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Cloud computing has grown as a computing paradigm in the last few years. Due to the explosive increase in the number of cloud
services, QoS (quality of service) becomes an important factor in service �ltering. Moreover, it becomes a nontrivial problemwhen
comparing the functionality of cloud services with di�erent performance metrics. �erefore, optimal cloud service selection is
quite challenging and extremely important for users. In the existing approaches of cloud service selection, the user’s preferences
are o�ered by the user in a quantitative form. With fuzziness and subjectivity, it is a hurdle task for users to express clear
preferences. Moreover, many QoS attributes are not independent but interrelated; therefore, the existing weighted summation
method cannot accommodate correlations among QoS attributes and produces inaccurate results. To resolve this problem, we
propose a cloud service framework that takes the user’s preferences and chooses the optimal cloud service based on the user’s QoS
constraints. We propose a cloud service selection algorithm, based on principal component analysis (PCA) and the best-worst
method (BWM), which eliminates the correlations between QoS and provides the best cloud services with the best QoS values for
users. In the end, a numerical example is shown to validate the e�ectiveness and feasibility of the proposed methodology.

1. Introduction

With the advent of service computing, cloud computing has
evolved into a growing computing paradigm that is revo-
lutionizing the way of managing and delivering computing,
storage, and on-demand service solution [1]. Cloud com-
puting o�ered three di�erent service models to its user either
infrastructure as a service, platform as a service, and software
as a service (IaaS, PaaS, and SaaS). Cloud computing is
categorized into four types: private cloud, public cloud,
hybrid cloud, and community cloud [2, 3]. �e cornerstone
of cloud computing is that users can access cloud services
from anywhere, at any time on a subscription basis. Cloud
computing provides the “pay-as-you-use” pricing model,
where cloud users are charged only for the consumed re-
sources. Many of the world’s largest IT �rms (including

IBM, eBay, Microsoft, Google, and Amazon) have moved
their existing business solutions to the cloud because of the
advantages it o�ers [4].

A growing number of cloud service providers (CSPs)
now provide their customers with a wide range of options for
selecting the best cloud service for their individual functional
needs. Many CSPs o�er identical services, but at varied
pricing and quality levels, and with a wide range of addi-
tional options and features. However, a supplier may be
cheap for storage but expensive for computing. Because of
the wide range of cloud service options available, it can be
di¡cult for customers to determine which CSP is best suited
to meet their speci�c needs. Incorrect selection of a cloud
service provider (CSP) can lead to service failure, data se-
curity or integrity breaches, and noncompliance with cloud
storage standards in the future [5].
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Cloud service selection usually involves matching cus-
tomer needs to the features of cloud services offered by
various CSPs. 'e growing number of CSPs and their
variable service offerings, pricing, and quality have made it
difficult to compare them and choose the best one for the
user’s needs. To determine which cloud service provider
(CSP) is the greatest fit for a cloud user’s needs, a wide range
of evaluation criteria for distinct cloud services from mul-
tiple CSPs must be considered. Recently, multiattribute
decision-making (MCDM) has come up as one of the most
efficient decision-making tools, showing its potential to
solve real-world problems [6–10]. 'us, selecting the best
CSP is a difficult MCDM problem in which various choices
must be reviewed and ranked using a variety of criteria based
on specific user preferences [11–13].

In recent year, numerous effort has been dedicated to
the cloud service selection problem [11, 14, 15]. In liter-
ature, the existing methodology rarely takes into account
the correlation of QoS criteria. Indeed, QoS criteria are
often correlated with each other, i.e., strong positive cor-
relation between availability and successability and a strong
negative correlation between response time and through-
put [16]. If a cloud service has a short response time, it may
also have high throughput. Due to this reason, weighted
summation of QoS data may cause repetitive computation
over QoS attribute information. If the number of QoS
attributes become larger, then the degree of repetitive
computation will be higher and it costs larger calculation
time. In this situation, it is difficult for the existing cloud
service selection method to assess the QoS value of the
cloud service accurately and efficiently [17].

In this scenario, we suggested a new framework called
“optimal cloud (OPTCLOUD)” for the assessment and se-
lection of the best cloud service based on QoS values. 'e
primary objective of the OPTCLOUDmodel is to reduce the
size of selection criteria without significant information loss
and to keep the cloud service evaluation process expressive
and easy. In view of these challenges, we have introduced an
efficient and accurate evaluation method for cloud services
based on PCA-BWM. Here, PCA is used to reduce the data
dimension and eliminate the correlation among QoS criteria
while BWM is used to determine the weight of each QoS
criterion based on user preference [18, 19]. Note that basic
PCA calculates the weight of the principal component based
on the QoS information dataset, which is too objective. For
this reason, we integrated the BWM method with PCA, for
simplifying the cloud service selection process. In general,
this contribution provides a faster and more effective
method to minimize the limitation of the previous studies,
i.e., subjectivity, high computational requirement, and
multicollinearity. To the best of our knowledge, this is the
first time that PCA and BWM have been directly applied to
cloud service selection problems.

'e significant contributions of this paper are listed as
follows:

(1) A novel “OPTCLOUD” framework is suggested for
measuring the cloud service alternatives as per their
offered QoS criteria value.

(2) A technique is proposed that is both efficient and
reliable for removing correlations between QoS
criteria in complicated decision-making problems.

(3) 'e experimental results demonstrate the feasibility
of the proposed methods.

'e remainder of this article is organized as follows.
Section 2 talks about the related work. A motivational ex-
ample is discussed in Section 3. Section 4 introduces some
background knowledge that is admissible to our work. 'e
proposed cloud service ranking scheme is discussed in
Section 5. Section 6 explains the proposed methodology for
optimal cloud service selection. In Section 7, a numerical
case study and sets of the experiment are included to depict
the feasibility of the proposed methodology. In addition, the
results and their validation are discussed. At last, Section 8
discusses the concluding remarks and future scope.

2. Related Works

'is section compares and contrasts our work to previous
efforts in order to demonstrate how our approach differs
from those already in use for cloud service selection. In
general, all proposed techniques select the cloud services
based on customer preferences and QoS criteria.'ese cloud
service decision-making methods are classified into two
categories: MCDM-based cloud service selection method
and non-MCDM-based cloud service selection method.

2.1. MCDM-Based Cloud Service Selection Methods. A
thorough review of the literature reveals that the application
of MCDM-based techniques for cloud service selection and
ranking has received a significant amount of attention. Some
of the frequently used MCDM techniques such as analytic
hierarchy process (AHP) [20], analytic network process [21],
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) [22], Simple Additive Weighting (SAW)
[23], multiattribute utility theory [24], best-worst method
(BWM) [19], and outranking [25]. Using a modified DEA
and SDEAmodel, the author [26] shows how to pick the best
cloud service from among a variety of options based on the
needs of the customer. Using a fuzzy ontology, a new fuzzy
decision-making framework is proposed in the paper [27],
which is capable of handling fuzzy information and finding
the best cloud service. 'e authors use fuzzy AHP and
TOPSIS to calculate QoS weights and measure cloud service
performance. Lang et al. [28] proposed a Delphi method for
identifying and classifying the QoS criteria for cloud service
provider evaluation. In [29], a framework called TRUSS was
presented for the identification of trustworthy cloud ser-
vices. A brokerage-based cloud service selection framework
was proposed in the paper [30]. Ding et al. [31] came up with
collaborative filtering to make service recommendations that
are time-sensitive. 'e objective was to expedite the process
of identifying cloud service providers with a higher level of
customer satisfaction. 'ese decision-making methods can
be divided into stochastic, deterministic, and fuzzy methods
depending on the type of data they use and how many
decision-makers participate in the decision process, i.e.,
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single or multiple (group). Table 1 presents the overview of
the cloud service selection-related work based on the
MCDM method.

2.2. Non-MCDM-Based Cloud Service Selection Methods.
In this subsection, we review the existing literature on
service selection methods that are not based on MCDM.
'ese methods include optimization techniques, game
theory, graph theory, descriptive logic, collaborative filter-
ing, and linear programming.

Lang et al. [28] proposed a Delphi method for identifying
and classifying the QoS criteria for cloud service provider
evaluation. In [29], a framework called TRUSS was pre-
sented for the identification of trustworthy cloud services. A
brokerage-based cloud service selection framework was
proposed in the paper [42]. Somu et al. [43] suggested a
method for cloud services based on hypergraphs. Somu et al.
[44] developed a preliminary set-based hypergraph tech-
nique for service selection. In the paper [45], the author
suggested a method for identifying the best cloud service by
excluding less dependable services based on QoS criteria.
Ding et al. [31] came up with collaborative filtering to make
service recommendations that are time-sensitive. 'e ob-
jective was to expedite the process of identifying cloud
service providers with a higher level of customer satisfaction.
For nonfunctional requirements, Ma et al. [39] suggested a
collaborative QoS model for identifying the optimal cloud
service. Wang et al. [46] developed a game-theoretic strategy
for QoS-aware cloud service selection.

2.3. Differences between Our Research and Existing Work.
To the best of our knowledge, there are a few research studies
that have a correlation between QoS attributes. In the paper
[47], the author considers the correlation between different
QoS attributes but how to handle these correlations is not
discussed. A business service-based correlation model is
discussed in the paper [48]; however, it only discusses
modeling aspects and the model is not applied in the service
selection process. A PCA-based Web service selection
method is discussed in the paper [16]. By using the PCA
method, this paper tries to eliminate the correlation between
QoS attributes but the author does not consider the QoS
attribute weight information that plays an important role in
the service selection process. 'e paper [17] discusses a
method for selecting multimedia services based on weighted
PCA. However, two shortcomings exist in this paper. First,
this paper still lacks adaptability in weight assignment for
QoS attributes, i.e., how to assign appropriate QoS weight
information accurately and efficiently. Second, this paper
used uniform standardization for all QoS attributes that
bring discrepancies between negative and positive attributes.

To address the shortcoming of existing work, we have
developed a PCA-BWM-based scheme for optimal cloud
service selection based on correlation aspects. Our work
differs in several ways from the existing cloud service se-
lection methodology. On the one hand, we use the PCA
method to exclude the correlation between different service
quality attributes and reduce the impact of false or artificial

QoS attribute information. On the other hand, in order to
assign a weight to the various QoS attributes efficiently and
precisely, we use the BWMmethod.'e BWM is a subjective
method that considers the subjective preference of cloud
customers in the cloud service selection process. 'is
study combines the objective and subjective aspects to
achieve a better assessment result in cloud service selection
problems.

3. Motivational Example

Suppose n cloud service providers satisfy the cloud cus-
tomer’s functional requirement and are ready to deliver their
services with QoS parameters, i.e., availability, latency, re-
sponse time, throughput, etc. 'ese QoS parameters are not
independent but correlate with one another. In this situa-
tion, selecting an efficient and accurate cloud service among
n service providers based on these QoS criteria becomes a
challenging task for a cloud user.

Our hypothesis was tested using a real-world QWS
dataset of 2507 real services with 9 QoS parameters, in-
cluding response time (RT), availability (Ava), successability
(Succ), throughput ('), reliability (Re), compliance (Com),
best practices (BP), latency (Lat), and documentation (Doc)
[49]. We computed the correlation coefficient matrix of the
QWS dataset as displayed in Table 2. We define the cor-
relation coefficient for the QoS parameters as a regression
line and this is displayed in Figure 1. In this figure, we can
observe a strong positive correlation between successability
and availability at a value of 0.9892. Moreover, there is a
positive correlation between best practice and reliability at a
value of 0.6895. Furthermore, the correlation between re-
sponse time and throughput shows the strongest negative
correlation at a value of −0.2530. 'is finding indicates that
certain QoS parameters associated with cloud services are
not independent but rather correlated. As a result, the
current cloud service selectionmethods are ineffective in this
case, leading to an inaccurate result when selecting cloud
services.

4. Background Knowledge

4.1. Best-Worst Method. Razaei introduced the best-worst
method (BWM) in 2015 as a new MCDM method for de-
termining the relative importance of QoS criterion weights
[19]. Compared to other well-known MCDM methods like
AHP, this novel method finds more consistent results with
fewer pairwise comparisons [20]. In the AHP method, if
there are a number of QoS criteria, then n(n − 1)/2 com-
parisons are required while, in the BWM, only 2n − 3
comparisons are needed.

4.2. Principal Component Analysis. PCA is a powerful
multivariate statistical procedure proposed by Pearson
[18]. It is a dimensionality reduction technique which
decreases the dimension of a dataset without much loss of
information [50]. PCA transforms a large number of in-
terrelated variables into a set of values of linearly uncor-
related variables, which are known as principal
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components. 'e principal components are calculated by
identifying the eigenvalue of a covariance matrix of the
original dataset. Note that the number of principal com-
ponents can be equivalent to or less than the original
variables. 'is conversion is performed so that the first
main component maintains maximum variance and all
succeeding components have remaining variance without
being correlated with the preceding components.

5. The Proposed Cloud Service Ranking Scheme

'eobjective of this study is to introduce a new cloud service
selection scheme among the available cloud service alter-
natives according to the needs of cloud users. 'e proposed

scheme has three major parts: (a) the basic idea of the cloud
service selection scheme, (b) the OPTCLOUD framework,
(c) and the schematic diagram. 'is section focuses on the
detailed description of the proposed framework and explores
the schematic diagram. 'e following subsection describes
the detailed explanation of each part.

5.1. Basic Idea. In essence, a cloud service selection problem
leverages the correlation information among various QoS
attributes which involves objective and subjective aspects.
Based on the QoS value of cloud service, objective aspects
and subjective aspects are collected based on cloud customer
preference over different QoS attributes.

Table 2: Correlation coefficient of QWS dataset QoS attributes.

RT Ava Succ ' Re Com BP Lat Doc
RT 1
Ava −0.0664 1
Succ −0.2530 0.2007 1
' −0.0773 0.9892 0.2007 1
Re 0.0471 0.1289 0.2556 0.1211 1
Com −0.0828 0.2436 0.0603 0.2609 −0.03 1
BP 0.0327 0.0571 0.1684 0.0554 0.6895 0.0336 1
Lat 0.3907 −0.0988 −0.1450 −0.1107 −0.0239 −0.0773 −0.0079 1
Doc −0.0402 −0.0058 −0.0311 0.0044 0.0606 −0.0803 −0.0366 −0.0403 1

Table 1: MCDM-based cloud service selection approaches.

Reference Selection and ranking
approach Brief description Validation

Garg et al. [11] AHP based ranking Developed a framework called SMICloud to rank cloud services based on
functional and nonfunctional QoS parameters CS

Tripathi et al.
[32] ANP Proposed SMI framework based QoS criteria interactions for the ranking of the

cloud services CS

Singh and sidhu
[33]

AHP and improved
TOPSIS

Proposed a framework to evaluate the trustworthiness of cloud service
providers based on various QoS criteria SA

Jaiswal and
mishra [34]

Fuzzy ontology and
MCDM method

Proposed a framework that models nonlinear preferences of users based on
criteria interactions for cloud service selection and ranking EA

Kumar et al. [12] AHP and TOPSIS Designed a new framework to rank cloud services in a crisp environment CS/SA

Nawaz et al. [35] Markov chains and BWM Proposed brokerage-based architecture for the selection of cloud services based
on user priorities EV

Basset et al. [36] Neutrosophic set theory
with AHP

A proposed new multicriteria decision-making model to select suitable cloud
service provider CS

Yadav and
goraya [37] AHP Developed a framework to handle QoS requirements of cloud customer CS

Jatoth et al. [38] AHP and grey TOPSIS Apply AHP to compute the importance of QoS parameters and integrated grey
set theory with TOPSIS to rank the cloud services CS

Ma et al. [39] Collaborative filtering
with TOPSIS

Proposed a method which considers the objective QoS variation and subjective
user preferences during different time periods CS

Sun et al. [27] Fuzzy ontology and
MCDM method

Developed a framework that models nonlinear preferences of users based on
criteria interactions for CSRS EA

Hussain et al.
[40] Best-worst method Perform services evaluation from a QoS perspective and overcome the

drawbacks of AHP EA

Hussain et al.
[40]

Fuzzy linear best-worst
method

Proposed FLBWM method which recommends appropriate cloud service to
clients based on their QoS requirements CS

Tiwari et al. [13] Neutrosophic set theory
and TOPSIS

Proposed a framework that integrated neutrosophic set theory with modified
TOPSIS for ranking cloud services CS

Kumar et al. [41] Fuzzy AHP and TOPSIS Proposed a fuzzy framework for the selection of cloud services EA/SA
EA: experimental analysis, CS: case study, SA: sensitivity analysis.
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To assess the objective aspect of the QoS attribute value,
the PCA method is used to minimize dimensionality
through the analysis of covariance between the QoS attri-
butes. It transforms a series of correlated QoS attributes into
an independent principal component without losing too
much information.

Apparently, the only objective aspect is not enough to
find a suitable cloud service. Because individual preference
over different QoS attributes plays an important role in
cloud service selection problems, we calculate the weight of
the QoS attributes in our proposed scheme by applying the
best-worst method (BWM). It has more consistent results
and has less pairwise comparison than the popular AHP
method. Finally, the integration of BWM and PCA methods
provides a trade-off between computational complexity and
results in a more rational way with consistency in the se-
lection of cloud services.

5.2. Proposed OPTCLOUD Framework. 'is section intro-
duces a proposed broker-based framework (OPTCLOUD)
for cloud service as shown in Figure 2. 'is framework
consists of three distinct components: (i) cloud broker, (ii)
cloud benchmark service provider, and (iii) cloud service
repository. 'e framework is reliant on the quality of service
(QoS) information that comes from multiple sources. 'e
service provider’s specifications and third-party monitoring
services are examples of these sources. Furthermore, we also
suppose that the cloud service repository keeps track of
available cloud service providers. 'e thirst party moni-
toring services keep track of all of the cloud services that
have been registered. In order to collect QoS performance
data, the thirst party monitoring services run benchmark
tests against all of the cloud services that are available. 'e
performance data are kept in the QoS repository, and QoS

performance data is used by cloud brokers to recommend
appropriate cloud services to users.

(i) Cloud broker: the suggested framework is built
around the cloud broker. It performs a variety of
activities, as illustrated in Figure 2, including cloud
service discovery and cloud service ranking. It in-
teracts with the cloud service repository to filter the
cloud services that meet the cloud user’s require-
ments. 'e cloud broker’s cloud service ranking
module ranks filtered cloud services according to
the significance of each QoS parameter provided by
the cloud user. For each cloud service, a ranking is
generated using the proposed methodology. 'e
cloud service discovery module is used to discover
and store information about the various cloud
services available.

(ii) Cloud benchmark service provider: this component
is a third party that audits or monitors cloud ser-
vices continuously. It performs benchmark tests on
available cloud services on QoS criteria such as
availability, reliability, throughput, and efficiency. It
goes through an extensive testing process on a QoS
criterion several times in order to verify the QoS
claims made by the cloud service providers. Cloud
benchmark service providers such as Cloud-
Spectator [10], CloudHarmony [111], and others
analyze cloud services on a regular basis and put the
results in a cloud service repository.

(iii) Cloud service repository: it is a database that store
information about cloud service providers and their
services on various QoS attributes. 'is is where
data from cloud providers and third-party moni-
toring services on service standards and perfor-
mance is stored. 'is repository is used for
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prescreening services by cloud broker when they are
looking for candidate services that meet their cus-
tomer’s needs.

5.3. Schematic Diagram. Figure 3 shows the suggested
schematic diagram. 'e overall process of cloud service
selection includes four important steps:

(1) Determine the evaluation criteria and cloud service
alternatives used in the service selection process.

(2) Utilize the best-worst method to calculate the weight
of the evaluation criteria.

(3) Eliminate correlation between QoS criteria using the
PCA method.

(4) Combine BWM and PCA to evaluate the cloud
service alternatives and rank them based on per-
formance values.

6. The Proposed Cloud Service Selection and
Ranking Methodology

We have illustrated the suggested methodology in this
section, using a schematic diagram followed by a detailed

procedure to select the appropriate cloud services alternative
among the eligible alternatives.

6.1. Cloud Service Selection Methodology. In this subsection,
we introduced PCA-BWM-based techniques for selecting the
best cloud service among many available cloud alternatives.

6.1.1. Construct a Decision Matrix. We create a decision
matrix DM ofm∗ n, in which m represents the eligible cloud
service alternatives denoted by (CSPi) that satisfy the cloud
customer’s functional and nonfunctional requirements, and
n represents the number of QoS criteria for determining the
best cloud service provider. It is shown in

DM �

x11 . . . x1n

⋮ ⋱ ⋮

xm1 . . . xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where xij represents the QoS value delivered by (CSPi) on
QoS criteria j.

6.1.2. Apply Best-Worst Method for QoS Criteria Weight
Calculation. In the decision-making process, the calculation

Cloud Service
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Cloud Service
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Cloud Service
Ranking

Cloud Broker

Publish Cloud
Services

Trusted Third Party
Service Monitor

QoS Value

Request
Optimal Service
Selection List 

User

QoS Metrices

Collect QoS
Information

...

Cloud Service Pool

Service Lookup
and Response

Figure 2: OPTCLOUD framework for cloud service selection.
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of the weights of criteria is a critical phase that has a direct
impact on the ranking of alternatives. In most cases, the
criteria are not given equal weight. Each criterion has a
different value depending on the needs of a cloud user. Be-
cause of this, determining the weight of each criterion is
essential. 'e majority of authors, according to the literature,
employ the AHP approach to calculate the weights of the
criterion. However, due to AHP’s limitations, we recommend
that the weights of the criterion be computed using BWM.

According to Rezaei [6], MCDM problems need to be
evaluated against a set of criteria in order to choose the best
option. However, BWM works in a different way. It is a
process in which the decision-maker identifies the best and
worst criteria. Decision-makers make the decision by
comparing the best/worst criteria and other criteria in
pairwise comparison. In the BWM method, a linear pro-
gramming max-min problem is used to determine criterion
weights. Using the CR, the decision-maker can confirm the
validity of the criterion weight.

'e best-worst technique is used to determine the weight
of QoS criteria. It consists of six steps:

Step 1. Make a list of criteria. 'e decision-maker estab-
lishes a list of n criteria against which all potential cloud
service providers will be evaluated.

Step 2. 'e cloud customer and the decision-maker work
together to figure out which QoS criteria are the best (or the
most preferred) and which are the worst (or the least pre-
ferred) out of all of the other criteria.

Step 3. To estimate the best criterion’s preference over all
other criteria (best-to-others), use a scale of 1–9 as given in
Table 3. 'e preference vector as a result would look like

AB � aB1, aB2, . . . , aBn( , (2)

where aBj depicts the priority of the best criterion B over all
other criteria j and aBB � 1.

Step 4. Similar to the above, using Table 3, determine the
priority of all other decision criteria against the worst cri-
teria. 'e resulting preference vector would be

AW � a1W, a2W, . . . , anW( 
T
, (3)

where ajW denotes the preference of jth criterion over the
worst criterion W and aWW � 1.

Step 5. Finally, by solving (4) and (5), the optimal weights
for each criterion are determined, which is represented by
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the vector (w∗1 , w∗2 , . . . , w∗n ) associated with each QoS cri-
terion (c1, c2, . . . , cn).

wB

wj

− aBj




≤ ε for all j, (4)

wj

ww

− ajW




≤ ε for all j, (5)


j

wj � 1 wj > 0, for all j. (6)

Here, ε is the optimum value required to estimate the
consistency ratio of pairwise comparisons. 'e weight of the
best QoS criterion is wB, and the weight of the worst cri-
terion is wW.

Step 6. Use (7), to calculate the consistency ratio (CR).

CR �
ε
CI

, (7)

where CI denotes the consistency index, which is depicted in
Table 4. 'e consistency ratio ranges from 0 to 1. CR values
near zero are considered more consistent, while those near
one are considered less so.

6.1.3. PCA-BWM-Based Cloud Service Selection Method.
'e various steps of the proposed PCA-BWM methodology
are described as follows.

Step 7. Standardize the original decision matrix.
Due to their vast diversity, the values of QoS criteria are

estimated in different measuring units and ranges. 'is may
lead to inconsistency during comparison. 'erefore, in this
step, each QoS criterion value of the matrix DM is nor-
malized to accomplish a uniform comparison.

We have classified the QoS criteria into positive and
negative criteria. 'e positive criteria include throughput,
availability, and reputation, whereas the negative criteria
include response time and cost. Note that a higher value of
the QoS criterion signifies the higher quality of positive
criteria and the low quality of negative criteria. 'us, we
must normalize them separately in order to eliminate the
inconsistency between negative and positive criteria. For this
purpose, we have used the max-min normalization ap-
proach. 'is normalization approach converts each criteria
value to the same scale.

'e positive and negative criteria are normalized using
(8) and (9):

nxi,j �

xij − x
min
j

x
max
j − x

min
j

, if x
max
j ≠x

min
j ,

1 if x
max
j � x

min
j ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

nxi,j �

x
max
j − xij

x
max
j − x

min
j

, if x
max
j ≠ x

min
j ,

1 if x
max
j � x

min
j ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where xmin
j and xmax

j are the minimum and maximum values
of the jth QoS criterion among all the cloud services. 'e
normalized decision matrix N is represented as

N �

nx11 nx12 . . . nx1n

nx21 nx22 . . . nx2n

⋮ ⋮ ⋮ ⋮

nxn1 nxn2 . . . nxnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Step 8. Calculate the correlation coefficient matrix.
In this step, we have computed the correlation coefficient

matrix R � (rij)n∗ n of matrix N, where rij reflects the
correlation coefficient between nxi and nxj and which can be
denoted as

rij �


n
k�1 nxkj − nxi  nxkj − nxj 

�������������������������������


n
k�1 nxkj − nxi 

2


n
k�1 nxkj − nxj 

2
 . (11)

Step 9. Calculate the eigenvalues and eigenvector of the
correlation coefficient matrix and find the principal
component.

By using the characteristic equation |λI − R|, we calcu-
lated p eigenvalues (λ) of the correlation matrix R and sort
them as λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. We also calculated the ei-
genvector ui corresponding to the eigenvalues λi,
i � 1, 2, . . . , p, and normalized it so that 

p
j�1 u2

ij � 1 where
uij is the jth component of eigenvector ui.

Step 10. Compute the contribution ratio and cumulative
contribution ratio of the principal components.

Table 3: Assessment scale.

Value 1 3 5 7 9 2,4,6,8
Description Equal priority Moderate priority Strong priority Very strong priority Absolute priority Intermediate values

Table 4: Consistency index (CI) value.

aBW 1 2 3 4 5 6 7 8 9

CI 0 0.44 1.00 1.63 2.3 3 3.73 4.47 5.23
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In this step, we have calculated the contribution ratio
and the cumulative contribution ratio using (12) and (13),
respectively.

Tk �
λk


p

i�1 λi

, (12)

E �


m
k�1 λi


p
i�1 λi

. (13)

We selected first m principal components
λ1, λ2, . . . , λm(m≤p), whose cumulative contribution value
is higher than 85%. We found the principal component
zk � 

p
j�1 ukj ∗N, where k � 1, 2, . . . , p and N is a nor-

malized matrix. Final principal components are denoted as
z � (z1, z2, . . . , zm) and would be used to replace the
original QoS criteria (Q1, . . . , Qp). 'ese principal com-
ponents are independent of each other and simplify the
cloud service selection process with accurate results. We
computed the comprehensive evaluation value of the
principal component using

zk � 
m

i�1

λk


p

i�1 λi

 ∗ 

p

j�1
ukjN. (14)

Step 11. Integrate the BWMweight of criteria with PCA and
determine the final comprehensive value.

We have calculated a weighted normalized matrix
N∗j � wjNj, where j� 1,2, . . ., p and wj is the weight of jth
QoS criteria determined using the BWM method. So, the
new principal component is 

p
j�1 ukjN

∗. Finally, we cal-
culated the total comprehensive value determined by PCA
using

Zk � 
m

i�1

λk


p
i�1 λi

 ∗ 

p

j�1
ukjN
∗
. (15)

Here, we have sorted the final values in ascending order
and ranked them based on comprehensive values. 'e cloud
service having the highest comprehensive value will be se-
lected as the best cloud service.

7. Case Study with Experiments Analysis

'is section evaluates the proposed methodology’s efficacy
using a real-world QoS dataset. Cloud services share many
aspects with Web services, particularly in terms of quality of
service (QoS); hence, we have utilized the publicly available
QWS dataset as a benchmark for cloud service. 'is dataset
was created by Eyhab Al-Masri of Guelph University [49].
'e QWS dataset has been widely accepted across the re-
search community and used in evaluation studies based on
the QoS service selection problem. 'e QWS dataset in-
cludes 2507 real Web services with their quality values over
nine parameters such as throughput, availability, response
time, reliability, latency, scalability, best practices, compli-
ance, and documentation. 'e QWS dataset is comprised of
a variety of Web services that were collected from the real

Web using the Web Service Crawler Engine (WSCE). All of
these Web services were obtained from publicly available
sources on the Internet, such as service portals, search en-
gines, and UDDI registries. In our experiments, we only use
version 1.0 of the QWS dataset because it provides ratings
and classification. Version 1.0 of the QWS dataset contains
364 Web services, each of which has a set of nine quality
factors tested using commercial benchmark tools. Using the
QWS dataset, the following subsection illustrates a case
study. Following this, an experiment is carried out to test the
practicality of the proposed methodology. 'e results of the
experiment demonstrate that our methodology outperforms
all other methods.

7.1. An Illustrative Case Study

7.1.1. Introduction. For this case study, we looked at 10
alternative cloud services from the QWS dataset that had the
same functionality. Eight quality criteria are used to evaluate
these services, i.e., the response time (Q1), availability (Q2),
throughput (Q3), successability (Q4), reliability (Q5),
compliance (Q6), best practices (Q7), and latency (Q8). 'e
response time and the latency of these quality criteria are
considered negative criteria and the remaining are treated as
positive criteria. We refer to ten cloud services by the ac-
ronyms CSP1, CSP2, . . ., and CSP10. 'is makes it easier to
talk about them. Table 5 shows a decision matrix with ten
cloud service alternatives and eight QoS criteria.

7.1.2. Find Relative Weight of QoS Attributes Using BWM
Method. At this point, we have utilized the BWM to de-
termine the relative importance of eight quality of service
criteria. From all QoS criteria, the best and the worst are
determined with the help of the cloud user. Here, we assume
that the best criterion is response time (Q1) and that the
worst criterion is throughput (Q3). Relative preference
(between 1 and 9) is given for the best criteria over all other
criteria (Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8) and also provides a
relative preference of other criteria over the worst criteria, as
shown in Table 6. We obtained the weights of the criteria
using (4) and (5). 'e weights obtained are Q1� 0.276,
Q2� 0.174, Q3� 0.028, Q4� 0.116, Q5� 0.063, Q6� 0.109,
Q7� 0.152 and Q8� 0.082, and ε � 0.042. Equation (7) is
used to find out the consistency ratio, and the value is
CR� 0.01, which indicates high consistency.

7.1.3. Application of PCA-BWM Method. Here, each QoS
criterion is different in terms of unit and range. To remove
inconsistencies in QoS information of cloud services, the
normalization is performed by using the max-min nor-
malization, and the positive and negative criteria are
standardized separately with (8) and (9). 'e normalized
matrix of these cloud services is shown in Table 7. 'e
calculated correlation coefficient matrix between QoS
criteria using (11) is shown in Table 8. 'is table shows a
strong positive correlation (0.9769) between
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successability and availability while a negative linear
correlation (−0.488) between response time and
throughput.

Table 9 illustrates the eigenvalue of the correlation
matrix, its contribution ratio, and cumulative contribution
ratio. Here, we can see that the cumulative contribution rate

of the first three components reaches up to 87.22% (Fig-
ure 4), which is high enough. 'erefore, the first three
principal components z1, z2, z3 replace the other criteria to
do a comprehensive evaluation as shown in Table 10. 'us,
we successfully reduce the evaluation criteria from 8 to 3
which are independent of each other.

Table 7: Normalized decision matrix.

Cloud service Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
CSP1 0.1898 0.0485 0.0049 0.0444 0.03 0 0.04 0.04
CSP2 0.1788 0.1697 0.0196 0.1556 0.0105 0.015 0.0356 0.0278
CSP3 0.1912 0.1394 0.0115 0.1333 0 0.015 0 0
CSP4 0.2 0 0.036 0 0.03 0 0.04 0.0348
CSP5 0 0.2 0.0011 0.2 0.021 0.03 0.0244 0.0383
CSP6 0.1319 0.0909 0.0125 0.0889 0.03 0 0.04 0.028
CSP7 0.0603 0.1455 0 0.1833 0.021 0 0.0133 0.0291
CSP8 0.1904 0.0485 0.0038 0.05 0.03 0.015 0.02 0.0383
CSP9 0.1788 0.1697 0.0196 0.1556 0.0105 0.015 0.0356 0.0278
CSP10 0.1899 0.1818 0.06 0.1944 0.03 0.03 0.04 0.0377

Table 5: Decision matrix for ten cloud services.

Cloud service Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
CSP1 307.75 71 2.1 71 73 78 84 2.37
CSP2 498.5 91 4.8 91 60 89 82 31.17
CSP3 283.74 86 3.3 87 53 89 66 96.78
CSP4 130.33 63 7.8 63 73 78 84 14.66
CSP5 3610.2 96 1.4 99 67 100 77 6.4
CSP6 1314.75 78 3.5 79 73 78 84 30.75
CSP7 2561.33 87 1.2 96 67 78 72 28
CSP8 297.38 71 1.9 72 73 89 75 6.38
CSP9 498.5 91 4.8 91 60 89 82 31.17
CSP10 305.4 93 12.2 98 73 100 84 7.8

Table 6: Pairwise comparison for best-to-others (BO) and others-to-worst (OW).

Best-to-other (BO) Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Best criteria: response time (Q1) 1 2 8 3 5 3 2 4
Others-to-worst (OW) Worst criteria: throughput (Q3)
Q1 8
Q2 5
Q3 1
Q4 2
Q5 4
Q6 5
Q7 6
Q8 2

Table 8: Correlation coefficient between QoS attributes.

Cloud service provider Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Q1 1 0.4653 −0.488 −0.5432 −0.0158 −0.1863 0.2503 −0.1696
Q2 0.4653 1 0.0668 0.9769 −0.5286 0.6952 −0.2077 −0.2102
Q3 −0.488 0.0668 1 0.0558 0.1924 0.3128 0.4909 0.1212
Q4 −0.5432 0.9769 0.0558 1 −0.4391 0.6379 −0.262 −0.1649
Q5 −0.0158 −0.5286 0.1924 −0.4391 1 −0.2252 0.5748 0.815
Q6 −0.1863 0.6952 0.3128 0.6379 −0.2252 1 −0.112 0.0534
Q7 0.2503 −0.2077 0.4909 −0.262 0.5748 −0.112 1 0.6568
Q8 −0.1696 −0.2102 0.1212 −0.1649 0.815 0.0534 0.6568 1

10 Computational Intelligence and Neuroscience



Now, the values of the three independent principal
components z1, z2, and z3 are calculated as follows:

z1 � −0.26N
∗
1 + 0.481N

∗
2 − 0.1034N

∗
3 + 0.4725N

∗
4 − 0.4101N

∗
5 + 0.3217N

∗
6 − 0.3358N

∗
7 + 0.2875N

∗
8 ,

z2 � 0.1475N
∗
1 − 0.2865N

∗
2 − 0.3829N

∗
3 − 0.2914N

∗
4 − 0.3088N

∗
5 − 0.4065N

∗
6 − 0.4231N

∗
7 − 0.4744N

∗
8 ,

z3 � 0.6426N
∗
1 + 0.0331N

∗
2 + 0.5942N

∗
3 − 0.0405N

∗
4 − 0.2756N

∗
5 + 0.1751N

∗
6 − 0.1033N

∗
7 − 0.3376N

∗
8 .

(16)

We find a new evaluation function, i.e.,
FUNC Z(z1, z2, z3) � 0.4228z1 + 0.2605z2 + 0.1933z3.
Now, we calculate the comprehensive value (Z) using the

evaluation function and the results are shown in Table 11.'e
cloud service alternatives have a higher score of the com-
prehensive value selected as the best cloud service alternatives.
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Figure 4: PCA analysis for Cloud service selection.

Table 10: Principal component score of coefficient correlation matrix.

QoS attributes 1st 2nd 3rd
Q1 −0.26 0.1475 0.6426
Q2 0.481 −0.2865 0.0331
Q3 −0.1034 −0.3829 0.5942
Q4 0.4725 −0.2914 −0.0405
Q5 −0.4101 −0.3088 −0.2756
Q6 0.3217 −0.4065 0.1751
Q7 −0.3358 −0.4231 0.1033
Q8 −0.2875 −0.4744 −0.3376

Table 9: Eigenvalue of the coefficient correlation matrix and their contribution rates.

Principal component Eigen value Ratio Cumulative contribution ratio
1st 3.383 42.2875 42.2875
2nd 2.0843 26.05375 68.34125
3rd 1.547 19.3375 87.67875
4th 0.4842 6.0525 93.73125
5th 0.3082 3.8525 97.73125
6th 0.1309 1.63625 99.22
7th 0.0605 0.75625 99.97625
8th 0.0019 0.02375 100
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7.2. Experiments. In this subsection, we carried out a set of
experiments to evaluate the suitability of the proposed
methodology. For these experiments, we generated some
artificial data with QWS data set, by varying the cloud service
provider and QoS criteria.

7.2.1. Comparison with Other Existing MCDM Methods.
We compared our results with other popular MCDM
methods, namely, PCA, BWM_TOPSIS, and AHP_TOPSIS
[17, 33, 51]. Figure 5 shows the experimental result of different
methods. In most cases, there is a clear resemblance between

Table 11: Overall values and ranking of cloud services.

Cloud service z1 z2 z3 Z Rank

CSP1 −0.0428 −0.0459 0.107 −0.0093 9
CSP2 0.0872 −0.1127 0.1199 0.0307 2
CSP3 0.084 −0.0611 0.1315 0.045 1
CSP4 −0.0915 −0.027 0.134 −0.0198 10
CSP5 0.1724 −0.1632 −0.0118 0.0281 4
CSP6 0.0164 −0.0768 0.0781 0.002 7
CSP7 0.1194 −0.1122 0.0219 0.0255 6
CSP8 −0.0282 −0.0438 0.1077 −0.0025 8
CSP9 0.0872 −0.1127 0.1199 0.0302 3
CSP10 0.0968 −0.16 0.1442 0.0271 5
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Figure 5: Ranking of cloud service providers with different methods.
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the outcomes acquired through the suggested methodology
and other techniques. 'erefore, the results of the proposed
approach can be concluded as accurate and precise.

7.2.2. Measuring Execution Time with respect to the Number
of QoS Attributes. 'is experiment evaluates the average

execution time of the proposed methodology based on
different QoS criteria. 'e experimental results are shown in
Figure 6. In this experiment, the number of QoS criteria
varies between 3 and 20, and the number of cloud service
providers varies between 10 and 35. We can see that the
execution time increases slowly with the increase in the
number of cloud service providers, which indicates that the
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running time costs are not more affected by the number of
cloud service providers. From Figure 6, the running time
costs are more affected by increasing the number of QoS
criteria. 'is is because the covariance matrix and the pri-
ority weight are obtained by considering all QoS criteria.

7.2.3. Reduce Dimensionality of the Selection Criteria.
We know that a large number of QoS criteria are involved in
the cloud service selection process that is difficult to handle
without an advanced computer program. 'e primary goal
of the proposed OPTCLOUD framework is to reduce the
dimensionality of selection criteria without significant in-
formation loss and to keep the cloud service evaluation
process simple. In this experiment, we use the data of eight
cloud services from QWS data sets. 'e experimental results
are shown in Figure 7. Here, we can see that the principal
components are always smaller than the number of original
QoS criteria. 'ese results confirm that the proposed
methodology reduces the evaluation criteria and simplifies
the cloud service selection process.

7.2.4. Sensitivity Analysis of Result. 'is subsection validates
the robustness and efficiency of the suggested scheme using
sensitivity analysis. To carry out the sensitivity analysis, we
check how the cloud service provider’s ranking may change
under different weight values. In this scenario, we execute
the whole process to monitor the changes in various cir-
cumstances. 'e ranks of cloud service providers are de-
termined for each case by evaluating the effect of changes in
criterion weight.

We conducted a sensitivity analysis by swapping the
weights of each of the nine criteria for the weights of another
criterion. 'erefore, we created fifteen distinct experiments.
We assigned a unique name to each experiment (E1 ldots
E15). During each experiment, we used data from our case
study to run the proposed methodology and collect data
about how it worked (Section 7). Figure 8 shows the out-
comes of 15 experiments. CSP3 emerged as the best service
in 14 out of 15 experiments, as shown in Figure 8. For second
place, CSP2 was preferable to the other in 13 out of 15
studies. Finally, sensitivity analysis shows that the rank of
cloud service providers is proportional to the weight of the
associated criteria.'erefore, we can infer that the suggested
method is reliable and rationally ranks alternatives in ac-
cordance with preferences expressed by stakeholders.

8. Conclusion

Finding the best cloud service for cloud users is a challenge if
there are many QoS criteria. In general, most of the QoS
criteria are correlated and are ignored by the existing works.
In this study, we analyzed the effects of the correlation of
QoS criteria and proposed a novel cloud service selection
methodology that combines PCA and BWM. 'e proposed
work differs in many ways from the existing research works.
First, we reduced the number of QoS criteria to simplify the
process of selecting cloud services. Secondly, it removes the
correlation between different QoS criteria and produces

more authentic selection results. 'is contribution provides
a new OPTCLOUD framework for the cloud service se-
lection process. 'e proposed scheme demonstrates its
feasibility and efficiency through a series of experiments with
real datasets. Finally, we make a comparison with the other
method to show that the proposed methodology outper-
forms them. However, the proposed work has some
shortcomings. 'e proposed methodology only retains
87.22% of the total information, which represents a sig-
nificant loss of information. 'is opens a possible future
extension of our work. Our future efforts will be to improve
PCA and simultaneously reduce dimensionality by losing
the minimum amount of information.
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