression analysis, gene set

enrichment analysis

Inverse
relationship

Lee et al. [10] Korean National Health Insurance Service Population-based
longitudinal study Cox proportional hazard regression Inverse

relationship
Greco et al.
[13] GEO and TCGA databases Gene expression data Stabilized independent component

analysis, Wilcoxon test
Inverse

relationship
Seddighi et al.
[14] IGAP Mendelian

randomization
Two-sample Mendelian

randomization
Inverse

relationship
Sherzai et al.
[9] National inpatient sample (of U.S) Cross-sectional Logistic regression Inverse

relationship
Forés-Martos
et al. [24] GEO and TCGA databases GWAS Cross-trait LD score regression Inverse

relationship

Karanth et al.
[6]

University of Kentucky Alzheimer’s
Disease research center and Kentucky
cancer Registry (mainly people in

Kentucky, US)

Retrospective Logistic regression Inverse
relationship

Ren et al. [11] People in Shanghai, China Retrospective Cox proportional hazard regression Inverse
relationship

Bi et al. [20] Experiment, mice model Experimental data Student’s t-test Positive
correlation

Passarella
et al. [22] NA Review NA Positive

correlation
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0.2. Te AE model was optimized using a stochastic gradient
descent method (the Adam method), and the learning rate
was set at 0.0005.

Te aforementioned values of hyper-parameters were
calculated via a grid search, and the optimal values were
confgured based on those minimizing mean squared error
(MSE). Specifcally, the learning rate was selected from
0.0001, 0.0005, 0.001, and 0.002, and the depth of AE
network (including the output layer) was tried from 6, 8,
and 10.Tree values, 64, 96 and 128, were tried for the node
number of the frst hidden layer; 32, 48, and 64 for the
second hidden layer; 10, 12, and 16 for the third hidden
layer. Te dropout rate was selected from 0.1, 0.2, and 0.3.
Default values were retained for the remaining hyper-
parameters. Te training processes were set to stop, and
related model parameters were confrmed if the MSE
metrics in the validation sets showed marginal changes/
decrements.

Next, using the AE network for lung cancer, the rep-
resentation scores of Alzheimer’s disease patients and lung
cancer patients (using the respective test sets) were calcu-
lated. Similarly, using the AE model for Alzheimer’s disease,
the representation scores of lung cancer patients and Alz-
heimer’s disease patients (again, using the data from test
sets) were calculated. Of note, the predicted values for lung
cancer/Alzheimer’s disease patients calculated using the
weights learned from the deep learning model for the op-
posing diseases are counterfactual. Scatterplots of the pre-
dicted values based on the Alzheimer’s disease AE model
versus the predicted values based on the lung cancer AE
model were diagrammed to examine how Alzheimer’s
disease and lung cancer are related. Te fowchart of the
proposed procedure is presented in Figure 1. Lastly, the
Python codes of AE modeling have been restored in the
GitHub repository (https://github.com/windytian/
AE_geneexpression).

2.5. Pathway Enrichment Analysis. String software (https://
www.string-db.org) was used to obtain the gene-to-gene
interaction networks for the overlapped DEGs between
Alzheimer’s disease and lung cancer using a cutof of
confdence scores at 0.7 [39].Te resulting fles that recorded
these networks were then uploaded into the Cytoscape
software for visualization and subsequent hub-gene
searching. Te Cytoscape plugin, CytoHubba [40], was
utilized to identify the hub genes that may stand in the
essential positions in the resulting networks. Here, the top 50
genes ranked by their connectivity degree were regarded as
the hub genes. Te pathway enrichment analyses to obtain
the KEGG pathways [41] and GO terms [42] enriched by the
identifed DEGs of lung cancer and Alzheimer’s disease were
carried out using the R clusterProfler package. Except for
the cutof value of FDR loosened to 0.2, the default values of
other parameters in the clusterProfler package were used.

Te GeneCards (https://www.genecards.org) [43]
knowledge base and PubMed were searched to investigate
the biological relevance of identifed overlapped DEGs with
unique gene symbols.

3. Software

All experiments were executed using the Python 3.6 pro-
gramming language and the R 4.1.1 version. Te fRMA
algorithm was utilized to preprocess the raw data [44]; the
combat algorithm (implemented by the R SVA package) [45]
was used to adjust for batch efect; limma was used to ft
moderated t-tests; clusterProfler was used to carry out
pathway enrichment analysis; and ggplot2 was used to draw
bulb plots.

In addition, the Python Keras library in the framework of
TensorFlow was used to implement AE networks.

4. Results

4.1. Identifcation of Respective DEGs and Overlapped DEGs.
Te integrated lung cancer cohort included 464 subjects,
comprising 251 lung cancer patients and 213 normal con-
trols/tissues. Using the whole integrated lung cancer dataset,
the moderated t-tests were carried out to identify the DEGs
between the diseased group and the control group. In this
comparison, 1,935 genes were identifed as downregulated
and 1,353 as upregulated DEGs.

In the Alzheimer’s disease cohort, 177 patients and 257
controls were included. Likewise, moderated t-tests were
used to identify DEGs. In the comparison between the
Alzheimer’s disease group and the control group, 508 DEGs
were upregulated and 263 were downregulated.

Te number of overlapped genes between these two sets
of DEGs is 266, of which 21 genes were co-upregulated in the
two cohorts and 75 genes were co-downregulated. Te other
170 genes were inversely expressed. Notably, both concor-
dantly regulated genes (36%) and inconcordantly regulated
genes (64%) account for substantial proportions of the
overlapped DEGs, which made the inference on the asso-
ciation direction between Alzheimer’s disease and lung
cancer inconsistent.

4.2.PathwaysEnrichedby theOverlappedDEGs. Between the
Alzheimer’s disease and lung cancer cohorts, 266 overlapped
DEGs were identifed. GO functional analysis showed the
overlapped genes were mainly enriched in system devel-
opment, cell projection, and enzyme binding (Figures 2(a)–
2(c)). Enrichment in mineral absorption, the HIF-1 sig-
naling pathway, and carbon metabolism of the KEGG
pathway analysis was shown in Figure 2(d). Additionally, the
gene-to-gene interaction network that summarizes how
interplay of the 266 overlapped DEGs was constructed using
String software. Te resulting network comprised two large
subnetworks (involving more than 10 genes) and several
small subnetworks (with at most several nodes). FGF2,
SNCA, and LDHA are located in the centers of these two
large subnetworks and were identifed as hub genes.

4.3. Deep Learning Analysis. To obtain a unifed estimate on
the association between lung cancer and Alzheimer’s disease,
the AE networks (as described in the methods section) were
constructed based upon the expression profles of these
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overlapped DEGs, and the outputs of the encoder network
(one-dimensional values in the bottleneck layer) were used
to evaluate the correlation between the two diseases. Te
Spearman’s correlation coefcient between the predicted
values using the two AE networks was 0.825 (p< 0.001) for
the Alzheimer’s disease test set and 0.316 (p< 0.001) for the
lung cancer test set. Te deep learning analysis indicted a
positive correlation between Alzheimer’s disease and lung
cancer (Figure 3).

Next, we used the respective genes involved in the
enriched KEGG pathways for the Alzheimer’s disease and
lung cancer cohorts to train AE models again and thus to
investigate the association between the two diseases more
deeply. Te Spearman’s correlation coefcient between the
predicted values using the two AE networks for the test set of
Alzheimer’s disease was estimated as 0.643 (p< 0.001), and
for the lung cancer test set was 0.411 (p< 0.001) (Figure 4).
Again, a positive correlation between the Alzheimer’s

disease and lung cancer was implied. Notably, the correla-
tions between the predicted values by two AE models were
signifcantly smaller for the lung cancer data. Tis may be
because lung cancer is a very heterogeneous disease. On
average, it took 22 seconds for a single run of AE modeling
on a Lenovo laptop with an AMD Ryzen 7 4800U processor
and 16GB RAM.

5. Discussion

Insights on the connections between distinct diseases ofer
new opportunities to uncover their etiology and facilitate
drug repurposing. To the best of our knowledge, however,
few studies have investigated the association between dif-
ferent diseases from the perspective of molecular biology.
Tis may be because the common relevant genes of two
diseases involve genes with identical regulation directions
and genes with opposite regulation directions. In this study,
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Figure 1: Flowchart illustrating how the proposed procedure (based on autoencoder networks) provides a unifed answer to the association
direction between the lung cancer and Alzheimer’s disease. LC: lung cancer, AD: Alzheimer’s disease, AE: autoencoder.
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we used a deep learning method to generate a one-di-
mensional representation (a pseudogene) of identifed DEGs
and then sought to determine the association direction
between two diseases based on these pseudogenes.

Tis study, one of the frst attempts to integrate both
deep learning and omics data mining to explore how the
two diseases are associated, revealed a comorbidity rela-
tionship between Alzheimer’s disease and lung cancer. Our
analysis results difer from the results of most epidemio-
logical studies such as [7, 8]. Potential selection bias may
partially explain this inconsistency. Specifcally, the prev-
alence of Alzheimer’s disease is directly related to age, and
is signifcantly higher among people >65 years old [46].
However, because 57% of lung cancer cases are diagnosed
at late stages with metastasis, of which the 5-year survival
rate is only 5% [1], the 5-year survival rate of lung cancer is
as low as approximately 19%. Consequently, the relevant

epidemiological studies that investigate the relationship
between Alzheimer’s disease and lung cancer may be
subject to survivor bias (selection bias), which deviates the
association estimate towards a negative value. On the other
hand, the development of lung cancer among Alzheimer’s
disease patients may be neglected because of these patients’
incapability to express their health conditions and corre-
sponding symptoms.

5.1. Biological Relevance. As indicated by the GeneCards
database, 148 of the overlapped DEGs are directly related to
lung cancer and 116 are indirectly related to lung cancer. If
the disease of interest is broadened to include all types of
cancer, the number of directly relevant genes increases to
258. In contrast, for Alzheimer’s disease the number of
directly relevant genes is 146 and the number of indirectly
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relevant genes is 118. Terefore, the identifed DEGs have
good biological implications, may take part in the cancer and
neuron cell diferentiation, which may most likely represent
the important features of lung cancer and Alzheimer’s. Of
the 22 upregulated DGEs, DDIT4 [47, 48], FAT1 [49, 50],
HSPB1 [51, 52], ZIC2, and SPP1, most among these genes
defned as hub genes, are broadly expressed in the nervous
system and tumor tissues, and may examine the functional
contribution during neuronal diferentiation, neuronal
death, as well as correlate with malignant biological be-
haviors of lung cancer. Notably, ZIC2, which represses
primary neurogenesis and modulates primary neurogenesis
apoptosis in the neural plate [53], is typically overexpressed
in Alzheimer’s disease and lung cancer. In lung adenocar-
cinoma, ZIC2 upregulates OCT4 expression to promote
cancer stem cell traits, leading to tumorigenesis and a poor
prognosis [54].

SPP1 may act as a putative tissue repair gene and work
together with other putative tissue repair genes and spe-
cialized subgroups overexpressing MHC type II to compose
the activated response microglia [55], which is regarded as
the converging point for aging, sex, and genetic Alzheimer’s
disease risk factors. SPP1 is also considered as a marker for
highly malignant lung cancer [56]. It is signifcantly over-
expressed in tumor tissues, and may promote the prolif-
eration, migration and invasion of lung cancer cells.

Similarly, some concordant genes were also discovered
among the 75 downregulated DEGs, and these genes play
critical roles on inhibiting tumor growth and metastasis, as
well as improvement of cognitive decline in Alzheimer’s
disease. For instance, the expression level of BDNF, defned
as a hub gene in this study, is decreased in Alzheimer’s
disease by lowering the phosphorylated cyclic adenosine
monophosphate (cAMP) response element binding (CREB)
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model for patients with Alzheimer’s disease based on the genes involved in the enriched pathways of respective AD and LC cohorts. (b)Te
predicted summary/representation values by the LC autoencoder model versus those by the AD autoencoder model for patients with lung
cancer based on the genes involved in the enriched pathways of respective LC and AD cohorts. LC: lung cancer, AD: Alzheimer’s disease.
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protein, which may lead to synaptic dysfunction and cog-
nitive impairments [57]. In non-small cell lung cancer, miR-
496 targeted BDNF-mediated PI3K/Akt signaling pathway
suppresses tumorigenesis [58]. CNR1, DHCR24, DPP6, and
MEF2C were strongly correlated with disturbances in ex-
ecutive functioning, episodic memory, and visuospatial
functioning [59–62], which deregulate expression in mul-
tiple human cancers contributing to the antioxidant and
repairing activity [63, 64].

At the pathway level, the enriched KEGG pathways and
GO terms generated by the 266 overlapped genes were
related to nervous system development, cell diferentiation,
and response to endogenous stimulus, cell junction, and
kinase binding. Of them, hypoxia-inducible transcription
factor-1 (HIF-1) signaling pathway and hemi-methylated
DNA-binding are implicated in the comorbidity observed in
lung cancer and Alzheimer’s disease. Specifcally, HIF-1
controls the response to hypoxia at the molecular level.
Hypoxia regulates the activation of HIF by protein stability,
phosphorylation [65], nuclear translocation and activity, and
consequently mediates Alzheimer’s disease progression [66].
Meanwhile, HIF-1-mediated signaling has been implicated
in both cell survival and cell death pathways. Te HIF-1
pathway participates in promoting metabolic reprogram-
ming by transactivating multiple hypoxia-responsive genes
related to glycolytic metabolism [67]. Its activation is a
notable characteristic of tumor and contributes to the ag-
gressive biological behavior of lung cancer cells, and relates
to a poor clinical outcome [68].

Several previous studies [20–22] shown in Table 1 vouch
for a positive association between Alzheimer’s disease and
lung cancer, which is in harmony with our fnding. In this
study, the AE networks were constructed to generate re-
spective one-dimensional representations of gene expression
profles for Alzheimer’s disease and lung cancer. Tis
computer-aided exploration based on a deep learning
consumed less time and generated a unifed answer to how
the two diseases are related. To our knowledge, this is the
frst study that integrates a representative learning method
and gene expression profles to specifcally explore the as-
sociation between the two diseases, which is of empirical
signifcance in terms of mining high-dimensional big data
and revealing physiopathological mechanisms of complex
diseases and their potential association.

Certainly, this study has its own limitations. First, the
sample sizes of both the Alzheimer’s disease and lung cancer
cohorts were not large, which may limit the generalization of
the fndings from this study. Tis may be considered as the
biggest challenge we face. Second, while AE can accomplish
the task of generating a lower-dimensional representation
for an individual’s gene expression profle without any
difculties, it is an unsupervised learning method that is not
excellent at distinguishing among diferent groups. Finally,
the development and progression of certain complex dis-
eases resulted from interaction efects of genetic and envi-
ronmental factors. Te current AE modeling does not
include any potential environmental factors.

6. Conclusions

Te joint analysis of gene expression profles from Alz-
heimer’s disease and lung cancer based on a deep learning
method allowed us to determine the direction of association
between the two diseases and then to propose research
hypotheses for experimental justifcation and validation. It is
anticipated that deep learning methods should be powerful
tools in the relevant research areas. For example, in the
future we may generate “digital twins” of Alzheimer’s dis-
ease/lung cancer patients and computationally mimic the
treatment efects of drugs combating these diseases on
synthesized patients with the aid of deep learning methods.
Additionally, the proposed AE model may be used as the
framework to generate an app, thus a clinician can deter-
mine the risk of concurrence of the two diseases for an early
prevention and intervention based on a patient’s gene ex-
pression profles.

As far as the methodology aspect is considered, we will
try to collect more gene expression data and include
manifold data from other platforms (e.g., RNA-Seq data,
proteomics data, and metabolomics data) to investigate the
association between the two diseases more deeply. More-
over, we will defnitely consider other deep learningmethods
capable of the dual tasks (enabled to both generate low-
dimensional representations and have a good capacity of
learning labels, such as a deep graph network equipped with
multiple-headed attention mechanisms) and use such a
method as the framework to assess the association between
Alzheimer’s disease and lung cancer again. Lastly, we also
plan to include disease-related environmental factors in the
fnal model. More importantly, fundamental and clinical
experiments are highly desirable to explore the potential
intrinsic mechanisms that can validate and explain the
positive link between the two diseases. Tese studies would
pave the way towards drug repurposing and drug combi-
nation strategies for the two diseases, and thus, lead to the
successful defeat of Alzheimer’s disease and lung cancer.

To conclude, deep learning methods such as an AE
network may help decipher how the distinct diseases are
associated and facilitate drug repurposing. Such an appli-
cation will save resources and accelerate the clinical
implementation of the existing drugs for repurposing.

Data Availability

Raw data of the Alzheimer’s disease cohort used in the study
were downloaded from the Gene Expression Omnibus
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Microarray experiments for the lung cancer cohort were
under accession numbers GSE18842, GSE102287,
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