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Neutrosophic set (NS) is an extensively used framework whenever the imprecision and uncertainty of an event is described based
on three possible aspects. .e association, neutral, and nonassociation degrees are the three unique aspects of an NS. More
importantly, these degrees are independent which is a great plus point. On the contrary, neutrosophic graphs (NGs) and single-
valued NGs (SVNGs) are applicable to deal with events that contain bulks of information. However, the concept of degrees in NGs
is a handful tool for solving the problems of decision-making (DM), pattern recognition, social network, and communication
network. .is manuscript develops various forms of edge irregular SVNG (EISVNG), highly edge irregular SVNG (HEISVNG),
strongly (EISVNG), strongly (ETISVNG), and edge irregularity on a cycle and a path in SVNGs. All these novel notions are
supported by definitions, theorems, mathematical proofs, and illustrative examples. Moreover, two types of DM problems are
modelled using the proposed framework. Furthermore, the computational processes are used to confirm the validity of the
proposed graphs. Furthermore, the results approve that the decision-making problems can be addressed by the edge irregular
neutrosophic graphical structures. In addition, the comparison between proposed and the existing methodologies is carried out.

1. Introduction

.e theory of fuzzy sets (FSs) is one of the communalized
notions of classical set theory. .ere are merely two pros-
pects of a statement in classical set theory; the statement/
event is either true or not. However, there are many
statements that cannot be dealt with only these two pros-
pects. FSs can be accurately employed to manage such
statements that have variable values. Zadeh [1] developed the
concept of FSs to manage the issues with uncertainties. FS
theory has an important role in complicated process that

could not simply categorized by classical set theory. Some
years later, Atanassov [2] suggested the concept of intui-
tionistic FS (IFS) as a communalization of FS. Additionally,
he also gives a novel element which demonstrates the falsity
membership grade in the description of FS. .e notion of
IFS is more significant in addition to exhaustive because of
truth membership grade and falsity membership grade, in
which the indeterminacy membership degree of IFS is its
hesitation membership grade. To some extent, both the truth
and falsity membership degrees are independent from each
other with the condition that the summation of both these
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degrees does not exceed one. By joining the nonstandard
analysis, Smarandache [3] developed the notion of neu-
trosophic sets (NS).

In mathematics, NS is an instrument which is the
generalization of classical set theory that is used to handle
practical issues consisting of imprecise, indeterminate and
varying information. Like the theories of FSs and IFSs, the
theory of NSs is beneficial in several fields, such as topology,
medicines, decision-making (DM) problems, and in many
others practical issues. To manage NS more easily with daily
life problems, Wang et al. [4] established the concepts of
single-valued NSs (SVNS). An SVNS has three elements:
truth, indeterminacy, and falsity membership degrees. .ese
degrees are independent in an SVNS, and their values are
enclosed in the standard unit interval [0, 1]. .e SVNS is
indeed an oversimplification of an IFS. .e SVNS has been a
very significant research topic recently, and several re-
searchers have considered SVNS in their works [5–9]. Other
related works, such as, Majumdar and Samanta [10], ex-
amined the entropy and similarity of SVNS. Correlation
coefficients of SVNS were suggested by Ye [11, 12] and
utilized it to SVN-DM problems.

Apart from that, the idea of graphs can be related to NS.
Graph theory has turned out to be an influential framework
to model and solve the joint problems that occur in many
fields, such as mathematics, engineering, and computer
sciences. An SVN graph (SVNG) has many characteristics
which are the origin of various techniques that are employed
in modern mathematics as it is the generalization of graphs.
A lot of studies on FS, fuzzy graphs (FGs), and intuitionistic
FGs (IFGs) [13–21] have been explored and every single one
have considered the set of vertices and the set of edges as FSs
and/or IFSs. However, the FG and IFG are unsuccessful
when the relations between nodes (or vertices) in problems
are not determined or not recognised. For this reason,
Smarandache [3] introduced four major classes of the
neutrosophic graphs (NGs). Two of these are built on literal
indeterminacy, i.e., NGs are I-edge NG and I-vertex NG..e
vast range of applications in decision-making problems
made the NGs the hot topic for the researchers of the field.
Since then, many attempts have been made to extend the
notion of NGs. .e work of Broumi et al. [22] stands alone,
which is the introduction of a novel concept of SVNG.
Besides that, Mohanta et al. [23] described the types of
products of NGs and neutrosophic algebraic structures.
Ramia et al. [24] defined the ideas of complimentary
domination in SVNGs. .e notion of operations of SVNG
and interval-valued SVNG are discussed in the literature, see
[25]. Abu Saleem [26] worked on the neutrosophic folding
and a neutrosophic retraction on a SVNG. Lu and Ye [27]
discussed SVN hybrid arithmetic and geometric aggregation
operators. Lately, Shahzadi et al. [28] presented an appli-
cation that carried out a medical diagnosis by using the
concepts of SVNS.

However, the literature has great capacity when comes
to the SVNGs and the types of their edges. Henceforth, this
study intends to define the concepts of edge irregular SVNG
and totally edge irregular SVNG. In addition, the path and
cycle of an edge irregular SVNG will also be established.

Instead of considering a general NG in which edges and
vertices must be considered, our proposed works depart
more formally from the three degree aspects of NG to
interval three degree aspects of SVNG. Moreover, the
proposed notions of SVNGs are applied to a couple of
decision-making problems. .e first problem is to select the
best company among a collection of companies. To this end,
the weighted averaging and weighted geometric aggregation
operators were used as tool for the solution. While the
second problem, which was targeted to select the best
combination of subjects for a student of high school, was
modelled and solved by the idea of edges in SVNGs. In
order to provide strength to our study, we carried out a
detailed comparison between the proposed framework and
other contenders in the field. .e experiments verified the
validity of our method. .e benefits of the proposed
framework are as follows: (i) it is capable of modelling a
complex situation, (ii) it can handle the events by describing
three degrees, i.e., association, neutral, and nonassociation
degrees, (iii) the decision maker can independently assign
values to the degrees, and (iv) there is no constraints and
limitations of these structures. Considering these benefits,
we chose the SVNGs for our study.

In Section 2, some basic definitions are given which
provide some base to construct further ideas. In Section 3,
edge regular and highly edge regular SVNGs are defined.
Section 4 defines the strong edge irregular SVNGs and
strong edge totally irregular SVNGs. In Section 5, the edge
irregularity is discussed on a path and on a cycle in SVNGs.
.en, the applications of the proposed concepts are pre-
sented in Section 6. Section 6 also contains the comparison
of our method with the other methods. And finally, the
concluding remarks are given in Section 7.

2. Preliminaries

Some basic definitions related to our graphical work such as
IFG, SVNG, and degree of SVNG are presented in this
section. Some examples are also presented to illustrate the
notions.

Definition 1 (see [14]). A pair G � (A, Ê,A,B) is called IFG,
where V � V1,

V2,
V3, . . . , Vn , Ê⊆ V × V, A � (T1, L1) is

an IFS on V, and B � (T2, L2):
V × V⟶ [0, 1] × [0, 1]

such that T2(
Vi,

Vj)≤min[T1(
Vi), T1(

Vj) ] and
L2(

Vi,
Vj)≤max[L1(Vi), L1(Vj) ] with the condition

0≤T2(Vi, Vj) + L2(Vi, Vj)≤ 1, for all (Vi, Vj) ∈ Ê.

Example 1. Let G
·

� (V, Ê) be an IFG, where V is the col-
lection of vertices and Ê is the collection of edges. Figure 1
shows an IFG.

Definition 2 (see [4]). A pair G � (V, Ê,A,B) is known as
SVNG, where V � V1,

V2,
V3, . . . , Vn , Ê⊆ V × V, A � (T1,

L1,
_F1) is an SVNS on V, and B � (T2, L2,

_F2):
V × V×

V⟶ [0, 1] × [0, 1] × [0, 1] such that T2(
Vi,

Vj)≤
min(T1(Vi), T1(Vj) ], L2(Vi, Vj)≥max(L1(Vi), L1(Vj) ] ,
and F2(Vi, Vj)≥max[F1(Vi), F1(Vj)] with the condition
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0≤T2(
Vi,

Vj) + L2(
Vi,

Vj) + _F2(
Vi,

Vj)≤ 3, for all
(Vi, Vj) ∈ Ê.

Example 2. An SVNG is shown in Figure 2.

Definition 3 (see [4]). A pair G � (V, Ê,A,B) is called strong
SVNG, where V � V1, V2, V3, . . . , Vn , Ê⊆ V × V,

A � (T1, L1, F1) is an SVNS on V, and B � (T2, L2, F2):
V ×

V × V⟶ [0, 1] × [0, 1] × [0, 1] such that T2(
Vi,

Vj) �

min[T1(
Vi), T1(

Vj) ], L2(
Vi,

Vj) � max[L1(
Vi), L1(

Vj) ],
and F2(

Vi,
Vj) � max[ _F1(

Vi),
_F1(

Vj)] with the condition
0≤T2(

Vi,
Vj) + L2(

Vi,
Vj) + _F2(

Vi,
Vj)≤ 3, for all

(Vi,
Vj) ∈ Ê.

Definition 4 (see [4]). .e degree of a vertex in a SVNG
G � (V, Ê,A,B) is denoted and defined by deg( V) �

(degt(
V), degl(

V), deg _F( V)) , where degT(V) � Vi ≠Vj

TB

(Vi,
Vj), degL( V) � Vi ≠Vj

LB(Vi,
Vj), and deg _F(V) �

Vi ≠Vj

_FB(Vi,
Vj). Here, degT(V) denotes the membership

degree, degL(V) denotes the indeterminacy degree, and
deg _F(V) denotes the nonmembership degree.

Example 3. Let G � (V, Ê) be a SVNG, where V is the
collection of vertices and Ê is the collection of edges

Figure 3 is an NG which is explained below.
.is graph contains four vertices v1, v2, v3, and v4, and

the values between their vertices is called edges. Further-
more, by Definition 4, we find the degrees of its vertices of
Figure 3 which is given below.

Degree of vertices of Figure 3 is

deg V1(  � (0.7, 1.4, 1.2),

deg V2(  � (0.7, 1.3, 1.2),

deg V3(  � (0.7, 1.2, 0.9),

deg V4(  � (0.7, 1.3, 0.9).

(1)

Definition 5 (see [27]). .e SVN-weighted aggregation
(SVNWA) operator is denoted and defined by Ni �

SVNWA (Ni1,Ni2, . . . ,Nin) � (1 − 
n
j�1 (1 − Tij)

wj ,

(
n
j�1 Lij)

wj , (
n
j�1 Fij)

wj ), i � 1, 2, . . . , n , where
€Wj(1, 2, . . . , n) represents the weight vector.

Definition 6 (see [27]). .e SVN-weighted geometric
(SVNWG) operator is denoted and defined by

Ni � SVNWG Ni1,Ni2, . . . ,Nin( 

� 

n

j�1

€Wij
⎛⎝ ⎞⎠

€Wj

, 1 − 

n

j�1
1 − €Wij 

€Wj
, 1⎛⎜⎜⎜⎝

− 
n

j�1
1 − _Fij 

€Wj ⎞⎠, i � 1, 2, . . . , n,

(2)

where €Wj(1, 2, . . . , n) represent the weight vector.

Definition 7 (see [28]). .e single-valued neutrosophic
Hamming distance between two SVNSs (Ni,Nj) is defined
by

(0, 4, 0.5)

(0, 3, 0.4)(0, 3, 0.5) (0, 6, 0.2)

(0, 3, 0.5)(0
, 2

, 0
.5)

v1

v3
~ v2

~

Figure 1: Intuitionistic fuzzy graph.

v1
v3
~

v2
~

(0.1, 0.6, 0.8) (0.2, 0.7, 0.8)

(0.2, 0.6, 0.8)

(0.4, 0.3, 0.6)

(0.4, 0.6, 0.4)
(0.3, 0.5, 0.8)

Figure 2: Single-valued neutrosophic graph.

v1 (0.4, 0.6, 0.4)~

v1 (0.4, 0.5, 0.2)~

v2 (0.5, 0.2, 0.5)
~

v 2 
(0

.6
, 0

.3
, 0

.4
)

~

(0.4, 0.7, 0.5)

(0.4, 0.6, 0.5)

(0.3, 0.7, 0.7)

(0.3, 0.6, 0.4)

Figure 3: Degrees of single-valued neutrosophic graph.
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D Ni,Nj  �
1
3n



n

j�1
TNi

Zi(  − TNj
Zj 





+ I
⌢Ni

Zi(  − I
⌢Nj

Zj 




+ _FNi

Zi(  − _FNj
Zj 



.

(3)

Definition 8 (see [27]). .e score function in a SVNS is
denoted and defined by S

_
(Ni) � (T +1 − I

⌢
+1 − _F)/3 ,

where (T, I
⌢

, _F) represents the membership, indeterminacy,
and nonmembership grades, respectively.

3. Edge Irregular and Highly Edge
Irregular SVNG

We propose the definitions of edge irregular and highly edge
irregular SVNG in this section.

Definition 9. A connected graph G
·

� (V, Ê) is called the
edge irregular SVNG (EISVNG) if at least single edge is
neighboring to the edges with different degrees.

Definition 10. A connected graph G
·

� ( V, Ê) is called an
edge totally irregular SVNG (ETISVNG) if at least single
edge is neighboring the edges with different total degrees.

Definition 11. A connected graph G
·

� (V, Ê) is called highly
edge irregular SVNG (HEISVNG) if each edge is neigh-
boring to the edges with different degrees.

Example 4. Let G
·

� (V, Ê) be a SVNG, where Ê is the
collection of edges and V is the collection of vertices.

Figure 4 contains four vertices v1, v2, v3, and v4, and the
values between their vertices are called edges. Furthermore,
by Definition 4, we find the degrees of its vertices of Figure 4.

Here, ď
G
· (V1) � (0.6, 1.4, 1.6), ď

G
· (V2) � (0.7, 1.5, 1.5),

and ď
G
· ( V3) � (0.5, 1.5, 1.5). Degrees of edges are

ď
G
· V1

V2(  � (0.6 + 0.7 − 2 × 0.4, 1.4 + 1.5 − 2 × 0.7, 1.6 + 1.5 − 2 × 0.8) � (0.5, 1.5, 1.5),

ď
G
· V2

V3(  � (0.7 + 0.5 − 2 × 0.3, 1.5 + 1.5 − 2 × 0.8, 1.5 + 1.5 − 2 × 0.7) � (0.6, 1.4, 1.6),

ď
G
· V3

V1(  � (0.6 + 0.5 − 2 × 0.2, 1.4 + 1.5 − 2 × 0.8, 1.6 + 1.5 − 2 × 0.8) � (0.7, 1.3, 1.5).

(4)

We observe that every edge is neighboring to the edges
with different degrees. Consequently, G

·

is HEISVNG and
also EISVNG.

Definition 12. A connected graph G
·

� (V, Ê) is called
HETISVNG if each edge is neighboring to the edges with
different total degrees.

We also propose the following theorems as statements
that have been proven to be true.

Theorem 1. If G
·

� ( V, Ê) is a connected HEISVNG, then G
·

is an EISVNG.

Proof. Let us assume that G
·

is a connected HEISVNG; then,
each edge in G

·

neighbors the edges with different degrees;
consequently, there exist at least single edge that is neigh-
boring the edge with distinct degrees. Hence, G

·

is an
EISVNG. □

Theorem 2. If G
·

� (V, Ê) is a connected HETISVNG, then G
·

is an ETISVNG.

Proof. It follows .eorem 1, thus omitted. □

Remark 1. A HEISVNG may not be a HETISVNG.

Example 5. .is example supports Remark 1.
Let G

·

� (V, Ê) be a SVNG.
Figure 5 contains four vertices v1, v2, v3, and v4, and the

values between their vertices is called edges. Furthermore, by
Definition 4, we find the degrees of its vertices are given as below.

Here, ď
G
· (V1) � (0.7, 1.8, 1.6), ď

G
· (V2) � (0.2, 0.5, 0.7),

ď
G
· (V3) � (0.2, 0.6, 0.7), and ď

G
· ( V4) � (0.3, 0.7, 0.7). De-

grees of edges are ď
G
· (V1,

V2) � (0.7 + 0.2 − 2 × 0.2, 1.8+

0.5 − 2 × 0.5, 1.6 + 0.7 − 2 × 0.7) � (0.6, 1.3, 0.9), ď
G
· ( V2,

V3) � (0.7 + 0.2 − 2 × 0.2, 1.8 + 0.6 − 2 × 0.6, 1.6 + 0.7 − 2×

0.7) � (0.5, 1.2, 0.9), and ď
G
· (V1,

V4) � (0.7 + 0.3 − 2 × 0.3,

1.8 + 0.7 − 2 × 0.7, 1.6 + 0.7 − 2 × 0.7) and tď
G
· (V1,

V2) �

(0.7 + 0.2 − 0.2, 1.8 + 0.5 − 0.5, 1.6 + 0.7 − 0.7) � (0.7, 1.8,

1.6), tď
G
· (V1,

V3) � (0.7 + 0.2 − 0.2, 1.8 + 0.6 − 0.6, 1.6+

0.7 − 0.7) � (0.7, 1.8, 1.6), and tď
G
· (V1,

V4) � (0.7 + 0.3−

0.3, 1.8 + 0.7 − 0.7, 1.6 + 0.7 − 0.7) � (0.7, 1.8, 1.6). Clearly,
we note that G

·

is HEISVNG, but G
·

is not HETISVNG.
.erefore, all edges are with the same total degrees.

v1 (0.5, 0.7, 0.2)~

v3 (0.3, 0.7, 0.7)~ v2 (0.6, 0.2, 0.6)~

(0.3, 0.8, 0.7)

(0.
2, 0

.7, 
0.8

) (0.4, 0.7, 0.8)

Figure 4: Edge irregular single-valued neutrosophic graph.
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Remark 2. HETISVNG might not be an HEISVNG.

Example 6. .is example supports Remark 2.
Let G

·

� (V, Ê) be an SVNG.
Figure 6 contains four vertices v1, v2, v3, and v4, and the

values between their vertices are called edges. Furthermore,
by Definition 4, we find the degrees of its vertices of Figure 6.

Here, ď
G
· (V1) � (0.7, 1.1, 1.3), ď

G
· (V2) � (0.5, 1.3, 1.5),

ď
G
· ( V3) � (0.5, 1.4, 1.5), and ď

G
· (V4) � (0.7, 1.2, 1.3). De-

grees of edges are ď
G
· (V1,

V2) � (0.7 + 0.5 − 2 × 0.2, 1.8+

0.5 − 2 × 0.5, 1.6 + 0.7 − 2 × 0.7) � (0.8, 1.3, 0.9), ď
G
· (V1,

V3) � (0.7 + 0.2 − 2 × 0.2, 1.8 + 0.6 − 2 × 0.6, 1.6 + 0.7−

2 × 0.7) � (0.5, 1.2, 0.9), and ď
G
· (V1,

V4) � (0.7 + 0.3 − 2 ×

0.3, 1.8 + 0.7 − 2 × 0.7, 1.6 + 0.7 − 2 × 0.7) � (0.4, 1.1, 0.9)

and tď
G
· (V1,

V2) � (0.7 + 0.2 − 0.2, 1.8 + 0.5 − 0.5, 1.6+

0.7 − 0.7) � (0.7, 1.8, 1.6), tď
G
· ( V1,

V3) � (0.7 + 0.2 − 0.2,

1.8 + 0.6 − 0.6, 1.6 + 0.7 − 0.7) � (0.7, 1.8, 1.6), and tď
G
· (V1,

V4) � (0.7 + 0.3 − 0.3, 1.8 + 0.7 − 0.7, 1.6 + 0.7 − 0.7) �

(0.7, 1.8, 1.6).

Theorem 3. If a connected SVNG G
·

� (V, Ê) is HISVNG
and Ê is constant function, then G

·

is HETISVNG.

Proof. Suppose that Ê is constant function. Assume that
e1(U′, V) � ς1, e2(U′, V) � ς2, and e3(U′, V) � ς3; for all
ei(U′, V) ∈ Ê, ς1, ς2, and ς3 are constants. Now, consider G

·

is
EHISVNG. .en, every edge is neighboring to the edges; it
has distinct degrees. Suppose (U′, V) be an edge that is
neighboring to the edges (U′,ω) and (U′, X), and these
edges that are incident at the vertex U′ and (V, y) are the
edge incident with the vertex V .en, ď

1G
· (U′, ω)≠ ď

1G
·

(U′, x)≠ ď
1G

· (V, y), ď
2G

· (U′,ω)≠ ď
2G

· (U′, x)≠ ď
2G

· (V, y),
and ď

3G
· (U′,ω)≠ ď

3G
· (U′, x)≠ ď

3G
· (V, y), where

(U′,ω), (U′, x), and (V, y) are neighboring to the vertex
(U′, V) ∈ Ê. Next, ď

1G
· (U′,ω)≠ ď

1G
· (U′, x)≠

ď
1G

· ( V, Y)⇒ď
1G

· (U′,ω)ς1 ≠ ď1G· (U′, x) + ς1 ≠ ď1G· (V, Y) + ς1
⇒ ď

1G
· (U′,ω) + e1(U′,ω)≠ ď

1G
· (U′, x)+ e1(U′, x)≠ ď

1G
·

(V, y) + e1(
V, y)⇒tď

1G
· (U′,ω)≠ tď

1G
· (U′, x)≠ tď

1G
· (V, y).

Again, ď
2G

· (U′,ω)≠ ď
2G

· (U′, x)≠ ď
2G

· (V, y)⇒ď
2G

· (U′,ω) +

ς2 ≠ ď2G· (U′, x) + ς2 ≠ ď2G· (V, y) + ς2⇒ ď
2G

· (U′,ω) +

e2(U′,ω)≠ ď
2G

· (U′, x) + e2(U′, x)≠ ď
2G

· (V, y) + e2(
V, y)

⇒tď
2G

· (U′,ω)≠ tď
2G

· (U′, x)≠ tď
2G

· ( V, y) and ď
3G

· (U′,ω)≠
ď
3G

· (U′, x)≠ ď
3G

· (V, y)⇒ď
3G

· (U′,ω)≠ ď
3G

· (U′, x)≠ ď
3G

· (V,

y) + ς3 ⇒ ď
3G

· (U′,ω) + e3(U′,ω)≠ ď
3G

· (U′, x) + e3(U′,

x)≠ ď
3G

· (V, y) + e3(
V, y)⇒tď

3G
· (U′,ω)≠ tď

3G
· (U′, x)≠

tď
3G

· (V, y). Hence, G
·

is HETISVNG. □

Theorem 4. If a connected SVNG G
·

� (V, Ê) is EISVNG and
Ê is constant function, then G

·

is ETISVNG.

Proof. It follows the proof .eorem 3, and thus, it is
omitted. □

Theorem 5. If a connected SVNG G
·

� (V, Ê) is ETISVNG
and Ê is constant function, then G

·

is EISVNG.

Proof. It follows the proof of .eorem 3, and thus, it is
omitted. □

Remark 3. If a connected SVNG G
·

� (V, Ê) is both
HEISVNG and HETISVNG. .en, Ê may not be considered
a constant function.

Example 7. .e following example supports Remark 3.
Let G

·

� (V, Ê) be a SVNG.
Figure 7 contains four vertices v1, v2, v3, and v4, and the

values between their vertices are called edges. Furthermore,
by Definition 4, we find the degrees of its vertices of Figure 7.

Here, ď
G
· (V1) � (0.8, 0.8, 0.8), ď

G
· (V2) � (0.5, 0.5, 0.5),

ď
G
· (V3) � (0.7, 0.7, 0.7), ď

G
· (V4) � (0.9, 0.9, 0.9), and

ď
G
· (V5) � (1.1, 1.1, 1.1) Degrees of edges are ď

G
· (V1

V2) �

(0.7 + 0.5 − 2 × 0.2, 1.8 + 0.5 − 2 × 0.5, 1.6 + 0.7 − 2 × 0.7) �

(0.8, 1.3, 0.9), ď
G
· (V1

V3) � (0.7 + 0.2 − 2 × 0.2, 1.8 + 0.6−

2× 0.6, 1.6 + 0.7 − 2 × 0.7) � (0.5, 1.2, 0.9), and ď
G
· (V1

V4) �

(0.7 + 0.3 − 2 × 0.3, 1.8 + 0.7 − 2 × 0.7, 1.6 + 0.7 − 2 × 0.7) �

(0.4, 1.1, 0.9) and tď
G
· ( V1,

V2) � (0.7 + 0.2 − 0.2, 1.8 + 0.5 −

0.5, 1.6 + 0.7 − 0.7) � (0.7, 1.8, 1.6), tď
G
· ( V1,

V3) � (0.7 + 0.2 − 0.2, 1.8 + 0.6 − 0.6, 1.6 + 0.7 − 0.7) �

v1 (0.3, 0.5, 0.7)~

v3 (0.6, 0.4, 0.6)~
v2 (0.5, 0.5, 0.5)~

v4 (0.4, 0.6, 0.4)~

(0.
3, 

0.7
, 0

.7)

(0
.2

, 0
.6

, 0
.7

)

(0.2, 0.5, 0.7)

Figure 5: Highly edge irregular singular-valued neutrosophic graph.

v1 (0.5, 0.5, 0.5)~

v3 (0.3, 0.7, 0.6)~

v 2 
(0

.4
, 0

.6
, 0

.6
)

v 4 
(0

.6
, 0

.4
, 0

.6
)

~

(0.4, 0.5, 0.6)

(0.2, 0.7, 0.8)

(0.3, 0.6, 0.7)

(0.3, 0.7, 0.7)

~

Figure 6: Highly edge totally irregular single-valued neutrosophic
graph.

Computational Intelligence and Neuroscience 5



(0.7, 1.8, 1.6), and tď
G
· (V1,

V4) � (0.7 + 0.3 − 0.3, 1.8+ 0.7 −

0.7, 1.6+ 0.7 − 0.7) � (0.7, 1.8, 1.6).

Theorem 6. If a connected SVNG G
·

� (V, Ê) is EISVNG and
Ê is constant function, then G

·

is an ISVNG.

Proof. Suppose that Ê is constant function. Assume that
e1(U′, V) � ς1, e2(U′, V) � ς2, and e3(U′, V) � ς3, for all
ei(U′, V) ∈ Ê, ς1, ς2, and ς3 are constants. Now, consider G

·

is EHISVNG. .en, every edge neighbors the edges with
distinct degrees. Suppose (U′, V) be an edge such that it is
neighboring the edges (U′,ω), (U′, x), and these edges are
incident at the vertex U′ and (V, y) is the edge incident to
the vertex U′. .en, ď

1G
· (U′,ω)≠ ď

1G
· (U′, x)≠ ď

1G
· (V, y),

ď
2G

· (U′,ω)≠ ď
2G

· (U′, x)≠ ď
2G

· (V, y), and ď
3G

· (U′,

ω)≠ ď
3G

· (U′, x)≠ ď
3G

· (V, y), where (U′,ω), (U′, x), and
(V, y) are neighboring to the vertex (U′, V) ∈ Ê. Now,
ď
1G

· (U′,ω)≠ ď
1G

· (U′, x)≠ ď
1G

· (V, y)⇒ď
1G

· (U′) + ď
1G

· (ω) −

2 e1(U′, V)≠ ď
1G

· (U′) + ď
1G

· (x) − 2 e1 (U′, x)≠ ď
1G

· (V) +

ď
1G

· (y) − 2 e1(
V, y)⇒ ď

1G
· (U′) + ď

1G
· (ω) − 2ς1 ≠ ď1G· (U′) +

ď
1G

· (x) − 2ς1 ≠ ď1G· (V) + ď
1G

· (y) − 2ς1⇒ď1G· (U′) + ď
1G

·

(ω)≠ ď
1G

· (U′) + ď
1G

· (x)≠ ď
1G

· (V) + ď
1G

· (y)⇒ď
1G

· (ω)≠
ď
1G

· (x). Again, ď
2G

· (U′,ω)≠ ď
2G

· (U′, x)≠ ď
2G

· (V,

y)⇒ď
2G

· (U′) + ď
2G

· (ω) − 2 e2(U′, V)≠ ď
2G

· (U′) + ď
2G

· (x) −

2 e2(U′, x)≠ ď
2G

· (V) + ď
2G

· (y) − 2 e2(
V, y)⇒ď

2G
· (U′) + ď

2G
·

(ω) − 2ς2 ≠ ď2G· (U′) + ď
2G

· (x) − 2ς2 ≠ ď2G· (V) + ď
2G

· (y) −

2ς2⇒ď2G· (U′) + ď
2G

· (ω)≠ ď
2G

· (U′) + ď
2G

· (x)≠ ď
2G

· (V) +

ď
2G

· (y)⇒ď
2G

· (ω)≠ ď
2G

· (x) and ď
3G

· (U′,ω)≠ ď
3G

·

(U′, x)≠ ď
3G

· (V, y)⇒ď
3G

· (U′) + ď
3G

· (ω) − 2 e3(U′, V)≠ ď
3G

·

(U′) + ď
3G

· (x) − 2 e3(U′, x)≠ ď
3G

· ( V) + ď
3G

· (y) − 2 e3

(V, y)⇒ď
3G

· (U′) + ď
3G

· (ω) − 2ς3 ≠ ď3G· (U′) + ď
3G

· (x) −

2ς3 ≠ ď3G· (V) + ď
3G

· (y) − 2ς3⇒ď3G· (U′) + ď
3G

· (ω)≠ ď
3G

·

(U′) + ď
3G

· (x)≠ ď
3G

· (V) + ď
3G

· (y)⇒ď
3G

· (ω)≠ ď
3G

· (x).
Consequently, there is a vertex U′ neighboring the

vertices ω and x with different degrees..us, G
·

is an ISVNG.
In Section 4, we present several definitions and examples to
explain the degree of edge irregularity. □

4. Strongly Edge Irregular and Strongly Edge
Totally Irregular SVNG

Definition 13. A connected graph G
·

� (V, Ê) is known as
strongly EISVNG if each pair of edges has different degrees.

Definition 14. A connected graph G
·

� (V, Ê) is called
strongly ETISVNG if each pair of edges has different total
degrees.

Example 8. .e following example supports Remark 3. Let
G
·

� (V, Ê) be a SVNG.
Figure 8 contains five vertices v1, v2, v4, v4, and v5, and the

values between their vertices are called edges. Furthermore, by
Definition 4, we find the degrees of its vertices of Figure 8.

Here, ď
G
· (V1) � (0.8, 0.8, 0.8), ď

G
· (V2) � (0.5, 0.5, 0.5),

ď
G
· (V3) � (0.7, 0.7, 0.7), ď

G
· (V5) � (0.9, 0.9, 0.9), and

ď
G
· (V5) � (1.1, 1.1, 1.1). Degrees of edges are ď

G
· (V1,

V2) �

(0.7 + 0.5 − 2 × 0.2, 1.8 + 0.5 − 2 × 0.5, 1.6+ 0.7 − 2 × 0.7) �

(0.8, 1.3, 0.9), ď
G
· (V1,

V3) � (0.7 + 0.2 − 2 × 0.2, 1.8+ 0.6 −

2 × 0.6, 1.6 + 0.7 − 2 × 0.7) � (0.5, 1.2, 0.9), and ď
G
· ( V1,

V4) � (0.7 + 0.3 − 2 × 0.3, 1.8 + 0.7 − 2 × 0.7, 1.6 + 0.7 − 2 ×

0.7) � (0.4, 1.1, 0.9) and tď
G
· (V1,

V2) � (0.7 + 0.2 − 0.2,

1.8 + 0.5 − 0.5, 1.6 + 0.7 − 0.7) � (0.7, 1.8, 1.6), tď
G
· ( V1,

V3) � (0.7 + 0.2 − 0.2, 1.8 + 0.6 − 0.6, 1.6 + 0.7 − 0.7) �

(0.7, 1.8, 1.6), and tď
G
· ( V1,

V4) � (0.7 + 0.3 − 0.3, 1.8+ 0.7 −

0.7, 1.6 + 0.7 − 0.7) � (0.7, 1.8, 1.6).

Theorem 7. If G
·

� (V, Ê) is a strongly connected EISVNG,
then G

·

is an HEISVNG.

Proof. Let us assume that G
·

is a connected strongly
EISVNG; then, all pairs of edges in G

·

have distinct degrees;
therefore, every edge neighbors the edge with a distinct
degree. Hence, G

·

is an HEISVNG. □

Theorem 8. If a connected SVNG G
·

� (V, Ê) is strongly
EISVNG and Ê is constant function, thenG

·

is strongly ETISVNG.

Proof. Suppose that Ê is constant function. Assume that
e1(U′, V) � ς1, e2(U′, V) � ς2, and e3(U′, V) � ς3; for all
ei(U′, V) ∈ Ê, ς1, ς2, and ς3 are constants. Now, assume that
G
·

is strongly EISVNG. .en, every pair of edge is neigh-
boring to the edges with distinct degrees. Suppose (U′, V)

and (x, y) be some pair of edge in Ê. Now, ď
1G

·

(U′, V)≠ ď
1G

· (x, y)⇒ď
1G

· (U′, V) + ς1 ≠ ď1G· (x, y) + ς1 ⇒ď1G·

(U′, V) + e1(U′, V)≠ ď
1G

· (x, y) + e1(x, y)⇒tď
1G

· (U′, V)≠
tď

1G
· (x, y) for any pair of (U′, V) and (x, y) in Ê. Similarly,

ď
2G

· (U′, V)≠ ď
2G

· (x, y)⇒ď
2G

· (U′, V) + ς2 ≠ ď2G· (x, y) + ς2
⇒ď

2G
· (U′, V) + e2(U′, V)≠ ď

2G
· (x, y) + e2(x, y)⇒tď

2G
· (U′,

V)≠ tď
2G

· (x, y) for any pair of (U′, V) and (x, y) in Ê and
ď
3G

· (U′, V)≠ ď
3G

· (x, y)⇒ď
3G

· (U′, V) + ς3 ≠ ď3G· (x, y) + ς3

v1 (0.6, 0.1, 0.2)~

v4 (0.6, 0.4, 0.4)~ v3 (0.5, 0.3, 0.2)~

v
2 (0.5, 0.2, 0.2)

~

v 5 
(0

.6,
 0.

5, 
0.6

)

~

(0.6, 0.6, 0.6)

(0.4, 0.4, 0.4)

(0.3, 0.3, 0.3)

(0.5, 0.5, 0.5)

(0.2, 0.2, 0.2)

Figure 7: Highly edge and highly edge totally irregular single-
valued neutrosophic graph.
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⇒ď
3G

· (U′, V) + e3(U′, V)≠ ď
3G

· (x, y)+ e3(x, y)⇒tď
3G

· (U′,
V)≠ tď

3G
· (x, y) for any pair of (U′, V) and (x, y) in Ê.

.erefore, tď
G
· (U′, V)≠ tď

G
· (x, y). Hence, G

·

is strongly
ETISVNG. □

Theorem 9. If a connected SVNG G
·

� (V, Ê) is strongly
ETISVNG and Ê is a constant function, then G

·

is strongly
EISVNG.

Proof. Suppose that Ê is constant function. Assume that
e1(U′, V) � ς1, e2(U′, V) � ς2, and e3(U′, V) � ς3; for all
ei(U′, V) ∈ Ê, ς1, ς2, and ς3 are constants. Let G

·

be strongly
ETISVNG. .en, all pairs of edges are with distinct total
degrees. Suppose (U′, V) and (x, y) be any pair of edge in Ê.
.en, tď

1G
· (U′, V)≠ tď

1G
· (x, y)⇒ď

1G
· (U′, V) + e1(U′, V)≠

ď
1G

· (x, y) + e1(x, y) ⇒ď
1G

· (U′, V) + ς1 ≠ ď1G· (x, y) + ς1⇒
ď
1G

· (U′, V)≠ ď
1G

· (x, y) for any pair of edge (U′, V) and
(x, y) in Ê. Similarly, tď

2G
· (U′, V)≠ tď

2G
· (x, y)⇒

ď
2G

· (U′, V) + e2(U′, V)≠ ď
2G

· (x, y) + e2(x, y) ⇒ď
2G

· (U′,
V) + ς2 ≠ ď2G· (x, y) + ς2⇒ď2G· (U′, V)≠ ď

2G
· (x, y) for any

pair of edge (U′, V) and (x, y) in Ê and tď
3G

·

(U′, V)≠ tď
3G

· (x, y)⇒ď
3G

· (U′, V) + e3(U′, V)≠ ď
3G

· (x, y) +

e3(x, y) ⇒ď
3G

· (U′, V) + ς3 ≠ ď3G· (x, y) + ς3⇒ď3G· (U′,
V)≠ ď

3G
· (x, y) for any pair of edge (U′, V) and (x, y) in Ê.

.erefore, ď
G
· (U′, V)≠ ď

G
· (x, y). Hence, G

·

is strongly
EISVNG. □

Theorem 10. If a connected SVNG G
·

� (V, Ê) is strongly
EISVNG and Ê is a constant function, then G

·

is strongly
ISVNG.

Proof. Suppose that Ê is a constant function. Assume that
e1(U′, V) � ς1, e2(U′, V) � ς2, and e3(U′, V) � ς3; for all
ei(U′, V) ∈ Ê, ς1, ς2, and ς3 are constants. Now, assume that
G
·

is strongly EISVNG. .en, every pair of edges is with
distinct degrees. Suppose (U′, V) and (V,ω) be neighboring
to the edges with distinct degrees. .en, ď

1G
· (U′, V)≠

ď
1G

· (V,ω)⇒ ď
1G

· (U′) + ď
1G

· (V) − 2 e1(U′, V)≠ ď
1G

· (V) +

ď
1G

· (ω) −2 e1(V,ω)⇒ ď
1G

· (U′) + ď
1G

· (V) − 2ς1 ≠ ď1G· (V)+

ď
1G

· (ω) − 2ς1 ď
G
· (U′)≠ ď

1G
· (ω). Also, ď

2G
· (U′, V)≠ ď

2G
·

(V,ω)⇒ ď
2G

· (U′) + ď
2G

· ( V) − 2 e2(U′, V)≠ ď
2G

· (V) + ď
2G

·

(ω) −2 e2(
V,ω)⇒ ď

2G
· (U′) + ď

2G
· (V) − 2ς2 ≠ ď2G· (V) + ď

2G
·

(ω) − 2ς2 ď
G
· (U′)≠ ď

1G
· (V) and ď

3G
· (U′, V)≠ ď

3G
· (V,ω)⇒

ď
3G

· (U′) + ď
3G

· (V) − 2 e3(U′, V)≠ ď
3G

· ( V) + ď
3G

· (ω) −2e3

(V,ω)⇒ ď
3G

· (U′) + ď
3G

· ( V) − 2ς3 ≠ ď3G· (V) + ď
3G

· (ω) − 2ς3
ď
G
· (U′)≠ ď

1G
· (ω). .erefore, a vertex V neighbors to the

vertices U′ and ωwith different degrees. Hence, G
·

is strongly
ISVNG. .e degree of edge irregularity is now extended to
path and cycle of SVNG. It is explained in Section 5. □

5. Edge Irregularity on a Path and a
Cycle in SVNG

Theorem 11. If a path contains 2m(m> 1) of vertices in a
SVNG G

·

and if the degrees of edges membership, indeter-
minacy, and nonmembership are the same, then G

·

is both
EISVNG and G

·

ETISVNG. However, G
·

is not HEISVNG and
G
·

is not HETSVNG.

Proof. Suppose that a path contains 2m(m> 1) of vertices in
G
·

. Let e1, e2, e3, . . . , e2m−1 be all the edges of G
·

. If all the
grades of membership, indeterminacy, and nonmembership
are the same which is ς1, ς2, and ς3, as shown in Figure 9,
then ď

1G
· ( e1) � ς1 + 2ς1 − 2ς1 � ς1, ď1G· ( ei) � 2ς1 + 2ς1 −

2ς1 � 2ς1, i � 1, 2, . . . , 2m − 2, ď
2G

· ( e2m−1) � ς1+ 2ς1 − 2ς1 �

ς1, ď2G· ( e1) � ς2 + 2ς2 − 2ς2 � ς2, ď1G· ( ei) � 2ς2 + 2ς2− 2ς2 �

2ς2, i � 1, 2, . . . , 2m − 2 ď
1G

· ( e2m−1) � ς2 + 2ς2 − 2ς2 � ς2,
ď
3G

· ( e1) � ς3 + 2ς3 − 2ς3 � ς3, ď3G· ( ei) � 2ς3 + 2ς3 − 2ς3 �

2ς3, i � 1, 2, . . . , 2m − 2, and ď
3G

· ( e2m−1) � ς3 + 2ς3 − 2ς3 �

ς3. Note that the neighboring edges of e2 are e1 and e3 with
distinct degrees. Hence, G

·

is an EISVNG but not HEISVNG.
Again, tď

1G
· ( e1) � ς1 + 2ς1− ς1 � 2ς1, ď1G· ( ei) � 2ς1 + 2ς1 −

ς1 � 3ς1, i � 1, 2, . . . , 2M − 2, ď
1G

· ( e2m−1) � ς1 + 2ς1 − ς1 �

2ς1, tď
2G

· ( e1) � ς2 + 2ς2 − ς2 � 2ς2, ď
2G

· ( ei) � 2ς2 + 2ς2 −

ς2 � 3ς2, i � 1, 2, . . . , 2m − 2, ď
2G

· ( e2m−1) � ς2 + 2ς2 − ς2 �

2ς2, tď
3G

· ( e1) � ς3 + 2ς3 − ς3 � 2ς3, ď3G· ( ei) � 2ς3 +

2ς3 − ς3 � 3ς3, i � 1, 2, . . . , 2m − 2, and
ď
3G

· ( e2m−1) � ς3 + 2ς3 − ς3 � 2ς3. Likewise, the neighboring

edges of e2 are e1 and e3 with different degrees. Hence, G
·

is
an ETISVNG but not HETISVNG. □

Theorem 12. If a path contains 2m(m> 1) vertices in a
SVNG G

·

and the alternating edges’ membership, indeter-
minacy, and nonmembership are the same values, then G

·

is
both EISVNG and an ETISVNG. However, G

·

is not
HEISVNG and G

·

is not HETSVNG.

v1 (0.6, 0.1, 0.2)~

v4 (0.6, 0.4, 0.4)~ v3 (0.5, 0.3, 0.2)~

v
2 (0.5, 0.2, 0.2)

~

v 5 
(0

.6,
 0.

5, 
0.6

)

~

(0.6, 0.6, 0.6)

(0.4, 0.4, 0.4)

(0
.3,

 0.
3, 

0.3
)(0.5, 0.5, 0.5)

(0.2, 0.2, 0.2)

Figure 8: Strongly edge and strongly edge totally irregular single-
valued neutrosophic graph.
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Proof. Suppose that if a path contains 2m(m> 1) vertices in
a SVNG G

·

and the alternating edges’ membership, inde-
terminacy, and nonmembership are the same values, then
assume

e1 ei(  �
ς1, if i is odd,

c2, if i is evenwith c1 ≠ c2,


e2 ei(  �
ς3, if i is odd,

c4, if i is evenwith c3 ≠ c4,


e3 ei(  �
ς5, if i is odd,

c6, if i is evenwith c5 ≠ c6.


(5)

.en, ď
1G

· ( e1) � ς1 + ς1 + ς2 − 2ς1 � ς2, ď1G· ( ei) � ς1 +

ς2 + ς1 + ς2 − 2ς1 � 2ς2, i � 3, 5, 7, . . . , 2m − 3, ď
1G

· ( ei) �

ς1 + ς2 + ς1 + ς2 − 2ς2 � 2ς1, i � 2, 4, 6, . . . , 2m − 2, ď
1G

·

( e2m−1) � ς1 + ς1 + ς2 − 2ς1 � ς2, ď
2G

· ( e1) � ς3 + ς3 + ς4 −

2ς3 � ς4, ď2G· ( ei) � ς3 + ς4 + ς3 + ς4 − 2ς3 � 2ς4, i �

3, 5, 7, . . . , 2m − 3, ď
2G

· ( ei) � ς3+ ς4 + ς3 + ς4 − 2ς4 �

2ς3, i � 2, 4, 6, . . . , 2m − 2, ď
2G

· ( e2m−1) � ς3 + ς3 + ς4 − 2ς3 �

ς4, ď
3G

· ( e1) � ς5 + ς5+ ς6 − 2ς5 � ς6, ď3G· ( ei) � ς5 +

ς6 + ς5 + ς6 − 2ς5 � 2ς6, i � 3, 5, 7, . . . , 2m − 3, ď
3G

· ( ei) �

ς5 + ς6 + ς5 + ς6 − 2ς6 � 2ς5, i � 2, 4, 6, . . . , 2m − 2, and
ď
3G

· ( e2m−1) � ς5 + ς5 + ς6 − 2ς5 � ς6.
Note that e2 and e3 neighboring edges have distinct

degrees. Hence, G
·

is EISVNG but not HEISVNG. Next,
tď

1G
· ( e1) � ς1 + ς1 + ς2 − ς1 � ς1 + ς2, tď

1G
· ( ei) � ς1+ ς2 +

ς1 + ς2 − ς1 � ς1 + 2ς2, i � 3, 5, 7, . . . , 2m − 3, tď
1G

· ( ei) �

ς1 + ς2 + ς1 + ς2 − ς2 � 2ς1 + ς2, i � 2, 4, 6, . . . , 2m − 2, tď
1G

·

( e2m−1) � ς1 + ς1 + ς2 − ς1 � ς1 + ς2, tď2G· ( e1) � ς3 + ς3+ ς4 −

ς3 � ς3 + ς4, tď
2G

· ( ei) � ς3 + ς4 + ς3 + ς4 − ς3 � ς3 + 2ς4, i �

3, 5, 7, . . . , 2m − 3, tď
2G

· ( ei) � ς3 + ς4 + ς3 + ς4− ς4 �

ς4 + 2ς3, i � 2, 4, 6, . . . , 2m − 2, tď
2G

· ( e2m−1) � ς3 + ς3+
ς4 − ς3 � ς3 + ς4, tď

3G
· ( e1) � ς5 + ς5 + ς6 − ς5 � ς5 + ς6,

ď
3G

· ( ei) � ς5 + ς6 + ς5+ ς6 − ς5 � ς5 + 2ς6, i � 3, 5, 7, . . . ,

2m − 3, ď
3G

· ( ei) � ς5 + ς6 + ς5 + ς6− ς6 � 2ς5 + ς6, i �

2, 4, 6, . . . , 2m − 2, and tď
3G

· ( e2m−1) � ς5 + ς5 + ς6 − ς5 �

ς5 + ς6.
Note that e2 and e3 neighboring edges are with different

degrees. Hence, G
·

is TEISVNG but not HTEISVNG. □

Theorem 13. If an even cycle has length 2m in a SVNG G
·

and if the alternating membership of edges, indeterminacy,

and nonmembership are the same values, then, G
·

is not an
EISVNG and not an ETISVNG.

Proof. It follows the proof of .eorem 12. .erefore, it is
omitted. □

6. Application

In this section, we utilize the notion of SVNGs to a DM
problem. A group of DM problems regarding the “choice of
selecting the most significant investment object” is solved to
elaborate applications of the suggested notion of SVNGs in a
practical scenario that builds on neutrosophic fuzzy pref-
erence relations (PFPRs).

6.1. Selection of the Most Significant Investment Object.
An investor who is a risk fonder likes to put an idle fund into
the Shanghai Stock Exchange as a long-term savings.
According four companies, zi, (i � 1, 2, 3, 4) are incredibly
hopeful which symbolize four different industries. His re-
sources, i.e., time and energy, are limited to his diplomacy to
select largely significant investment object from the available
choices. Consequently, he confers his investment adviser e1
and three stock specialists e2, e3, and e4. Comparison of four
companies with admiration to the likelihood of the growing
trend of the stock prices is done by the decision makers and
the appraisements of these corporate stocks and presents
their favourite information on zi (i � 1, 2, 3, 4), which is
shown by the neutrosophic fuzzy element (NFE)Nij

k which
represents the preferences of experts ek(k � 1, 2, 3, 4) over
each pair of stocks. .e equivalent NFPRs Rk � Nij

k
n×n are

shown as follows.
.e NFDGs Di corresponding to NFPRs

Rk(k � 1, 2, 3, 4) given in equations (6)–(9) are presented in
Figures 10–13, respectively.

Figure 11 represents the SVNDG.
SVNDG is given in Figure 12 and Figure 13.
Next, the single-valued neutrosophic preference relation

is given below:

R1 �

(0.5, 0.5, 0.5) (0.7, 0.5, 0.1) (0.7, 0.7, 0.7) (0.6, 0.7, 0.7)

(0.8, 0.6, 0.3) (0.5, 0.5, 0.5) (0.5, 0.7, 0.7) (0.8, 0.8, 0.6)

(0.9, 0.4, 0.5) (0.8, 0.7, 0.3) (0.5, 0.5, 0.5) (0.2, 0.9, 0.1)

(0.8, 0.3, 0.6) (0.4, 0.6, 0.7) (0.6, 0.6, 0.7) (0.5, 0.5, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Equation (6) is a single-valued neutrosophic preference
relation (SVNPR) of the investment advisor:

R2 �

(0.5, 0.5, 0.5) (0.6, 0.7, 0.6) (0.6, 0.1, 0.2) (0.3, 0.6, 0.7)

(0.5, 0.5, 0.5) (0.5, 0.5, 0.5) (0.7, 0.1, 0.3) (0.7, 0.3, 0.5)

(0.9, 0.4, 0.4) (0.6, 0.7, 0.5) (0.5, 0.5, 0.5) (0.4, 0.6, 0.7)

(0.3, 0.3, 0.4) (0.5, 0.6, 0.6) (0.8, 0.8, 0.7) (0.5, 0.5, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

~v1
~v2

~v2m-2e2m-2 e2m-1

~v2m-1
~v3

~v2m
~v4e1 e2 e3

(c1, c2, c3)(c1, c2, c3)(c1, c2, c3) (c1, c2, c3) (c1, c2, c3)

Figure 9: Single-valued neutrosophic graph path.
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R3 �

(0.5, 0.5, 0.5) (0.3, 0.3, 0.3) (0.5, 0.9, 0.8) (0.9, 0.4, 0.6)

(0.5, 0.6, 0.5) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5) (0.5, 0.6, 0.5)

(0.5, 0.2, 0.2) (0.7, 0.1, 0.3) (0.5, 0.5, 0.5) (0.4, 0.4, 0.4)

(0.8, 0.3, 0.5) (0.6, 0.6, 0.6) (0.9, 0.3, 0.3) (0.5, 0.5, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

R4 �

(0.5, 0.5, 0.5) (0.6, 0.5, 0.1) (0.5, 0.7, 0.5) (0.4, 0.8, 0.7)

(0.6, 0.6, 0.8) (0.5, 0.5, 0.5) (0.5, 0.3, 0.8) (0.5, 0.8, 0.6)

(0.3, 0.4, 0.5) (0.7, 0.7, 0.3) (0.5, 0.5, 0.5) (0.7, 0.5, 0.1)

(0.7, 0.3, 0.6) (0.4, 0.6, 0.7) (0.9, 0.6, 0.7) (0.5, 0.5, 0.5)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

SVNPR of the first, second, and third stock expert are
given in (7), (8), and (9), respectively.

Collect all Nk
ij(j � 1, 2, 3, . . . , n) consistent to the al-

ternative Zi to find the SVNNsNk
i of the alternative Zi over

all the other alternatives for the expert ek by using and SVN
averaging (SVNA) operator:

SVNA � N
k
ij(j � 1, 2, 3, . . . , n)

� 1 − 

n

j�1
1 − T
⌢ij

 

1/n

, 

n

j�1
I
⌢ij

⎛⎝ ⎞⎠

1/n

, 

n

j�1

_Fij
⎛⎝ ⎞⎠

1/n

⎛⎝ ⎞⎠,

i � 1, 2, . . . , n.

(10)

z1 z2

z4 z3

(0.8, 0.6, 0.3)

(0.7, 0.5, 0.1)

(0.2, 0.9, 0.1)
(0.5, 0.7, 0.7)

(0.8, 0.7, 0.3)

(0.8, 0.3, 0.6)

(0.6, 0.7, 0.7)

(0.6, 0.6, 0.7)

(0.7, 0.7, 0.7)

(0.9, 0.4, 0.5)

(0.8, 0.8, 0.6)(0.4, 0.6, 0.7)

Figure 10: Directed network of the single-valued neutrosophic information for equation (6).

z1 z2

z4 z3

(0.5, 0.6, 0.6)

(0.7, 0.3, 0.5)
(0.6, 0.1, 0.2)

(0.9, 0.4, 0.4)

(0.4, 0.6, 0.7)

(0.6, 0.7, 0.6)

(0.8, 0.8, 0.7)

(0.3, 0.6, 0.7)

(0.7, 0.1, 0.3)

(0.6, 0.7, 0.5)

(0.3, 0.3, 0.4)

(0.7, 0.3, 0.5)

Figure 11: Directed network of the single-valued neutrosophic information for equation (7).

Computational Intelligence and Neuroscience 9



.e aggregation results of the experts Nk(k � 1, 2, 3, 4)

are as follows:

e1 : N
(1)
1 � (0.9999320, 0.000479, 0.0000957),N

(1)
2 � (0.99990938, 0.0006563, 0.0002461),

N
(1)
3 � (0.99996875, 0.0004922, 0.0000293),N

(1)
4 � (0.99990625, 0.0002109, 0.0005742),

e2 : N
(2)
1 � (0.99995742, 0.0000820, 0.0001641),N

(2)
2 � (0.999912109, 0.0000293, 0.0001465),

N
(2)
3 � (0.99995325, 0.0003281, 0.0002734),N

(2)
4 � (0.999863281, 0.0002813, 0.0003281),

e3 : N
(3)
1 � (0.999931641, 0.0002109, 0.0002813),N

(3)
2 � (0.999975859, 0.0003516, 0.0002441),

N
(3)
3 � (0.9999824219, 0.0000156, 0.0000469),N

(3)
4 � (0.99998437, 0.0001055, 0.0001758),

e4 : N
(4)
1 � (0.999765625, 0.0005409, 0.000684), N

(4)
2 � (0.999804688, 0.0002813, 0.0007500),

N
(4)
3 � (0.999876953, 0.0002734, 0.0000293),N

(4)
4 � (0.999964844, 0.0002109, 0.0005742).

(11)

z1 z2

z4 z3

(0.5, 0.6, 0.5)

(0.6, 0.6, 0.6)

(0.5, 0.6, 0.5)

(0.3, 0.3, 0.3)

(0.4, 0.4, 0.4)

(0.9, 0.3, 0.3)

(0.8, 0.3, 0.5) (0
.5

, 0
.5

, 0
.5

) (0.7, 0.1, 0.3)

(0.5, 0.9, 0.8)

(0.5, 0.2, 0.2)

(0.9, 0.4, 0.6)

Figure 12: Directed network of the single-valued neutrosophic information for equation (8).

z1 z2

z4 z3

(0.4, 0.6, 0.7)

(0.4, 0.8, 0.7)

(0.7, 0.5, 0.1)

(0.9, 0.6, 0.7)

(0.6, 0.6, 0.8)

(0.6, 0.5, 0.1)

(0
.4

, 0
.8

, 0
.7

)

(0
.5

, 0
.3

, 0
.8

)

(0
.7

, 0
.3

, 0
.6

)

(0
.7

, 0
.7

, 0
.3

)
(0.5, 0.7, 0.5)

(0.3, 0.4, 0.5)

Figure 13: Directed network of the single-valued neutrosophic information for equation (9).
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Now, to find the weight of the experts, for this first, we
have to find SVN hamming distance between two SVNSs:

D N1,N2(  �
1
3n



n

j�1
TN1

zi(  − TN2
zj 





+ I
⌢N1

zi(  − I
⌢N2

zj 




+ _FN1

zi(  − _FN2
zj 



.

(12)

Next, determine d
_
(Nl

ij,N
k
ij), i, j � 1, 2, 3, 4

and l, k � 1, 2, 3, 4, and find the difference matrix
Dlk � d (Nl

ij,N
k
ij)n×n as follows:

D12 � D21 �

0 0.266667 0.4 0.133333

0.2 0 0.4 0.233333

0.0333333 0.133333 0 0.366667

0.23333 0.0666667 0.133333 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D13 � D31 �

0 0.266667 0.166667 0.233333

0.1666666667 0 0.1333333 0.2

0.3 0.233333 0 0.3333333

0.0333333 0.1 0.333333 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D14 � D41 �

0 0.033333 0.1333333 0.1

0.1666666667 0 0.1666667 0.1

0.2 0.033333 0 0.3

0.0333333 0 0.1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D23 � D32 �

0 0.333333 0.5 0.3

0.03333333 0 0.2666667 0.166667

0.26666667 0.3 0 0.16666667

0.2 0.033333 0.333333 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D24 � D42 �

0 0.233333 0.33333 0.1

0.1666666667 0 0.3 0.266667

0.23333333 0.1 0 0.3333333

0.2 0.066667 0.1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D34 � D43 �

0 0.233333 0.166667 0.333333

0.133333333 0 0.166667 0.1

0.23333333 0.2 0 0.2333333

0.06666667 0.1 0.23333333 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D11 � D22 � D33 � D4 �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)
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Now, find the average values of the different matrices by
using the following equation:

d
� lk

� 
n

i�1


n

j�1
d�

(lk)
ij ,

d12 � d21 �
2.599999363

16
� 0.1625,

d13 � d31 �
2.799993903

16
� 0.17499,

d14 � d41 �
1.36666665967

16
� 0.08541,

d32 � d23 �
2.900000267

16
� 0.181250,

d24 � d42 �
2.43333

16
� 0.1520831,

d34 � d43 �
2.2
16

� 0.1375.

(14)

Next, find the deviation of the expert d1 from the
remaining experts by using dl � 

n
k�1,k≠l d

(lk)
ij :

d1 � 0.4229,

d2 � 0.495831,

d3 � 0.49374,

d4 � 0.37499931.

(15)

To find the weight of the expert, we use
wl � (dl)

− 1/
s
l�1 (dl)

−1, l � 1, 2, . . . , s:

w1 � 0.26,

w2 � 0.22,

w3 � 0.22,

w4 � 0.29.

(16)

Now, we use the SVNWA operator to find the collective
SVNNs Ni � SVNWA(N

(1)
i ,N

(2)
i , . . . ,N

(s)
i ) of the com-

pany zi over all the other companies. .at is,

N1 � (0.9991056, 0.00030424, 0.00026506),

N2 � (0.9998461, 0.000242967, 0.000329008),

N3 � (0.9999175, 0.00019171, 0.0005896),

N4 � (0.99994228, 0.00020948, 0.00042161).

(17)

To find the rank of all the companies z i(i � 1, 2, 3, 4), we
use Definition 4 of SVNNs score function. .erefore, the
values of S(Ni)(i � 1, 2, 3, 4) are

S N1(  � 0.9995121,

S N2(  � 0.99975804,

S N3(  � 0.9998889,

S N4(  � 0.999770397.

(18)

.en, z3≻z4≻z2≻z1. Hence, the ideal choice is z3.

Below is the Algorithm 1 that is purposely used for
solving the multicriteria DM problem.

In Section 6.2, we also present the second example to
illustrate the proposed graphs.

6.2. Selectionof theSubjects atHigherStudies. Students of this
secondary age have many career choices. Apart from some
courses that are chosen mostly, other choices are also the
best choices until any single student utilizes enough
scheming and enough core interest to subject/career. In-
terest along with sound preparedness aids in achieving
capabilities in any area of work we selected. First choice in
career selection is made and required after the secondary
pretertiary education of students. At this time, enough in-
formation with respect to their interest has to be given. In
this part, based on the survey conducted among random
sample of 100 students of class x, the percentage of students
with interest, neutral, and disinterest towards a particular
subject and pair of subjects that they have studied till class x
is calculated and tabulated. SVNG is employed as a device
relying on this data as it involves degree of membership
(interest of percentage of students to a subject or pair of
subjects) and the degree of indeterminacy (neutral per-
centage of students to a subject or pair of subjects) and the
degree of nonmembership (disinterest of percentage of
students to a subject or pair of subjects). By employing
SVNG, the best combination of subjects can be analysed
such as the class that has subjects which can achieve excellent
academics performance of many students.

Let S� {English (E), Language (L), Maths (M), Science
(S), Social Science (SS)} be the collection of vertices. Table 1
explains the percentage of students with interest, neutral,
and disinterest towards a subject.

Table 2 displays the percentages of students with interest,
neutral. and disinterest towards pairs of subjects.

Figure 14 is the graph used for all vertices; the degree of
membership indicates percentage of students who have
interest for a particular subject, the grade of indeterminacy
indicates percentage of students who have neutral for a
particular subject, and grade of nonmembership is the
percentage of students who have disinterests for subject
from a random sample of 100 students of class x selected for
survey. Also, membership, indeterminacy, and nonmem-
bership grades of edges of the graph show the likes, neutral,
and dislikes of the students to study the combination of any
two subjects at the higher secondary level. From the graph,
the edge (E, SS) with high degree of nonmembership shows
that the majority of the students do not like to study the
combination of English and social science and the edge; (M,
S), having high degree of membership, shows majority of the
students have zeal to study the combination of maths and
science. .ere is also no interest, neutral, and disinterest to
study the combination of language and maths which indi-
cates the subjects that are not required to be combined..us,
a high or low level of membership of any edge demonstrates
the high and low proportion for the combination of the
subjects at higher studies.
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(1) Start.
(2) Collective allNk

ij(j � 1, 2, 3, . . . , n) consistent to the alternative zi and by SVN averaging operator and get the SVNNsNk
i of the

alternative zi over all the other alternative for the expert ek.
(3) Determine d(Nl

ij, N
k
ij) i, j � 1, 2, 3, 4 and l, k � 1, 2, 3, 4, and find the difference matrix Dlk � d (Nl

ij, N
k
ij)n×n then by using

single-valued neutrosophic hamming distance between two SVNSs.
(4) By using dlk � 

n
i�1 

n
j�1 d

(lk)
ij , find the average value of the matrix Dlk.

(5) By using dl � 
n
k�1,k≠ l d

(lk)
ij , find the deviation of the expert e1 from the remaining experts.

(6) Find the weight vector using wl � (dl)
− 1/

s
l�1 (dl)

−1, l � 1, 2, . . . , s.

(7) By using SVNWA operator, find the collective SVNNsNi � SVNWA(N
(1)
i ,N

(2)
i , . . . ,N

(s)
i ) of the company zi over all the other

companies.
(8) Determine the score function of S(Ni)(i � 1, 2, 3, 4).
(9) Ranking all the choices zi(i � 1, 2, 3, 4) according to S(Ni)(i � 1, 2, 3, 4).
(10) Result: selection of the best choice.
(11) End

ALGORITHM 1: A distinct set of alternative Z � z1, z2, . . . , zn , set of expert e � e1, e2, . . . , en , and structure of SVNR Rk � (Nk
ij)n×n for

each expert.

Table 1: Subjects and their degrees.

Subject/subject combination Interest percentage Neutral percentage Disinterest percentage
E 0.7 0.2 0.6
L 0.5 0.4 0.5
M 0.8 0.4 0.3
S 0.9 0.3 0.4
SS 0.3 0.6 0.6

Table 2: Combine subjects and their degrees.

Subject/subject combination Interest percentage Neutral percentage Disinterest percentage
E − M 0.7 0.4 0.6
E − L 0.4 0.6 0.6
E − S 0.5 0.6 0.7
E − SS 0.2 0.8 0.9
L − M 0 0 0
L − S 0.5 0.6 0.6
L − SS 0.3 0.7 0.6
M − S 0.8 0.4 0.4
M − SS 0.3 0.7 0.7
S − SS 0.2 0.6 0.8

(0.5, 0.6, 0.7)

(0.3, 0.6, 0.7)

(0.5, 0.6, 0.6)

(0.8, 0.4, 0.4)

(0.2, 0.8, 0.9)

(0.4, 0.6, 0.6)

(0.2, 0.6, 0.8)

(0.3, 0.7, 0.7)

(0.7, 0.4, 0.6)

M (0.8, 0.4, 0.3)

E (0
.7, 0.2, 0.6)

L 
(0

.5,
 0.

4, 
0.5

)

SS
 (0

.3,
 0.

6, 
0.6

)

S (0.9, 0.3, 0.4)

Figure 14: Single-valued neutrosophic graph used for percentage.
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.is easy analysis shows that SVNG can be employed in
decision-making situations for all practical and everyday
problems. Additional utilization in artificial intelligence and
decision-making situations can be examined.

6.3. Comparative Study. .e suggested novel approach is
important because the novel approach can resolve the issues
which are present in the environment of IFSs along with FSs.
We examine two examples, at present, containing data in the
form of IFNs or FNs.

By supposing the decision matrix in which data are
presented in the form of IFNs,

_R � _rij 4×4 �

(0.5), (0.3), (0.7), (0.6),

(0.3), (0.5), (0.7), (0.6),

(0.4), (0.2), (0.5), (0.7),

(0.3), (0.6), (0.4), (0.5).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

At present, this sort of data can be simply analysed
employing the SVNWA and SVNWG operators by as-
suming I

⌢
� _F � 0.

In addition, if the information is in the form of IFNs,
then the decision matrix is written as

_R � _rij 4×4 �

(0.5, 0.5), (0.3, 0.6), (0.1, 0.6), (0.5, 0.2),

(0.3, 0.3), (0.5, 0.5), (0.5, 0.2), (0.3, 0.5),

(0.4, 0.4), (0.2, 0.6), (0.5, 0.5), (0.3, 0.6),

(0.1, 0.4), (0.3, 0.5), (0.6, 0.2), (0.5, 0.5).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

After that, the suggested method can also be employed
by applying geometric and averaging aggregation operators
of IFSs, as described in Definition 6. Diversely, the aggre-
gation methods of FSs or IFSs could not be utilized to the
information of SVNSs because of their restricted structures.
From this, the significance of new introduced approach is as
follows: the imperativeness and importance of the proposed
method is that the novel method is capable of solving the
problems in the environment of Pythagorean fuzzy set and
IFSs.

An overview of the comparative study is represented
through Table 3. As a result, it is observed that the fuzzy set is
not applicable in certain situations, whereas the intuition-
istic fuzzy set also has some limitations. Particularly, the
absence of neutral degree and strict constraints on the se-
lection of degrees limits the ability of a decision maker to
make perfect decisions. .us, it leaves the ground open for
the neutrosophic set which ticks all the compartments and
wins the match of comparison. .e advantages of the
proposed framework are as follows: (i) talks about three
degrees, (ii) selection of values for the degrees does not limit

the decision maker, and (iii) each of the degrees can be
independently dealt.

7. Conclusion

In this article, some new types of SVNGs were introduced.
Moreover, this article also explored some graphical ideas
which were well supported by appropriate examples. We
also developed the degrees such as irregular SVNG, edge
irregular neutrosophic graph, and degree of neutrosophic
graph under some conditions and elaborated these via ex-
amples. Two real-life applications of SVNGs are discussed
where the proposed concept is utilized. Additionally, the
proposed concept is utilized in two DMproblems. In the first
problem, we used the weighted averaging and weighted
geometric aggregation operators to select the best company
among different companies. .e other problem was the
selection of the best combination of subjects which was
solved by ideas of edges in SVNGs. In addition, the ad-
vantages of the proposed work were highlighted by estab-
lishing a comparative study which includes the choice of
three independent degrees without any constraints. In fu-
ture, more of the DM algorithms will be discussed in
contrast to the existing ones.
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